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1 Introduction
This note is a brief survey on the several topics treated in the articles [2] and [22],
and is prepared for the report of the workshop 「作用素環論の新展開」 held at RIMS
in September, 2007. What is discussed here is a very intriguing relation between 1-
cocycles in ergodic theory and a certain tyPe of coactions in von Neumann algebra$\cdot$

theory. This relation illustrates how every l-cocycle on a Principal measured groupoid
or an ergodic $R$-space gives rise to a special kind of coaction on the von Neumann
algebra associated with such a dynamical system and vioe versa. We shall thus see that
the study of l-cocycles described above is roughly “equivalent” to that of coactions
with a specific Property. I hope that the results presented in this note would provide
us with a new interesting approach to analyze both l-cocycles in ergodic theory and
coactions on von Neumann algebras.

2 l-cocycles on measured equivalence relations and
coactions associated with them

Throughout the rest of this section, we fix a principal measured groupoid (i.e., a
measured equivalenoe relation) $(\mathcal{R}, \{\lambda^{x}\}_{x\in X}, \mu)$ on a standard Borel probability space
(X, $\mu$). Associated with such a system and a normalized 2-cocycle $\sigma$ on $\mathcal{R}$ is a von
Neumann algebra $W^{*}(\mathcal{R}, \sigma)$ acting on the Hiilbert space $L^{2}(\mathcal{R}, \nu)$ , called the (twisted)
goupold von Neumann algebra, obtained by the method indicated in [11], [16], [19],
[8], .... Here $\nu$ is the measure on $\mathcal{R}$ defined by integrating the Haar system $\{\lambda^{x}\}_{x\in X}$

with respect to the quasi-invariant measure $\mu:\nu$ $:= \int_{X}\lambda^{x}d\mu(x)$ . Inside $W^{*}(\mathcal{R}, \sigma)$ ,
there is $a*$-isomorphic image $D$ of $L^{\infty}(X, \mu)$ , which we call the diagonal algebra of
$W$“

$(\mathcal{R}, \sigma)$ . In the case of $\mathcal{R}$ being discrete, $D$ is usually called a Cartan subalgebra.
Suppose now that we are given a Borel l-cocycle $c$ from $\mathcal{R}$ into a (second countable)

locally compact group $K$ . We denote the set of such l-cocycles by $Z^{1}(\mathcal{R}, K)$ . Then
we define a unitary $U_{c}$ on $L^{2}(K)\otimes L^{2}(\mathcal{R}, \nu)$ by

$\{U_{c}\xi\}(k, (x,y))$ $:=\xi(c(x,y)^{-1}k,$ $(x,y))$ $(\xi\in L^{2}(K)\otimes L^{2}(\mathcal{R}, \nu),$ $k\in K,$ $(x,y)\in \mathcal{R})$

Then it is easy to check that the map $\alpha_{c}$ : $W^{*}(\mathcal{R},\sigma)arrow B(L^{2}(K)\otimes L^{2}(\mathcal{R}, \nu))$

$\alpha_{c}(a):=U_{c}(1\otimes a)U_{c}^{*}$ $(a\in W^{*}(\mathcal{R},\sigma))$
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defines a coaction of $K$ on $W^{*}(\mathcal{R}, \sigma)$ , that is to say, it is a unital injective normal
$*$-homomorphism from $W$“

$(\mathcal{R}, \sigma)$ into $W$“ $(K)\otimes W$“
$(\mathcal{R}, \sigma)$ sativfying

$(\Delta_{K}\otimes id)0\alpha_{c}=(id\otimes\alpha_{c})0\alpha_{c}$ ,

where $W^{*}(K)$ is the group von Neumann algebra of $K$ and $\Delta_{K}$ stands for the usual
coproduct of $\Delta_{K}$ . One of the characteristics of $\alpha_{c}$ is that it fixes the diagonal algebra
$D$ pointwise. In general, for a coaction $\beta$ on a von Neumann algebra $A$ , an element
$a\in A$ is said to be fixed by $\beta$ if it satisfies $\beta(a)=1\otimes a$ . The von Neumann
subalgebra consisting of all elements fixed by $\beta$ is called the fixed-point algebra of
$\beta$ and is denoted by $A^{\beta}$ . As we see below, the above property of $\alpha_{c}$ completely
characterizes the coactions on $W(\mathcal{R}, \sigma)$ which arise from l-cocycles on $\mathcal{R}$ .
Theorem 2.1. Let $\alpha$ be a coaction of a locally compact group $K$ on $W^{*}(\mathcal{R},\sigma)$ that
fixes $D$ pointwise. Then there exists a cocycle $c\in Z^{1}(\mathcal{R}, K)$ such that $\alpha=\alpha_{c}$ .

Before we give an outline of a proof to this theorem, let us treat the case of $\mathcal{R}$

being discrete, because this case is fairly easy to deal with.
First choose nonsingular partial Borel automorhisms $\{\phi_{i}\}_{i\in I}$ on $\dot{X}$ such that (i)

$\Gamma(\phi_{i})$ ( $:=the$ graph of $\phi_{i}$ ) $\subseteq \mathcal{R}$ ; (ii) $\mathcal{R}=\cup\Gamma(\phi_{i})$ (disjoint). Let $v_{i}$ be the partial
$i\in I$

isometry in $W$‘ $(\mathcal{R}, \sigma)$ corresponding to $\emptyset$:–it satisfies $v_{1}^{*}v_{i},$ $v_{i}v_{t^{l}}\in D,$ $v_{v}Dv_{i}^{*}=v_{i}v_{1}^{*}D$ .
Then check that $w_{i}$ $:=\alpha(v_{l}^{*})(1\otimes v_{i})\in W^{*}(K)\otimes D=L^{\infty}(X, W^{*}(K))$ and that it
satisfies $(\Delta_{K}\otimes id)(w_{i})=(w_{i})_{12}(w_{i})_{13}$ . This means that, as a bounded $W^{*}(K)$ -valued
Borel function, $w_{i}$ satisfies $\Delta_{K}(w_{i}(x))=w_{i}(x)\otimes w_{i}(x)$ . Since

$\{u\in W^{*}(K)\backslash \{0\} : \Delta_{K}(u)=u\otimes u\}=\lambda_{K}(K)$,

where $\lambda_{K}$ is the left regular representation of $K$ , there exists, for each $i\in I$ , a Borel
function $k_{i}$ : $Xarrow K$ such that $\alpha(v_{i}^{*})(1\otimes v_{i})(x)=\lambda_{K}(k_{i}(x))$ . Define $c:\mathcal{R}arrow K$ by

$c(x,y)$ $:=k_{1}(x)$ if $(x, y)\in\Gamma(\phi_{i})$ .
The map $c$ is the desired l-cocycle.

Proof of Theooem 2.1. (Outline) Let $U$ be the canonlcal implementation of $\alpha$ on
$L^{2}(\mathcal{R}, \nu)$ in the sense of [20]. Thanks to the identity $(\Delta_{K}\otimes id)(U)=U_{23}U_{13}$ , the
equation

$\Pi(\omega):=(\omega\otimes id)(U^{*})$ $(\omega\in W^{*}(K)_{t})$

$defin\infty a*$-representation $\Pi$ of the abelit $B\bm{t}ach*$-algebra $W^{*}(K)_{*}$ on $L^{2}(\mathcal{R}, \nu)$ .
Note that the Gelfand spectrum of $W^{*}(K)_{*}$ is (homeomorphic to) $K([5])$ . So, by
the spectral theorem $of*$-representations of abelian $Banach*$-algebras(see [6]), there
exists an $L^{2}(\mathcal{R}, \nu)$-projection-valued measure $P$ on $K$ such that $\Pi(\omega)=\int_{K}\hat{\omega}dP$ for
any $\omega\in W^{*}(K)_{*}$ , where $\hat{\omega}$ is the Gelfand transform of $\omega$ . Observe that the image of
$\Pi$ is contained in $(D\cup JDJ)’’$ . Here $J$ denotes the modular conjugation of $\mathcal{R}$ . Sin.ce
the groupoid $\mathcal{R}$ is principal, we have $(D\cup JDJ)’’=L^{\infty}(\mathcal{R}, \nu)$ . It follows.that there
exists aBorel map $c:\mathcal{R}arrow K$ such that $P(B)=\chi_{c^{-1}(B^{-1})}$ for $\bm{r}y$ Borel subset $B$ of
K. By replacing $c$ by asuitable Borel map almost everywhere equal to $c$ if necessary,
we $\dot{g}et$ the desired 1-cocycle. $\square$
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Remark Theorem 2.1 can be strengthened to the case of a locally compact quantum
group action as follows. Let $G=(M, \Delta)$ be a locally compact quantum group in
the sense of Kustermans and Vaes ([17]). Suppose that $\alpha$ is a faithful action of $G$ on
$W^{*}(\mathcal{R}, \sigma)$ ([20]). If $D$ is regular in $W$“

$(\mathcal{R}, \sigma)$ and if the fixed-point algebra $W$“
$(\mathcal{R}, \sigma)^{\alpha}$

of $\alpha$ contains the diagonal algebra $D$ , then $G$ must be cocommutative. Therefore, $\alpha$

is a coaction of some locally compact group $K$ .
Definition 2.2. Let $\alpha$ be a coaction of $K$ on a von Neumann algebra $A$ . A unitary
$V$ in. $W^{*}(K)\otimes A$ is called an $\alpha- 1$-cocycle if $V$ satisfies the following:

$(\Delta_{K}\otimes id_{A})(V)=V_{23}(id_{W(K)}\otimes\alpha)(V)$ .

For each $\alpha- 1$-cocycle $V$ , Ad $Vo\alpha$ is also a coaction of $K$ on $A$ . A coaction $\alpha’$ of
$K$ on $A$ is said to be cocycle conjugate to $\alpha$ if there exist an $\alpha- 1$-cocycle $V$ and a
$*$-automorphism $\theta$ of $A$ such that $(id_{W(K)}\otimes\theta)0\alpha’0\theta^{-1}=AdVo\alpha$ .
Proposition 2.3. Let $K$ be a locally compact group and $c,$ $d\in Z^{1}(\mathcal{R}, K)$ .

(1) If $c$ is cohomologous to $d$ , i.e., if there is a Borel map $\phi$ : $Xarrow K$ such that
$d(x,y)=\phi(x)c(x,y)\phi(y)^{-1}$ a.e. $(x,y)\in \mathcal{R}$ , then there exists an $\alpha_{c^{-}}1$-cocycle $V$

in $W^{*}(K)\otimes D$ so that $\alpha_{c’}=AdVo\alpha_{c}$ . Hence $\alpha_{c}$ is cocycle conjugate to $\alpha_{d}$ .
(2) If there exist an $\alpha_{c^{-}}1$-cocycle $V$ and $a*$-automorphism 9 of $W(\mathcal{R}, \sigma)$ such that

$\theta(D)=D$ and $(id_{W(K)}\otimes\theta)0\alpha_{c’}0\theta^{-1}=AdVo\alpha_{c}$, then $c$ is weakly equivalent
to $d$ in the sense that there exists a measure-class preserving Borel groupoid
automorphism $\rho$ of $\mathcal{R}$ such that $c’o\rho^{-1}$ is cohomologous to $c$.

Ftom this proposition, we see that the assignment $c\in Z^{1}(\mathcal{R}, K)\mapsto\alpha_{c}$ passes to
the map from $Z^{1}(\mathcal{R}, K)$ modulo the cohomologous equivalence to the set of coactions
$\alpha$ of $K$ on $W$“ $(\mathcal{R}, \sigma)$ with the property $D\subseteq W$“ $(\mathcal{R}, \sigma)^{\alpha}$ , modulo the special cocy-
cle conjugacy described in Proposition 2.3 (2). Let us remark that the converse of
Proposition2.3(2) is also true if $\mathcal{R}$ is discrete and $\sigma=1$ .

Thus we may say that study of l-cocycles on measured equivalence relations is
almost equivalent to that of coactions on $W$“

$(\mathcal{R}, \sigma)$ fixing $D$ pointwise.
To add yet another evidence to support our statement above, we consider the

asymptotic range of a Borel l-cocycle on a measured equivalence relation (cf. [7],
[19]).

Deflnition 2.4. Let $c\in Z^{1}(\mathcal{R}, K)$ . The essential range $\sigma(c)$ of $c$ is by definition
$\sigma(c)$ $:=\cap\{\overline{c(B)} : m(B^{c})=0\}$ . Then the asymptotic range $r(c)$ of $c$ is defined to be
$r^{*}(c):=\cap\{\sigma(c_{B}) : \mu(B)>0\}$ , where $c_{B}$ $:=c|_{\mathcal{R}\cap(BxB)}$ . It is known (see [7], [19] for
example) that the asymptotic range is a closed subgroup of $K$ .

With the notion of an asymptotic range on one hand, we have the notion of a
Connes spectrum $\Gamma(\alpha)$ of a coaction $\alpha$ on the other. Refer to [18] for the definition
of $\Gamma(\alpha)$ . The next theorem states that the assignment $c\in Z^{1}(\mathcal{R};K)rightarrow\alpha_{c}$ behaves
nicely in the level of the invariants $r(c)$ and $\Gamma(\alpha)$ introduced above.
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Theorem 2.5. For any $c\in Z^{1}(\mathcal{R}, K)$ , we have $r(c)=\Gamma(\alpha_{c})$ .

By combining this theorem with one of the results of Golodets and Sinel’shchikov in
[10], we can extend the main result of Kawahigashi in [15] concerning the classification,
up to cocycle conjugacy, of actions of locally compact abelian groups on the AFD type
II factors which fix Cartan subalgebras.

Theorem 2.6. Let $A$ be an AFD type II factor. Suppose that $\alpha$ and $\alpha’$ are coactions
of a locally compact group $K$ on $A$ such that each of $A^{\alpha}$ and $A^{\alpha’}$ contains a Cartan
subalgebra of $A$ . If $\Gamma(\alpha)=\Gamma(\alpha’)=K$ , then $\alpha$ is cocycle conjugate to $\alpha’$

Sketch of proof. Suppose that $A^{\alpha}$ (resp. $A^{\alpha’}.$) contains a Cartan subalgebra $D_{1}$ (resp.
$D_{2})$ of $A$ . By [3], there exists $a*$-automorphism $\theta$ of $A$ such that $\theta(D_{1})=D_{2}$ . Set
$\alpha_{\theta}$ $:=(id_{W(K)}\otimes\theta^{-1})0\alpha 0\theta$ . Then we have $A^{\alpha_{\theta}}=\theta(A^{\alpha})$ . So $D_{2}=\theta(D_{1})\subseteq\theta(A^{\alpha})=$

$A^{\alpha 0}$ . Clearly, $\alpha_{\theta}$ is cocycle conjugate to $\alpha$ . Hence it suffices to assume from the outset
that $D_{1}=D_{2}=:D$ .

We may assume that the inclusion $(D\subseteq A)$ is of the form $(L^{\infty}(X)\subseteq W^{*}(\mathcal{R}))$ for
an amenable ergodic $t\dot{y}$pe II discrete measured equivalence relation $\mathcal{R}$ on a standard
Borel space (X, $\mathfrak{B},$

$\mu$) with an invariant measure $\mu$ . By Theorem 2.1, there exist
$c,$ $d\in Z^{1}(\mathcal{R}, K)$ such that $\alpha=\alpha_{c}$ and $\alpha’=\alpha_{c’}$ . Due to Theorem 2.5, we have
$r^{*}(c)=r^{*}(d)=K$ . Then, from [10], two cocycles $c,$ $d$ are weakly equivalent. By the
remark made right after Proposition 2.3, $\alpha$ is cocycle conjugate to $\alpha’$ . $\square$

3 l-cocycles on an ergodic R-space and extended
modular coactions

Let us fix a (separable) type III factor $N$ and a dominant weight $\phi$ on $N$ for the time
being. Then consider the so-called continuous decomposition $\{N_{\phi}, R, \theta\}$ of $N$ with
respect to $\phi$ ([4]). Hence, in particular, the crossed product $R_{\theta}\ltimes N_{\phi}is*$-isomorphic
to $N$ , and we denote this isomorphism by $\Psi$ . The commutative dynamical system
$\{Z(N_{\phi}), R, \theta|_{Z(N_{\phi})}\}$ is usually called the smooth flow of weights on $N$ ([4]). But,
in this note, instead of looking at the algebra itself, we mainly focus on a measure-
theoretical realization of this system as follows:

$Z(N_{\phi})=L^{\infty}(X_{N},\mu)$ , $\theta_{t}(f)(x)=f(F_{-t}^{N}x)$ $(f\in L^{\infty}(X_{N},\mu),$ $x\in X_{N},$ $t\in R$).

It is known that $\{F_{t}^{N}\}$ is an ergodic flow.
Let $K$ be a locally compact group. A Borel map $c:R\cross X_{N}arrow K$ is said to be a

(K-valued) l-cocycle on the ergodic R-space $\{X_{N}, F^{N}\}$ if it satisfies

$c(s+t,x)=c(s, F_{t}^{N}x)c(t,x)$ $(s,t\in R, x\in X_{N})$ .

The set of all (K-valued) Borel l-cocycles on $\{X_{N},F^{N}\}$ is denoted by $Z^{1}(F^{N}, K)$ .
Our first main theorem of this section is the following:
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Theorem 3.1. Let $c\in Z^{1}(F^{N}, K)$ . Then there exists a coaction $\beta_{c}^{\phi}$ of $K$ on $N$

satisfying the identities

(3.1) $\beta_{c}^{\phi}(a)=1\otimes a$ $(\forall a\in N_{\phi})$ ;
(3.2) $\beta_{c}^{\phi}(u(s))=Q_{\theta}(1\otimes u(s))$ $(\forall s\in R)$ ,

where $u(s)$ $:=\Psi(\lambda_{R}(s)\otimes 1)\in N$ and $Q_{s}\in W(K)\otimes Z(N_{\phi})=L^{\infty}(X_{N}, W^{*}(K))$ is
a $W^{*}(K)$-valued Borel function on $X_{N}$ defined by $Q_{s}(x);=\lambda_{K}(c(-s, x))^{*}$ . If $\psi$ is
another dominant weight on $N$ , then $\beta_{c}^{\psi}$ is conjugate to $\beta_{c}^{\phi}$ . Therefore, the conjugacy
class of $\beta_{\iota}^{\phi}$ is independent of choice of a dominant weight on $N$ .
Definition 3.2. The coaction $\beta_{c}^{\phi}$ is called the extended modular coaction associated
with $\phi$ and $c$ .

Remark Let us examine the extended modular coaction $\beta_{c}^{\phi}$ in the case where $K$ is the
one-dimensional torus T. In this case, by using the Fourier transform, $\beta_{c}^{\phi}$ corresponds
to a usual automorphic action of the dual group $Z=\hat{T}$ on $N$ . Thus $\beta_{c}^{\phi}$ determines
a single automorphism of $N$ , still denoted by $\beta_{c}^{\phi}$ . To clarify what this automorphism
is, we define a function $a:Rarrow Z(N_{\phi})=L^{\infty}(X_{N})$ by

$a_{t}(x):=c(t, x)\in T$ $(t\in R, x\in X_{N})$ .

Thus $a_{t}$ is a unitary element in $Z(N_{\phi})=L^{\infty}(X_{N})$ for any $t\in R$ . From the cocycle
identity of $c$ , it easily follows that the function $a$ satisfies $a_{s+t}=a_{\epsilon}\theta_{f}(a_{t})$ for all
$s,$ $t\in$ R. In other words, $a$ is a unitary $\theta- 1$-cocycle in $Z(N_{\phi})$ . Hence it induces a
$*$-automorphism $\sigma_{a}^{\phi}$ of $N$ , called the extended modular automorphism ([4]). By using
the identities (3.1), (3.2), it is easy to check that $\beta_{c}^{\phi}$ actually equals $\sigma_{a}^{\phi}$ . This fact
justifies our terminology of “extended modular coaction.”

Proposition 3.3. Let $c,$ $d\in Z^{1}(F^{N}, K)$ . Then the following are equivalent:

(1) The cocycles $c$ and $d$ are cohomologous, i.e., there is a Borel maP $q:Xarrow K$

such that, for each $t\in R,$ $d(t, x)=q(F_{t}^{N}x)^{-1}c(t, x)q(x)$ for a.e. $x\in X_{N}$ .

(2) There exists a $\beta_{c}^{\phi_{-}}1$-cocycle $R$ such that $\beta_{c}^{\phi},$ $=$ Ad $Ro\beta_{c}^{\phi}$ (in particular, the
coactions are cocycle conjugate).

Sketch of proof. (1) $\Rightarrow(2)$ : Suppose that $c$ and $d$ are cohomologous. Let $q:Xarrow K$

be a Borel map as above. This in tum induces the Borel map $V_{q}$ : $x\in X_{N}rightarrow$

$\lambda_{K}(q(x))"\in W$
“ $(K)$ . Then $V_{q}$ is a unitary in $L^{\infty}(X_{N}, W^{*}(K))=W^{*}(K)\otimes Z(N_{\phi})$ .

By (3.1), $(\Delta_{K}\otimes id)(V_{q})=(V_{q})_{23}(id\otimes\beta_{c}^{\phi})(V_{q})$ , i.e., $V_{q}$ is a $\beta_{c}^{\phi}- 1$-cocycle. Take $V_{q}$ for
the desired unitary $R$.

(2) $\Rightarrow(1)$ : Let $R$ be as in (2). By (3.1) and the Connes-Takesaki Relative Commu-
tant Theorem ([4]), $R\in W^{*}(K)\otimes Z(N_{\phi})$ . Thus $R$ can be viewed as a $W^{*}\{K$)-valued
Borel function on $X_{N}$ . Since $(\Delta_{K}\otimes id)(R)=R_{23}(id\otimes\beta_{c}^{\phi})(R)=R_{23}R_{13}$ , it fol-
lows that $\Delta_{K}(R(x))=R(x)\otimes R(x)$ . Hence there is a Borel function $P$ : $X_{N}arrow K$

5



such that $R(x)=\lambda_{K}(p(x))^{*}$ . By (3.2), we get $Q_{\epsilon}^{d}=RQ_{s}^{c}(1\otimes u(s))R(1\otimes u(s))=$

$RQ_{\delta}^{c}(id\otimes\theta_{\partial})(R)$ for any $s\in R$ . This means that, for a.e. $x\in X_{N}$ , we have

$c(-s,x)^{-1}=p(x)^{-1}c(-s,x)p(F_{-s}^{N}x)$ .
Therefore, $d$ is cohomologous to $c$ $\square$

Thanks to this proposition, just as in the case of the correspondence

$c\in Z^{1}(\mathcal{R}, K)\mapsto\alpha_{e}\in$ {coactions of $K$ on $W^{*}(\mathcal{R},$ $\sigma)$ }

established in the previous section, the assignment $c\in Z^{1}(F^{N}, K)\mapsto\beta_{c}^{\phi}$ passes to
the map from $Z^{1}(F^{N}, K)$ modulo the cohomologous equivalence to the set of coactions
of $K$ on $N$ modulo cocycle conjugacy.

Deflnition 3.4. Let $c\in Z^{1}(F^{N}, K)$ . From Theorem 3.1 and Proposition3.3, the
dual covariant system $\{\hat{K}_{\beta_{\epsilon}^{\phi}}\ltimes N, K,\overline{(\beta_{c}^{\phi})}\}$ , where $\hat{K}_{\beta_{c}^{\phi}}\ltimes N$ is the crossed product

of $N$ by $\beta_{c}^{\phi}$ and $\overline{(\beta_{c}^{\phi})}$ is the dual action of $\beta_{c}^{\phi}$ , depends only on the cohomology class
$[c]$ of $c$ , up to conjugacy. Following Izumi’s terminology in [13], we call $\hat{K}_{\beta_{c}^{\phi}}\ltimes N$ the
skew-product of $N$ by $c$ and denote it by $N\otimes_{c}L^{\infty}(K)$ .

Theorem 3.1 states that the fixed-point algebra of an extended modular coaction
always contains the centralizer of the dominant weight in question. In the next the-
orem, we see that it is this property that characterizes extended modular coactions
among all the coactions on $N$ .

Theorem 3.5. Let $N$ be a type III factor and $\beta$ be a coaction of a locally compact
group $K$ on $N$ . If the fixed-point algebra $N^{\beta}$ contains the centralizer $N_{\phi}$ of some
dominant weight $\phi$ on $N$ , then there exists a $c\in Z^{1}(F^{N}, K)$ such that $\beta=\beta_{c}^{\phi}$ .
Namely, $\beta$ is an extended modular coaction.

Sketch of proof. Let $\{u(s)\}_{s\in R}$ be as in Theorem 3.1. Set $w(s):=(1\otimes u(s)^{*})\beta(u(s))\in$

$W^{*}(K)\otimes N$ . For any $x\in N_{\phi}$ , we have

$(1\otimes x)w(s)=(1\otimes u(s)^{s}).(1\otimes 9_{f}(x))\beta(u(s))$

$=(1\otimes u(s)^{*})\beta(\theta_{\delta}(x)u(s))$

$=(1\otimes u(s)^{*})\beta(u(s)x)$

$=w(s)(1\otimes x)$ .

By the Relative Commutant Theorem, we get

$w(8)\in W^{r}(K)\otimes N\cap(C\otimes N_{\phi})’=W^{*}(K)\otimes Z(N_{\phi})$.
Hence $w(\cdot)$ belongs to $W^{*}(K)\otimes L^{\infty}(R)\otimes Z(N_{\phi})$ , and thus can be regraded as a
bounded Borel function from $R\cross X_{N}$ into $W$‘ $(K)$ .
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In the meantime, we have

$(\Delta_{K}\otimes id_{N})(w(8))=(1\otimes 1\otimes u(s)^{*})(\Delta_{K}\otimes id_{N})(\beta(u(s)))$

$=(1\otimes 1\otimes u(s)^{*})(id_{W(K)}\otimes\beta)(\beta(u(s)))$

$=(1\otimes w(s))(1\otimes\beta(u(s)^{*}))(id_{W^{r}(K)}\otimes\beta)(\beta(u(s)))$

$=w(8)_{23}(id_{W(K)}\otimes\beta)(w(s))$

$=w(s)_{23}w(s)_{13}$ .
Thus $w(s,x)$ satisfies $\Delta_{K}(w(s,x))=w(s,x)\otimes w(s,x)$ for any $s\in R$ and $x\in X_{N}$ .
To sum up, there is a Borel map $c:R\cross X_{N}arrow K$ such that $w(s,x)=\lambda_{K}(c(s,x))\in$

$W$“ $(K)$ . Replacing $c$ by a suitable Borel map almost everywhere equal to $c$ if necevsary,
this $c$ serves our purpose. Namely, we obtain $\beta=\beta_{c}^{\phi}$ . $\square$

Remark. As in Remark just after Theorem 2.1, we could strengthen Theorem 3.5 to
the case of a locally compact quantum group action as follows. If a locally compact
quantum group $G$ admits a faithful action $\beta$ on a type III factor $N$ for which there
exists a dominant weight $\phi$ on $N$ satisfying $N_{\phi}\subseteq N^{\beta}$ , then $G$ must be cocommutative.

Next we examine the structure of the skew-product $N\otimes_{c}L^{\infty}(K)$ . First, we state
a criterion of when $N\otimes_{c}L^{\infty}(K)$ is a factor.

Theorem 3.6. Let $N$ be a type III factor with a dominant weight $\phi$ and $K$ be a locally
compact group. If $c\in Z^{1}(F^{N}, K)$ satisfies $r(c)=K$, then the relative commutant
of $\beta_{c}^{\phi}(N)$ in the skew-product $N\otimes_{c}L^{\infty}(K)$ is trivial. In particular, $N\otimes_{c}L^{\infty}(K)$ is a
factor.

Remark. A l-cocycle $c\in Z^{1}(F^{N}, K)$ is said to have dense range in $K$ if it satisfies
$r^{*}(c)=K$ . If $c$ has dense range, then, by [23], $K$ is necessarily amenable. In the
meantime, suppose that (X, $\mu$) be a properly ergodic R-space. Then, thanks to [1],
[9] and [14], for any amenable locally compact group $K$ , there exists a Borel l-cocycle
$c:R\cross Xarrow K$ having dense range.

The next theorem can be regarded as an extension of Izumi)$s$ result in [13] to the
case of noncompact locally compact groups.

Theorem 3.7. Let $N$ be a type III factor and $K$ be an amenable locally compact
group. Suppose that $c\in Z^{1}(F^{N}, K)$ has dense range. Then the skew-product $M;=$
$N\otimes_{c}L^{\infty}(K)$ is an infinite factor. Moreover,

(1) the smooth flow of weights $\{X_{M}, F^{M}\}$ on $M$ is given as follows:

$\bullet$ the flow space: $X_{M}=K\cross X_{N}$ :
$\bullet$ the flow: $F_{l}^{M}(k,x)=(c(t,x)k,$ $F_{t}^{N}x$) $(\forall(k,x)\in X_{M}=KxX_{N})$ . Namely,

$\{F^{M}\}$ is exactly the so-called the skew-product action induced by $c$ in
ergodic theory.
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(2) The Connes-Takesaki module $mod ((\overline{\beta_{c}^{\phi})})$ of the dual action $\overline{(\beta_{c}^{\phi})}$ is given by

$mod (\overline{(\beta_{c}^{\phi})_{k}})(g, x)=(gk^{-1}, x)$
$(k\in K, (g, x)\in X_{M})$ .

In particular, $Ker(mod (\overline{(\beta_{c}^{\phi})}))=\{e\}$ .
We close this section with a remakr that, as in [13], the actions that arise as dual

actions in the manner described above can be classified up to conjugacy when the
skew-product algebra $M$ is an AFD type III factor.

4 Canonical extension of $\beta_{c}^{\phi}$

The present and the following sections consist of announcement of a few results studied
as continuation of the research done in [2] and [22].

Let $A$ be a von Neumann algebra with a faithful normal semifinite weight $\omega$ . For
any action $\alpha$ of a locally compact group $G$ on $A$ , it is always possible to extend $\alpha$

canonically to the action $\tilde{\alpha}$ of $G$ on the crossed product $R_{\sigma^{\omega}}\ltimes A$ by the modular
automorphism group $\{\sigma^{w}\}$ , which is called the canonical extension of $\alpha$ (see [12]).
This remains true even if an action is replaced by a coaction in the above statement,
and this fact was actually verified in [21].

It is known that the canonical extension of an extended modular automorphism
is always inner. Thus we might expect that the canonical extension of an extended
modular coaction is also inner. The following theorem tells us that it is indeed the
$C$下 Se.

Theorem 4.1. Let $N$ be a type III factor with a dominant weight $\phi$ and $K$ be a
locally compact group. For any $c\in Z^{1}(F^{N}, K)$ , the canonical extension $\Theta$ of $\beta_{c}^{\phi}$ to
$R_{\sigma^{\phi}}\ltimes N$ is inner in the sense that there exists a unitary $V\in W^{*}(K)\otimes(R_{\sigma^{\phi}}\ltimes N)$

such that

$\bullet(\Delta_{K}\otimes id)(V)=V_{23}V_{13}|$

$\bullet$ $\Theta(a)=V(1\otimes a)V$ for all $a\in R_{\sigma^{\phi}}\ltimes N$.

5 Relation between $\alpha_{c}$ and $\beta_{c}^{\phi}$

In this final section, we show that there is some relation between the coactions con-
structed in Sections 2 and 3 at least when the operator algebra in question is a
particular type of von Neumann algebra.

Before we state our main theorem of this section, let us explain the setting that
we shall consider below.

Let $M$ be a type III factor with a Cartan subalgebra $D$ . Then we can choose
a discrete measured equivalence relation $\mathcal{R}$ on a standard Borel probability measure
space(X, $\mu$) $.and$ a normalized T-valued Borel 2-cocycle $\sigma$ on $\mathcal{R}$ so that $(M\supseteq D)=$

$(W^{*}(\mathcal{R}, \sigma)\supseteq L^{\infty}(X, \mu))$ ([8]).
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Assume that we are given aBorel l-cocycle $a\in Z^{1}(F^{M}, K))$ where $K$ is alocally
compact group.

Put $\overline{M}$ $:=B(L^{2}(R))\otimes M,\overline{\mathcal{R}}$ $;=R^{2}\cross \mathcal{R}$ and $\overline{X}$ $:=R\cross X$ . We introduce an
equivalence relation on $\overline{X}$ by saying that $(s, x)$ is equivalent to $(t, y)$ when $(x, y)\in \mathcal{R}$.
Then the graph of the equivalence relation thus defined is $\overline{\mathcal{R}}$ . If we define aT-valued
2-cocycle $\overline{\sigma}$ on $\overline{\mathcal{R}}$ by $\overline{\sigma}((s,x))(t, y),$ $(r, z))$ $:=\sigma(x, y, z)$ , we easily find that $\overline{M}$ can
be identified with $W$“

$(\overline{\mathcal{R}},\overline{\sigma})$ , the von Neumann algebra associated with the principal
measured groupoid $\overline{\mathcal{R}}$ (with continuous orbit8). Note that, when we $identi\phi\overline{M}=$

$B(L^{2}(R))\otimes M$ with $W$“
$(\overline{\mathcal{R}},\overline{\sigma})$ represented in astandard form on $L^{2}(\overline{\mathcal{R}})=L^{2}(R)\otimes$

$L^{2}(R)\otimes L^{2}(\mathcal{R})$ , this identification is realiized by the isomorphism $T\in B(L^{2}(R))\otimes$

$M-T_{13}\in W^{*}(\overline{\mathcal{R}},\overline{\sigma})=B(L^{2}(R))\otimes C\otimes M$ .
Let $D$ be the diagonal subset of $\mathcal{R}$ and put $\omega$ $:=\omega_{\chi v}|_{M}$ . Also denote by $P$

the nonsingular positive self-adjoint operator on $L^{2}(R)$ satisfying $P^{1t}=\rho_{R}(t)$ for all
$t\in$ R. Then the weight $\phi$ $:=R(P\cdot)\otimes\omega$ is adominant weight on $\overline{M}$ . We have
$\overline{M}_{\phi}=R_{\sigma^{v}}\ltimes M$ .

Note that, since $M$ is of type III, the 1-cocyclea can be viewed as $\bm{t}$ element of
$Z^{1}(F^{\overline{M}}, K)$ . Hence, thanks to Section 3, we obtain $\bm{t}$ extended modular coaction $\beta_{a}^{\phi}$

of $K$ on $\overline{M}satls\mathfrak{h}^{\gamma}ing\overline{M}^{\beta_{Q}^{\phi}}\supseteq\overline{M}_{\phi}=R_{\sigma^{w}}\ltimes M$.
In the meantime, as is well-known, the smooth flow of weights $\{X_{M}, F^{M}\}$ on $M$ is

realized as follows. With $\delta$ as the Radon-Nikodym derivative associated with $\mathcal{R}$ , we
introduce an equivalence relation on $R\cross X$ by saying that $(s, t)\sim(t, y)$ iff $(x, y)\in \mathcal{R}$

$\bm{t}dt=s-\log\delta(x, y)$ . Let $\{\theta_{t}’\}_{t\in R}$ be the one-parameter automorphism group of
$L^{\infty}(RxX)$ given by $\theta_{\delta}’(f)(t, x):=f(t-s, x)$ . Then define $C$ to be the von Neumrn
subalgebra of all functions in $L^{\infty}(RxX)$ invariant under the equivalence relatlon
introduced right above, and $\{\theta_{t}\}_{t\in R}$ to be the one-parameter automorphism group
of $C$ obtained by restricting $\{9_{t}’\}$ to C. Then $\{X_{M}, F^{M}\}$ is taken to be ameasure-
theoretical realization of $\{C, \{\theta_{t}\}\}$ :

$C=L^{\infty}(X_{M})$ , $\theta_{t}(f)=f\circ F_{-t}^{M}$ .
Denote by $\pi_{M}$ : $R\cross Xarrow X_{M}$ the R-factor map which induces the embedding of
$L^{\infty}(X_{M})$ into $L^{\infty}(R\cross X)$ . Thus we have $\pi_{M}(t, x)=\pi_{M}$ ($t-$ log $\delta(x,$ $y),$ $y$) for any
$(x, y)\in \mathcal{R}$ and $t\in R$ . We also have $F_{\theta}^{M}\pi_{M}(t, x)=\pi_{M}(t+s, x)$ .
Theorem 5.1. Let $M$ be a factor of type III having a Cartan subalgebra $D$ . Choose
a discrete measured equivalence relation $\mathcal{R}$ on a standard Borel probability measure
spaoe (X, $\mu$) and a normalized T-valued Borel 2-cocycle $\sigma$ on $\mathcal{R}$ so that $(D\subseteq M)=$

$(L^{\infty}(X)\subseteq W"(\mathcal{R}, \sigma))$ . With $\mathcal{D}$ the diagonal subset of $\mathcal{R}$ , put $\omega;=\omega_{\chi\circ}|_{M}$ and
$\phi$ $:=R(P\cdot)\otimes\omega$ , which is a dominant weight on $\overline{M}$ $:=B(L^{2}(R))\otimes M$ , where $P$ is
the nonsingular positive self-adjoint operator on $L^{2}(R)$ satisfying $P^{it}=\rho_{R}(t)$ for all
$t\in R$ .

Let $a\in Z^{1}(F^{M}, K),$ where $K$ is a locally compact group. Then we have the
following.

(1) The Borel mapping $c_{a}$ : $\mathcal{R}arrow K$ defined by

$c_{a}(x,y)$ $:=a(\log\delta(y,x),\pi_{M}(0,y))$ $((x,y)\in \mathcal{R})$
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belongs to $Z^{1}(\mathcal{R}, K)$ . Here $\pi_{M}$ : $R\cross Xarrow X_{M}$ is the R-factor map introduced
before.

(2) A cocycle $a’\in Z^{1}(F^{M}, K)$ is cohomologous to $a$ if and only if $c_{a’}$ is cohomologous
to $c_{a}$ .

(3) The coaction $\beta_{a}^{\phi}$ of $K$ on $\overline{M}$ is cocycle conjugate to the one $\alpha_{C_{0}}$ on $M$ .
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