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DIGEST OF THE CARTAN PAPER BY OZAWA AND POPA
NARUTAKA OZAWA (/MR %, HOK3E)

ABSTRACT. This is a digest of the paper [OP] by S. Popa and the author. We prove that
the normalizer of any diffuse amenable subalgebra of a free group factor L(F,) generates
an amenable von Neumann subalgebra. We also sketch the proof of the fact that if a free
ergodic measure preserving action of a free group F,, 2 < r < 00, on a probability space
(X, u) is profinite then the group measure space factor L°(X) » F, has unique Cartan
subalgebra, up to unitary conjugacy.

1. INTRODUCTION

See [OP] for the historical background. We assume every finite von Neumann algebra
comes together with a distinguished faithful normal tracial state and every action on a
finite von Neumann algebra is trace-preserving. A von Neumann algebra is said to be
diffuse if it does not have a non-zero minimal projection. In this note, we state theorems
and lemmas in general forms, but prove them only in the case of Q = C1.

- Theorem. Let F, ~ Q be an action of a free group on a finite von Neumann algebra.
Assume M = Q x F, has the CMAP. If P C M is a diffuse amenable subalgebra and
N denotes the von Neumann algebra generated by its normalizer Ny (P), then either N

is amenable relative to Q) inside M, or a non-zero corner of P can be conjugated into Q
inside M.

We mention three interesting applications of the Theorem, each corresponding to a
particular choice of F,. ~ @. Thus, taking Q = C1, we get:

Corollary 1. The normalizer of any diffuse amenable subalgebra P of a free group factor
L(F,) generates an amenable von Neumann algebra.

This strengthens two well known in-decomposability properties of free group factors:
Voiculescu’s result in [Vo], showing that L(F,) has no Cartan subalgebras, and the author’s
result in [Oz] that the commutant in L(F,) of any diffuse subalgebra must be amenable.

If we take Q to be an arbitrary finite factor with A, (Q) = 1 and let F, act trivially on
it, then M = Q ® L(F,) has the CMAP and Theorem implies:

Corollary 2. If Q is a II; factor with the CMAP then Q ® L(F,) does not have Cartan
subalgebras.

This shows in particular that any factor of the form L(F,) ® R or L(F,,)® L(F,,)&®- -
does not have a Cartan subalgebra.

Problem. Get rid of the assumption that Q has the CMAP.
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Finally, if we take F, ~ X to be a profinite measure preserving action on a proba-
bility measure space (X, p), i.e. an action with the property that L®(X) is a limit of
an increasing sequence of F,-invariant finite dimensional subalgebras @, of L*°(X), then
N = L*(X) x F, is an increasing limit of the algebras Q, x F,, each one of which is
an amplification of L(F,). Since the CMAP behaves well to amplifications and inductive
limits, it follows that N has the CMAP, so by applying Theorem and (A.1 in [Pol]) we
get:

Corollary 3. IfF. ~ X is a free ergodic measure preserving profinite action, then L*°(X)
is the unique Cartan subalgebra of the II;-factor L=(X) % F,, up to unitary conjugacy.

2. PRELIMINARIES

2.1. Finite von Neumann algebras. We fix conventions for (semi-)finite von Neumann
algebras, but before that we note that the symbol “Lim” will be used for a state on £*°(N),
or more generally on £°(I) with I directed, which extends the ordinary limit, and that the
abbreviation “u.c.p.” stands for “unital completely positive.” We say a map is normal if it
is ultraweakly continuous. Whenever a finite von Neumann algebra M is being considered,
it comes equipped with a distinguished faithful normal tracial state, denoted by 7. Any
group action on a finite von Neumann algebra is assumed to preserve the tracial state
7. If M = L(T) is a group von Neumann algebra, then the tracial state 7 is given by
7(z) = (zd1,61) for £ € L(T'). Any von Neumann subalgebra P C M is assumed to
contain the unit of M and inherits the tracial state 7 from M. The unique r-preserving
conditional expectation from M onto P is denoted by Ep. We denote by Z(M) the center
of M; by U(M) the group of unitary elements in M; and by

Nu(P) = {u e U(M) : (Adu)(P) = P}

the normalizing group of P in M, where (Adu)(z) = uzru®. A maximal abelian von
Neumann subalgebra A C M satisfying Ny (A)” = M is called a Cartan subalgebra. We
note that if I' ~ X is an ergodic essentially-free probability-measure-preserving action,
then A = L*(X) is a Cartan subalgebra in the crossed product L>(X) xT. (See [FM].)

We refer the reader to the section IX.2 of [Ta] for the details of the following facts
on noncommutative LP-spaces. Let N be a semi-finite von Neumann algebra with a
faithful normal semi-finite trace Tr. For 1 < p < 00, we define the LP-norm on N by
lzll, = Tx(Jz|?)*/». By completing {z € N : ||z||, < oo} with respect to the L?-norm, we
obtain a Banach space LP(N). We only need L}(N), L*(N) and L*°(N) = N. The trace
Tr extends to a contractive linear functional on L*(N). We occasionally write Z for z € N
. when viewed as an element in L>(N). For any 1 < p,q,7 < oo with 1/p+1/q = 1/r,
there is a natural product map

LP(N) x LY(N) 3 (z,y) = zy € L'(N)
which satisfies ||zy|l» < ||lzllp||l¥llq for any = and y. The Banach space L!(N) is identified
with the predual of A under the duality L!(N) x N 3 (¢, z) — Tr(¢z) € C. The Banach
space L2(N) is identified with the GNS-Hilbert space of (M, Tr). Elements in LP(N) can
be regarded as closed operators on L?(N) which are affiliated with A" and hence in addition
to the above-mentioned product, there are well-defined notion of positivity, square root,

etc. We will use many times the generalized Powers-Stgrmer inequality (Theorem XI.1.2
in [Ta)):

(2.1) lln = €13 < lIn® = ¢ll < lln +<ll2lln — <l
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for every n,¢ € L?*(N),.. The Hilbert space L?(N) is an M-bimodule such that (z€y, n) =
Tr(zéyn*) for €,n € L2(N) and z,y € N. We recall that this gives the canonical iden-
tification between the commutant A of A in B(L?(N)) and the opposite von Neumann
algebra N°P = {2°° : £ € N} of N. Moreover, the opposite von Neumann algebra AP
is *-isomorphic to the complex conjugate von Neumann algebra N = {Z : z € N'} of N
under the *-isomorphism z°P — Z*.

Whenever Ay C N is a von Neumann subalgebra such that the restriction of Tr to
M is still semi-finite, we identify LP(Ap) with the corresponding subspace of LP(N).
Anticipating a later use, we consider the tensor product von Neumann algebra (N &
M, Tr ®T) of a semi-finite von Neuniann algebra (A, Tr) and a finite von Neumann algebra
(M, 7). Then, N ¥ N ®C1 C N ® M and the restriction of Tr ®7 to A is Tr. Moreover,
the conditional expectation id ® 7: N ® M — N extends to a contraction from L'(N ®
M) — L'(N).

Let @ C M be finite von Neumann algebras. Then, the conditional expectation Eq
can be viewed as the orthogonal projection eq from LZ(M ) onto L%(Q) C L2(M ). It
satisfies eqreq = Eq(z)eq for every z € M. The basic construction (M,eq) is the von
Neumann subalgebra of B(L?(M)) generated by M and eq. We note that (M, eq) coincides
with the commutant of the right Q-action in B(L?(M)). In particular, if Q@ = C1, then
(M,eq) = B(L*(M)). The linear span of {zeqy : =,y € M} is an ultraweakly dense *-
subalgebra in (M, eq) and the basic construction (M, eq) comes together with the faithful
normal semi-finite trace Tr such that Tr(zegy) = 7(zy). See Section 1.3 in [Pol] for more
information on the basic construction.

2.2. Relative amenability. We adapt here Connes’s characterization of amenable (in-
jective) von Neumann algebras to the relative situation. Recall that for von Neumann
algebras N C NV, a state ¢ on N is said to be N-central if po Ad(u) = ¢ for any u € U(N),
or equivalently if ¢(az) = p(za) for alla € N and z € N

Theorem 2.1. Let Q and N be von Neumann subalgebras of a finite von Neumann algebra
M. Then, the following are equivalent.

(1) There exists an N-central state  on (M,eq) such that p|y = 7.

(2) There exists a conditional expectation ® from (M, eq) onto N such that ®|y = Ej.

(8) There ezists a net (§,) of unit vectors in L*(M, eq) such that lim(z&,, &,) = 7(z)
for every z € M and lim ||[u, &,)|l2 = O for everyu € N.

Definition 2.2. Let Q, N C M be finite von Neumann algebras. We say N is amenable
relative to Q inside M if any of the conditions in Theorem 2.1 holds.

We note that if N is amenable relative to an amenable von Neumann subalgebra Q,
then N is amenable; and that for M = Q x I', the von Neumann subalgebra L(I') C M
is amenable relative to Q inside M iff I is amenable.

Problem. Let @, N C M. Prove that N is amenable relative to Q inside M if a.nd only
if the following condition holds:
(4) There exists a conditional expectation ¥ from (M, eq) onto N'N(M, eq) such that
W o Ad(u) = ¥ for every u € U(N).

2.3. Intertwining subalgebras inside II, factors. We extract from [Pol, Po2] some
results which are needed later.



76

NARUTAKA OZAWA

Theorem 2.3. Let M be a finite von Neumann algebra and P,Q C M be von Neumann
subalgebras. Then, the following are equivalent.

(1) There exists a non-zero projection e € (M,eq) with Tr(e) < oo such that the
ultraweakly closed convez hull of {w*ew : w € U(P)} does not contain 0.

(2) There ezist non-zero projections p € P and q € Q, a normal *-homomorphism
0: pPp — qQq and a non-zero partial isometry v € M such that

Vz € pPp zv = vi(z)
and v*v € 6(pPp) NgMgq, vv* € p(P' N M)p.

Definition 2.4. Let P,Q C M be finite von Neumann algebras. We say that P embeds
into @ inside M if any of the conditions in Theorem 2.3 holds.

Let (M,eq) be the basic construction of finite von Neumann algebras Q C M. We
define K(M, eq) to be the norm-closed linear span of {zeqy : z,y € M}.

Corollary 2.5. Let P,QQ C M be finite von Neumann algebras. Assume there exists a
P-central state ¢ on (M,eq) which is normal on M and such that o(K(M,eq)) # {0}.
Then, P embeds into Q inside M.

Proof in the case of @ = C1. We restrict ¢ to K(M, eg) = K(L?(M)) and view it as the
trace class operator h, i.e., ¢(z) = Tr(hz) for z € K(L?*(M)). It follows that A is a
non-zero compact operator which commutes with P. This implies P contains a non-zero
minimal projection, i.e., P embeds into ) = C1 inside M. Indeed, if P is diffuse, then
there is a sequence (u,) of unitary elements in P which converges to zero ultraweakly and
0 = SOT-limu,hu;, = h for every compact operator h which commutes with P. 0

Finally, recall that A.1 in [Pol] shows the following:

Lemma 2.8. Let A and B be Cartan subalgebras of a type 11;-factor M. If A embeds
into B inside M, then there exists u € U(M) such that uAu* = B.

2.4. The complete metric approximation property. Let I' be a discrete group. For
a function f on I, we write m; for the multiplier on CI' C L(I") defined by m((g) = fg for
g € CI'. We simply write || f||c for ||mg|| and call it the Herz-Schur norm. We denote

by

By(T) = {f : || flleo < o0}
the Banach space of Herz-Schur multipliers. Every f € B;(T") (or precisely my) extends
to a normal completely bounded map on L(T") such that ms(A(s)) = f(s)A(s). We refer
the reader to [BO] for an account of Herz-Schur multipliers.

Definition 2.7. A discrete group I' is weakly amenable if there exist a constant C > 1
and a net (f,) of finitely supported functions on I' such that limsup||fallcc £ C and
fa — 1 pointwise. The Cowling-Haagerup constant Ac,(T') of I is defined as the infimum
of the constant C for which a net (f,) as above exists.

We say a finite von Neumann algebra M has the (weak*) completely bounded approxi-
mation property if there exist a constant C > 1 and a net (¢,) of normal finite-rank maps
on M such that limsup ||@,|lw < C and ¢, — idpy in the point-ultraweak topology. The
Cowling-Haagerup constant Aq,(M) of M is defined as the infimum of the constant C for
which a net (¢,) as above exists. Also, we say that M has the (weak*) complete metric
approzimation property (CMAP) if Agp(M) = 1.
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Haagerup proved that Ag(M) = Awp(I') (the inequality < is trivial: just take ¢, =
my,). Thus, the following results imply the CMAP of L(F,). For the following, we
assume 7 < oo for simplicity.

Theorem 2.8. Let D = {z € C: |2| < 1} be the unit disk and l(z) denote the canonical
word length of z € F,. Then, for every z € D, the function F, 3 z — 2/@ & C belongs to
By(F,) with

e < 122
"z ”cb =12 |z|
Moreover, D 3 z — 2! € By(F,) is holomorphic and +* is positive definite for v € R.
Proof. Every element z € F, = (gy,...,g,) is written uniquely as a reduced word z =

9k """ 9k, where n € Ng, 1 < k; < n and &€, = £1 such that there is no consecutive
gi gk nor grgi!.. The length I(z) of the element x is n. We identify the free group
F, with its Cayley graph (w.r.t. the canonical generators), which is the 2r-regular tree.
The distance between z,y € F, is given by d(z,y) = l(zy~!). (Warning: the choice
d(z,y) = l(z~y) is more common, but d(z,y) = [(zy~!) is more compatible with the left
regular representation.) A geodesic path in F, is a finite or infinite sequence zo, 1, .. . of
points in F,. such that d(z;, z;) = |i — j| for all ¢ and j.

We fix a point w at infinity, i.e., w is an infinite geodesic path (starting at the unit,
say). For every z € IF,, there exists a unique geodesic path w, starting at  and eventually
flows into w, i.e., 3k € Z such that w,(i) = w(k + 1) for sufficiently large i.

For z € D, we define ¢, € £=(F,, £2(F,)) by

Gl@) =VI=22)_ 24,
’ =0
where /1 — z is the principal branch of the square root. The series converges absolutely
in z and the function D > z — {, € £=°(F,, 2(F,)) is holomorphic. One has for every
x € F, that '
— 22 -
|1 — 22| < |1 — 2|

1@ =1 =213 |al™ = s < =

i $=0
and that
v ’ S——— w . -
@), G@) =1 =22 28,6 um0m
i,g=1
o n
=(1=2)) 2")  Suuntnd

n=0 =0

now we observe that for every n one has w, (i) = w,(n—1) for at most one i and n—d(z,y) €
2Nj; and hence

= (1 _ z2) Z zd(z,y)+2m

m=0
= 29(@¥)

We define V,, W, € B(¢(F,), (F,) ® £(F,)) by
Vil = 8, ® (,(2) and W6, = 6, ® G(y).
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It follows that

(V2 (M(s) ®‘1)Wz‘5w5z) = (5aw5z)(Cz(y),Cz(w)> = ()‘(3)511: 5z>zl(’),

which implies V,*(A(s) ® 1)W, = m,1(\(s)). Moreover, if z € R, then V, = W, and m,; is
u.c.p. Since

1-2
IVall? = IWell? = lIGellzo . 20y < ll_ |z:

we are done. 0

‘Theorem 2.9 (De Canniére and Haagerup). Aep(F,) = 1.

Proof. Since ||2*||co = 1 for t € (0,1) and z* — 1 pointwise as t — 1, it suffices to show 2
can be approximated in B;(F,) by finitely supported functxons Let BY C By(F,) be the
norm-closure of the finitely supported functions. Since 2! € €1 (F,) for |z| < (2r 1)1, one
has 2 € BY for |z| < (2r — 1)~!. The function D 5 z — 2! € B,(F,)/BY is holomorphic
on D and zero for |z| < (2r —1)~1. Hence, by uniqueness of holomorphic extensions, it is
zero everywhere. O

3. WEAKLY COMPACT ACTIONS

For a ﬁmte von Neumann algebra P, let J be the conjugate unitary on L?(P) defined
by JZ = z*. Then, we have P’ = JPJ and P’ is *-isomorphic to the complex-conjugate
von Neumann algebra P = {Z : £ € P} via JzJ — Z.

Definition 3.1. Let o be an action of a group I' on a finite von Neumann algebra P.
We say the action o is profinite if there exists an increasing net (P,) of I'-invariant finite-
dimensional von Neumann subalgebras of P such that P = (| J P,)". We say the action o
is weakly compact if there exists a net (7,) of unit vectors in L2(P ® P), such that

® ||7n — (v ® B)na|l2 — O for every v € U(P).
® ||7n — (9 ® 54)(1n)||2 — O for every g € T.
e (r®id)(n2) =1 = (id ® 7)(n?) for every n.

Here, we identify o as the corresponding unitary representation on L?(P).

Proposition 3.2. Let o be an action of a group I' on a finite von Neumann algebra P
and consider the following conditions.

(1) The action o is profinite.
(2) The action o is compact and the von Neumann algebra P is amenable.
(8) there exists a net (u,) of normal states on P ® P such that
® 4,(v®T) — 1 for every v € U(P).
® |ltn — tin 0 (0, ® Gy)|| — O for every g € T.
o tn(z®1) = 7(z) = pa(1' ® Z*) for everyn and z € P.
(4) The action o is weakly compact.
(5) There ezists a state ¢ on B(L?(P)) such that ¢|p = 7 and p o Adu = ¢ for all
u € U(P)Uo(T).

Then, one has (1) = (2) = (3) & (4) & (5).
We only prove (1) = (3) & (4) = (5).
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Proof. (1) = (3): Suppose that o is profinite and take a net (P,) as in the definition. Let
n be fixed. We note that the T-preserving conditional expectation E, from P onto P, is
I'-equivariant: E, o Ad(u) = Ad(u) o E,, for every u € o(I'). We define a state on the
algebraic tensor product P ® P by

n(D_ 0k ®by) = 3 (En(ar)b}) = (Bn(ax) 108, ) o p)-
k k
Since F, is finite-dimensional, , is contractive w.r.t. the minimal tensor norm and more-

over puy extends to a normal state on P ® P. It is not difficult to see that (u,) satisfies
the conditions in (3).

(3) & (4): This follows from the Powers—St¢rmer inequality (2.1) and the inequality
(3.1) below.

(4) = (5): The state @ on B(L?(P)), defined by

satisfies the condition (5). Indeed,

(¢ 0 Ad(u))(z) = Lim((z ® 1)(u ® @)1, (4 ® G)nm) = (z)
for every z € B(L*(P)) and u € U(P) U o(T). O
The following is the main theorem of this section.

Theorem 3.3. Let M be a finite von Neumann algebra with the CMAP and P C¢ M
be a von Neumann subalgebra. Then, the conjugation action of Ny(P) on P is weakly
compact.

We need the following consequence of Connes’s theorem (Theorem 2.1).

Lemma 3.4. Let M be a finite von Neumann algebra, P C M be an amenable von
Neumann subalgebra and u € NM(P) Then, the von Neumann algebra Q generated by P
and u is amenable.

Proof. Since P is injective, the 7-preserving conditional expectation Ep from M onto P
extends to a u.c.p. map Ep from B(L*(M)) onto P. We note that Ep is a conditional
expectation: Ep(azb) = aEp(z)b for every a,b € Pand z € B(L?(M)). We define a state
¢ on B(L*(M)) by

n—1

p(a) = Lim ;1; 3 r(Bp(uFzu*)).

k=0
It is not hard to check that |y = T, po Ad(u) = ¢ and poAd(v) =  for every v € U(P).
It follows that ¢ is a Q-central state with p|g = 7. By Connes’s theorem, this implies
that @ is amenable. O

Proof of Theorem 3.3. First we note the following general fact: Let w be a state on a
C*-algebra N and u € U(N). We define wy(z) = w(zu*) for z € N. Then, one has

(3.1) max{|jw — wul), lw — w o Ad(W)[I} < 2v/21 — w(u)].
Indeed, one has ||§, — u*&,||? = 2(1 — Rw(u)) < 2|1 — w(u)|, where £, is the GNS-vector
for w.

Let (¢n) be a net of normal finite rank maps on M such that limsup [|¢n/les < 1 and
|z — ¢,.(x)||2 — 0 for all z € M. We observe that the net (70 ¢,) converges to 7 weakly
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in M,. Hence by the Hahn-Banach separation theorem, one may assume, by passing to
convex combinations, that |7 —7o@,|| — 0. Let u be the *-representation of the algebraic
tensor product M ® M on L?(M) defined by

Qe ®B)E = axéh;.
k p
We define a linear functional u, on M ® M by
1a(D_ ax ® ) = (1Y dalar) ®B)1, 1) jaagy = 73 Snlar)b}).
k P k

Since ¢y, is normal and of finite rank, u, extends to a normal linear functional on M @ M,
which is still denoted by p,. For an amenable von Neumann subalgebra Q C M, we
denote by ud the restriction of u, to Q ® Q. Since Q is amenable, the *-representation u
is continuous with respect to the spatial tensor norm on Q ® Q and hence ||| < ||#alcb-
We denote wd = ||u@||~|uS|. Since limsup ||| < 1 and lim u(1®1) = 1, the inequality
(3.1), applied to w¥, implies that :

(3.2) limsup ||u§ — wq|| = 0.
n

Now, consider the case @ = P. By (3.2), one has
(3.3) lim wPv®v) = lim P (v ® 1) = lim7(gn(v)v*) = 1

for any v € U(P). Now, let u € N'(P) and consider the case Q = (P, u), which is amenable
by Lemma 3.4. Since u$ ™ (u ® @) = 7(¢n(u)u*) — 1, one has

3.4 lim sup ||u{P? — péP* o Ad(u ® W)|| = 0
n n

by (3.1) and (3.2). But since (4™ o Ad(u ® %))|pgp = uf 0 Ad(x ® @), one has
(3.5) limsup |wf —wP o Ad(u®@)|| =0

by (3.2) and (3.4). Therefore, (wF) satisfies Proposition 3.2.(3). O

4. MAIN RESULTS

Theorem 4.1. Let M = Q xF, be the crossed product of a finite von Neumann algebra Q
and the free group F, of rank 2 < r < oo acting on Q (need not be ergodic nor free). Let
P C M and assume that the conjugation action of Nn(P) on P is weakly compact. (This
is automatic if M has the CMAP.) Then, either P embeds into Q inside M, or Ny (P)"
is amenable relative to Q) inside M.

For the proof of Theorem 4.1, recall from [Po3] the construction of 1-parameter au-
tomorphisms a; (“malleable deformation”) of L(F, * F,), where F, is a copy of F,.. Let
1,0z, ... (resp. by, by, ...) be the standard generators of F, -(resp. ]i‘,) viewed as unitary
elements in L(F; * ﬁr) Let b = exp(tlogby), where where log is the principal branch of
the complex logarithm (v/—1log z € (=, 7] for z € C with |z| = 1). The *-automorphism
oy is defined by a;(ax) = axbl and o (bg) = by.

In this paper, we adapt this construction to F, ~ @ and M = Q x F,. We extend the
action F, ~ @ to that of F, xF,., by letting I, act trivially on Q. We consider

M=Qx (F,.*F,-)=M*Q (Q& L(F,))
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and redefine the *-homomorphism o;: M — M by au(x) = z for z € Q and ax(ax) = arbl,
for each k. (We can define a; on M, but we do not need it.)
Let

1) =76 =5 [ explony/TTo s = ST

and ¢,: L(F,) — L(F,) be the Haagerup multiplier (Theorem 2.8) associated with
the positive type function g — 4(2)!@ on F,. We may extend ¢, to M by defining
b2y (TM9)) = 2yt (M(g)) for = € Q and A(g) € L(F,). We relate a; and ¢ as follows.

Lemma 4.2. One has Exppo oy = Do 2)-

Proof by Ezample. Let Q = C1 and = = aja;a;". Then, oy(z) = a;bba;bib;ta; . Since
the von Neumann algebras W*(a,),..., W*(b,),... are mutually free, one has

(Bu 0 00)(z) = ar7(b})arr(bibz*)az" = 7(81)7(8})7 (67 )aranaz® = ¥(t)%z.
O

In particular, the 7-preserving u.c.p. map Ey o o, on M is compact as an operator on
L*(M). (Assume r < oo for simplicity.) »

Let @ C M C M be as above, and consider the basic construction (M, eg) of (Q C M).
Then, L?(M, eq) is naturally an M-bimodule.

Lemma 4.3. Let Q C M C M be as above. Then, L*(M) © L*(M) is isomorphic as an
M -bimodule to a multiple of L*(M, eq).

Proof in the case of @ = C1. Let X be the subset of F, x F, consisting those elements
whose initial and last letters in the reduced forms come from F,. It follows that every
element of F, * IF, \ F, is uniquely written as szt, where s,¢t € F, and z € X. Now, one
has

L*(M) © L*(M) = £*(F, « ¥, \ F,) = (F,) ® #(X) ® £(F,)
as L(F,)-bimodule. O

In particular, when Q = C1 and M = L(F,), the representation of L(F,) ® L(F,)°® on

L?(M) © L*(M), defined by

(a ® bP)(£) = akd
for a,b € L(F,) and ¢ € L*(M) © L*(M), naturally extends to a representation of
B(2(F,)) ® L(F,)*. -
Proof of Theorem 4.1 in the case @ =C1. Let M = L(F,) and P C M be a diffuse
amenable von Neumann subalgebra. We will prove that Ny (P)” is amenable. Let a
finite subset F' C Nys(P) and € > 0 be given.

We choose and fix t > 0 such that o = o, satisfies ||u — a(u)||z < €/4 for every u € F.
Let (n») be the net of unit vectors in L2(P® P), satisfying the conditions in Definition 3.1.
Let v, be a viewed as an isometry from L?(M) into L2(M) and consider n2 = (vo ® 1)7,.
We note that

(4.1) (@ ® )2, n%) = 7(a™ (Bagany(2))) = 7(2)
for every n and z € M. It follows that
(4.2) limsup ||[u ® @, n3]|l2 < €/2 + limsup ||[e(u) ® @,n%]||2 = /2
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for every u € F. Let ey be the orthogonal projection from L?*(M) onto L?*(M) and
G = ((1 — enr) ® 1)1y € (L*(M) © L¥(M)) & L*(P).

We note T' = epv, € K(L?(M)), by Lemma 4.2. Since 7, is approximately P-central,
Corollary 2.5 implies

(4.3) lim |77 — Gallz = lim ||(T ® 1) l2 = 0.

By Lemma 4.3, the representation o of L(F,) ® L(F,)® on L*(M) © L3*(M) naturally
extends to B(£2(F,)) ® L(F,)°P. Now, we define a state o, on B(£3(F,)) by

ore(z) = Lim((0(z ® 1) ® 16 &)
We note that if £ € L(F,), then (4.1) and (4.3) imply
ore(z) = Lim (.8 1), Co) = 7(a).
Moreover, if u € F, then (4.2) and (4.3) imply
/ wre(u'zu) = Lim((o(u*zu ® 1) ® @*%)Cn,y Cn) ,
= Lim((o(z ®1) ® 1)(u ® 0)Go, (u @ T)Ge)
~, Lim((0(z ®1) ® 1) ((a(u ® 1)), (Ga(u @ 7))
= Lim((o(z ® (u*)"u™) @ T&)(n, Gr)
= pFe(T)
for all contractions z € B((£2(F,)). It follows that the state ¢ on B((£*(F,)), defined by
| ¢(e) = Lim pre (=),

satisfies |y = 7 and ¢ o Ad(u) = ¢ for all u € Ny (P). It follows that p(az) = p(zra)
for all a in the linear span of My (P) and z € B(#(F,)). By Cauchy-Schwarz inequality,
this implies that ¢(az) = ¢(za) for all a € Ny(P)" and z € B((F,)), ie., p is an
Nu(P)"-central state such that ¢|u,,py» = 7. This implies that Ny (P)” is amenable
(Theorem 2.1). 0O
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5. (B'%£iT) GABORIAU’S THEOREM AFTER LUCK, SAUER AND THOM

5.1. Background in homological algebra. Throughout this section, R is a unital ring
and V is a left R-module.

Definition 5.1. A complez V consists of sequences of modules and morphisms |
V. e — n+18"_+1w.i.vn_l_....

such that 0, o 41 = 0 for all n. The n-th homology module of V is defined to be
H,(V) =kerd,/ran8,,;. The complex V is ezact if H,(V) = 0 for all n.

A morphism ¢: V — W consists of a sequence of morphisms ¢, : V;, = W, such that
¥n © Ont1 = Op41 © nya for all n. Since pp(randp1) C rand,,, and @,(ker8,y1) C
ker @, ,,, the morphism ¢ induces morphisms @, n: H,(V) — H,(W).

A morphism ¢: V — W is null-homotopic if there is a sequence of morphisms h,,: V,, —
Wa1 such that ¢, = a:;+1 0 hp + hy_y 0 0p:

Oni1 &n

tee = Vn+l -V, > Vn—-1
/ l / 1 hn-1 1
Pn+1 $n Pn-1
A o
.. 1 -W, Wy ————— -

Morphisms ¢, ¥: V — W are homotopic if ¢ — ¢ is null-homotopic.
Lemma 5.2. If p and ¢ are homotopic, then Y. n = Y, for all n.

Proof. If ¢ is null-homotopic, then ¢, (ker 3,.) = (841 © hn)(ker8,) C rand),,, and hence
©@sn = 0. The general case follows from this. O

Theorem 5.3. Let complezes V, W and a morphism p: V — W be given
Bn

V: "'_'_*‘/n—_"‘/n—l"'“_'" -————»%———»V
lw

8,
W: oW Way—> o —=Wo—m W

such that every V, (n > 0) is projective and W is exact. Then, there exists a morphism
¢: V — W which extends p. Moreover, the extension ¢ is unique up to homotopy.

Proof. (Existence.) We proceed by induction. Let ¢_; = ¢ and p_s = 0, and suppose we
have constructed ¢_s, - - , ¢ satisfying Ym_3 0 Om-1 = &,_; © Pm-1 for m < n:
.
Vn —8"" Vn—l —_1’ Vn—z
|

| Pn-1 l Pn-2 l
y o, LAY
Wn — Wn_]_ — Wn—z

Since 3}, _; 0 Pn-1 00, = Pp-200,-108, = 0, one has ran ¢,_; 08, C rand, by exactness.
Since V,, is projective, there is a morphism ¢,: V, — W, which lifts ¢,_; o 8, through
8, i.e., 8,0 Y, = pn_1 06,.
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(Uniqueness.) It suffices to show that any extension ¢ of ¢ = 0 is null-homotopic.
Let h_y = 0 and h_p = 0, and suppose we have constructed h_,,...,h,_; satisfying
Pm—1= 0}, 0 hyy_1 + hpp—g 0 Oy for m < n:

On On—1

P Va > Vo > Vn-2.
e l hn-1 l y
P Pn Pn—1
A/a:‘ a,
. Wt - s Wa > Wn1
Since 0}, 0 Yp, = p—1 00, = (8, © hp_ 1+hn_206,,_1)03 8, o hy_y 08, one has
ran(pn, — h,,-l 00,) Crand,,, by exactness. Since V, is pl'OjeCthG, there is a morphism
hn: Vo — Wy such that 8, o hy = pp — by 08,. O

Definition 5.4. For a module V, a projective resolution of V is an exact complex
V: —)V;,—r—»Vl—-?-‘aVoﬁ»V—-)O
with all V, (n > 0) projective.
Definition 5.5. For a right R-module M and a left R-module V, define
Torf(M, V) = H,(M ®g V),
where V is any projective resolution of V' and M ®g V>, is the complex

M®rVso: -+ —M®gVy,— -+ — M@rV; 2 M®gVy — 0.
Note that M ®g V> is given by omitting the term M ®z V from M ®r V.

Remark 5.6. Every module V has a projective (or even free) resolution, and the projec-
tive resolution is unique up to homotopy. It follows that the complex M ®g V> used to
define Tor(M, V) is also unique up to homotopy and hence Tor?(M, V) does not depends
on the choice of a projective resolution of V.

We recall that the relative tensor product M ®pz V is defined to be the Z-module
generated by {a ® £ : a € M, £ € V} and factored out by the relations a @ £ + b® ¢ —
(a+b)®¢ a®@é+a®n—a®(€+n), and ar @& —a®@ré. If M is an S-R-module, then
M ®pV is naturally a left S-module. We note that the relative tensor product operation
®r is associative and distributive w.r.t. a direct sum.

Examples. M g R=M and RrV =V.

The module Tor?(M, V) can be non-zero because M ®p - needs not be a short exact
functor. Namely, V3 = V; does not imply M ®z V2 — M ®pg V;. (The symbol ~ is used
for injection.) However the functor M ®p - is always right exact.

Lemma 5.7 (Right exactness). Let M be arbitrary. If V; Lt Vi L\ Vo — 0 is exact, then
M@ Vo' % M@ Vi % M ®g Vs — 0 is exact.

Proof. Exactness at M ®p V; is clear. Since (id ® 61) ([d®8)=id® (& o 62) 0, the
morphism id ® 6, induces a morphism 8: M ®p Vi/ran(id ® 8;) -+ M Qg Vp. It is left
to show that &, is injective. For this, it suffices to construct the left inverse ¢ of d,: For
Y a;®& € MRV, define o(Y_a; @ &) = Za,®§+ran(1d®32) where & € V; is any
lift of £&. Then, o is a well-defined morphism with ¢ o §; = id. O

Definition 5.8. A right S-module N is flat if N ®s - is an exact functor.
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Note that free modules and projective modules are flat.

Lemma 5.9. For a right S-module N, the following are equivalent.
(1) N is flat.
(2) ker(id ® ) = N ®g ker ¢ for any morphism p: W — V.
(8) H(N ®sV) = N ®g Hy(V) for any complex V of S-modules.
(4) N®sV » N ®g F for every f.g. modules V C F with F free.

In particular, if N is flat, then for any S-R-module M and any left R-module V,
N ®s Tor®(M, V) = Tor®(N ®5 M, V).

Proof. 1t is routine to check the equivalence of the conditions (1)—(3). (Use right exact-
ness.) We only prove the implication (4)=>(1). We first observe that the f.g. assumption
on V and F can be dropped by continuity of a tensor product w.r.t. inductive limits. Let
t: Wy — W, be given. We will show N ®g W; — N ®g W,. Take a free S-module F and
a surjection w: F' —» W3, and set V = ker 7. Then, we have a commuting diagram

0

l

N®5V—>N®5W"I(Wl)——>N®sW1—>O

| l 1

ker(id ® ¢)

0— N®sV — N®sF N ®s W,
0
which is exact everywhere. By Snake Lemma, one has ker(id ® ¢) = 0. a

For the later purpose, we need the following. A (full) subcategory D of modules is a
Serre subcategory if for every short exact sequence 0 — V3, — V; — V3 — 0, one has
Vi € D& W, V; € D. A morphism ¢: V — W is an isomorphism modulo D if both ker ¢
and coker ¢ = V/ranyp are in D.

Lemma 5.10. Let D be a Serre subcategory. Let V and W be complexes of modules and
@: V— W be a morphism consisting of isomorphisms modulo D. Then all g, 4: H (V) —
H,(W) are also isomorphisms modulo D.

Proof. Consider the following commuting exact diagram:

0—-——->ker6,,L—>V,,—o">ran8,.——>0

R

0 — ker 0, — W, i ra,na:‘__‘o

Since ¢y, is an isomorphism modulo D and ker ¢,,_; Nran 8, is in D, Snake Lemma implies
that other two column morphisms are also isomorphisms modulo D. Now, applying Snake
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Lemma again to the following commuting diagram

0 —> rand, > ker 8, — H,(V) —0

¢nl ¢nl $r,n 1

one sees that ¢, is an isomorphism modulo D. O

5.2. Dimension function (after Liick). Let (M, 7) be a finite von Neumann algebra
and recall that Proj(M) is a lattice such that 7(p) + 7(g) = 7(pV q) + 7(p A q) for every
P,q € Proj(M). Throughout this section, a module means a left M-module. Note that

Mor(M®™, M®") = My, (M) by the right multiplication.

Definition 5.11. A module V is finitely generated and projective (abbreviated as f.g.p.)
if V = M®™ P for some m € N and some idempotent P € M,(M).

Remark 5.12. In the original definition, a module V is projective if every surjection onto
it splits. We note that a concrete realization M®™P of V is not among the structures of
V. We can take P to be self-adjoint, because if we set Py = [(P), then P = SP,S™! for
S = I + P, — P. For the following, we generally assume that P is self-adjoint.

A ring R is said to be “semi-hereditary” if every f.g. R-submodule of a free R-module
is projective. Every von Neumann algebra has this property.

Lemma 5.13. (1) Every weakly closed submodule V' of M®™ is of the form M®mP.
(2) For every ¢ € Mor(M®™, M®"), both ker ¢ and rany are f.g.p.
(8) Every f.g. submodule V of M®™ is projective.

Proof. Ad(1): One observes that V = M®™P for the orthogonal projection P in M,,(M)
from L2M®™ onto the L?-norm closure of V.
Ad(2): kerp = M®™P by (1) and ran ¢ = M®™ P+ by Isomorphism Theorem.
Ad(3): If V is f.g., then V = ran ¢ for some p € Mor(M®", M®™), O

Definition 5.14. For a f.g.p. module V & M®™ P, define dimy V' = (Tr @ 7)(P).

Remark 5.15. The M-dimension dimpV is well-defined: If M®™P & M®"Q, then
(Tr ® 7)(P) = (Tr ® 7)(Q). In particular, if W & V (resp. W C V) are f.g.p. modules,
then dimy W = dima V (resp. dimpy W < dimpg V).

Definition 5.16. For every module V, we define the M-dimension of V' by
dimp V = sup{dimpy W : W C V f.g.p. submodule} € [0, o0].

Note that the definitions are consistent for f.g.p. modules. The dimension function is
continuous in the following sense: if V = |JV; is a directed union of modules, then one
has dimpy V = limdimp V;. ‘

For V C M®™, we denote by V the weak closure of V. Although there is a way defining
V purely algebraically for arbitrary module V, we do not elaborate it.

Proposition 5.17. Let V C M®™ be a submodule with V = M®™P. Then, there erists
a net of projections P, € M,,(M) such that M®™P; CV and F; — P. In particular, one
has dimp V =dimp V.



87

DIGEST

Proof. Let V. C M®™ be given. Let i = (W,¢) be a pair of f.g. submodule W C V
and € > 0. We choose n € N and T € M, ,,,(M) such that W = M®*T, and § > 0
such that P, = x51(T*T) € M,,(M) satisfies 7(r(T) — P.) < e. Since P, = ST for
S = xp)(T*T)(T*T)™'T* € My n(M), we have M®™ P, ¢ M®*T C V. It is not hard
to see P; /* P. This implies that dims V > sup dimyq M®™P; = dimy, V. The converse
inequality is trivial. O
Theorem 5.18 (Liick). For every short exact sequence 0 — V5 = V; = Vy — 0, one has
dimpg Vi = dimpy Vg + dimpy V5.

Proof. Let W C V; be any f.g.p. submodule. Then, one has 7=}(W) = W & ((V2) by the
projectivity of W. Hence,

dimaq Vi > dimpg 7~ 1(W) > dima W + dimg o(V2).

Taking the supremum over all W C Vj, one gets dimpy V; > dimpy Vp + dimp V. In
particular, we have proved that dim,, decreases under a surjection. To prove the converse
inequality, let W C V} be any f.g.p. submodule. We realize W as M®™P, Then, one has
(V) NW = M®™Q for some projection Q € M,,(M) with Q < P. This implies that
W/ (Vo) NW & M®™(P — Q). It follows by Proposition 5.17 that

dimpg W = dima W/e(Va) AW + dimpg t(Va) N W
< dimp W/((V2) N W) +dima (Vo)) N W
< dimpg Vo + dimpy ¢(V2),

where we have applied the first part to W/(u(Va) N\ W) —» W/i(Vo) " W. 0

We call V' a torsion module if dimy V = 0. Torsion modules form a Serre subcategory
.and every module V has the unique largest torsion submodule Vz C V.

Corollary 5.19. For every f.g. module V, one has V = Vp & Vi, where Vp 13 f.9.p. with
dimM Vp = dim M V.

Proof. We prove that the f.g. module Vp = V/Vr is projective (and hence there is a
splitting Vp < V). Take a surjection ¢: M® —» Vp. Since ker p/kerp is a torsion
submodule of M®™/kerp & Vp, it is zero. It follows that ker is closed and Vp =
M®™ [ ker ¢ is projective. 0

Although we do not use it explicitly, this corollary, in combination with continuity, is
useful to reduce the proof of dimensional equations to those for f.g.p. modules.

Definition 5.20. A morphism ¢: V — W is a dimaq-isomorphism if it is an isomorphism
modulo torsion modules, i.e., dim ker ¢ = 0 = dim 4 coker ¢.

Lemma 5.21. The morphism M «— L2M is a dim,-isomorphism.

Proof. Let £ € L°M be given. We view it as a closed square-integrable operator affiliated
with M. Then, for p, = x(o,n)(£6*) € M, one has p, — 1 and p,§ € M. We note that
Pné € M means that p,€ =0 in LZM/M. O

Remark 5.22. From this lemma, one observes that dimy, agrees with the von Neumann
dimension function for normal Hilbert M-modules.
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5.3. Definition of the /;-Betti numbers (after Liick).

Definition 5.23. For a discrete group I, we define the n-th £;-Betti number of I' by
. B(T) = dimr TorSF (LT, C),
where C is the trivial CI-module: f -z =3 . f(s)z.

Exercise. Prove that (T') = dimep TorSt (4,1, C). (Hint: You have to show that the
functor £,I" ®r - is exact and dimgp-preserving.)

Example. For d=1,2,..., one has

d-1 ifn=1
A '('2)(F"') = { 0 otherwise

Proof. Let gy,...,g94 be the canonical generators of F4. We consider the complex
V: 0— (CFy)® 2 CF; & ¢ — 0,

where 8o(€) = 3 ,er, £(8) and 81((&)Ly) = S0, & - g — &. (We define (€ - 8)(t) = £(ts).)
We will show that the complex V is exact. We check kerd; = 0. Let Xj € £xFq be the
charactenstlc function of the subset of reduced words starting at g;. It is not hard to see

that x; - 97! = x; + 6; j0. for every i, j. If (&)%, € ker 8, then for every s € T and j, one
has

d d
0= & g~ s-x) =3 (s (x5 07" —x5)) = &(s)

i=1 i=1
and (§;)%; = 0. We next check ran 8, = ker 8. It is easy to see 9p08; = 0. Let x) € £oFqy
be the characteristic function of the subset of reduced words ending at g;!. We observe
that x; — s - x) is finitely supported for every s € Fy. (Indeed, it suffices to check this
for g1,...,94.) Moreover, since XY -9 — x, is the cha.racteristic function of the reduced
words ending at other than gif!, one has 3% Y - Y = (d—- 1)1 +4.. Now, suppose
§ € ker 8y. Then, since

E=—(Q_E(0)) + ) _E(s)8s =D _£(s)(8. — 6.),

s#e s#e s#e
& = & x xy € CI' by the above observation, and since £ * 1 = 0, one has

d d
A(E)h) =D & a—&=) Ex(xi o—x))=¢&

i=1 i=1
We have proved that V is a projective resolution of C. Since
LFi®cr, V30:  0—> (LFg)® 2 LF; — 0,

one has .
LFy/rand, ifn=0
Tor$F4(LF,,C) = ker 6, ifn=1 .
0 ifn>2
Since A(s) — A(t) € rand; and A(t) — 0 weakly as ¢ — oo, one has A(s) € rand; for
every s € Fy and hence rand; = LF,. It follows that G{(Fy) = 0 and BP(F,) =
dimcy, ker 61 d- dlmgpd ran 61 =d-1. O
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Below, we sketch an argument showing that the above definition of £;-Betti numbers
is consistent with another(?). We denote by F(I', X) the set of functions from a set I'
into X. Now I be a discrete group and consider 4 as a right I-module. The is a natural
complex

0 — 60 2 (T, 6T) 25 F(02,4,T) — ...,

where (80 f)(s) = f — f - s and (810)(s,t) = b(t) — b(st) + b(s) - t, etc. We then define the
£3-cohomology H,(T', £;T) by H,(T', £,I') = ker 8,/ ran 8,,,. Since 8, commutes with the
LT-action on £;T', the £;-cohomology H, (T, 4T is naturally an LT-module. We define
BP(T) = dimep Hy(T, £T). Let us calculate 52 (T) for n = 0,1. Since Hy C £T is the
subspace of constant functions, one has ﬂ(§2)(1‘) = ||~!. We note that D(T') = ker 8, is
the space of derivations and Dy(T") = ran &, is the space of inner derivations. To see what

g3 (T') is, we assume that I" is generated by a finite subset {s;,...,34}. Then, there is an
LT'-module map

d
D(T) 3 br—s (o(si))is € D AT,

i=1
which is an isomorphism onto a closed subspace. We note that Dy(T") is closed in @;’Ll 2N
I T is finite or non-amenable, and that dimr Dy(T) = dimgr(ker 8)* = 1—|T|~. Hence,
one has dimcr D(T') = BP(T) + dimgr Do(T) = B2(T) — BP(T) + 1. We view 8 as a

map from £;I into @?___1 £;T" and consider

d
8: Pars @) — > &-&-site bl

i=1 i
Lemma 5.24. One has (ker 83 N @ CI)* = D(T).

Proof. We note that the scalar product (-, -) is defined consistently on CT x F(T, C) and
on &I' x £,T. Moreover, F(T',C) is the algebraic dual of CI"' w.r.t. this scalar product.
Suppose that b € D(T'). It is not hard to show that b = f — f - s for some f € F (r,C).
It follows that for every ¢ € ker 83 N @ CT, one has

(€b) = (&,b(s:)) = D6 —& 5t =0

Conversely, if b € £,T is such that b L (ker & N @ CI'), then the linear functional (-,b)
on @ CT factors through 8 and there is f € F(T,C) such that (¢,b) = (8 (&), f) for
every £ € CT. It follows that b(s) = f — f - s and b € D(T"). a

Since (ker 83)* = andy = Do(T'), one has
D(T)/Dy(T) = (ker 85 N @ CI)* © (ker 33)*
=ker 35 N (ker G NEPCT)* = TorfT (4T, C).
The last isomorphism follows from the following observation:

d
vV: .—@crer—c

i=1
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is a free resolution of the trivial left CT'-module C and

€T ®cr Vo : > @@r =, I —0

i=1

with ran 8} = £ ®cr ker(65|@cp) C CT' ®cr ker(95|@ cr) = ker(d5|@cr)-

5.4. Rank metric (after Thom).

Definition 5.25. Let V' be a left M-module. For £ € V, we define its rank norm by
[§] = inf{r(p) : p € Proj(4), p€ =€} €[0,1].

We record several basic properties of the rank norm.

Lemma 5.26. For a left M-module V, the following are true.

(1) Triangle inequality: [€ + 7] < [€] + [n] for every §,n e V.

(2) [z€) < min{[z], [¢]} for everyz e M and E€ V.

(3) Vr={§eV:[]=0}.

(4) A submodule W C V is dense in rank norm if and only if dimy, V/W 0.

(5) Every ¢ € Mor(V,W) is a rank contraction: [p(§)] < [€].

(6) For every ¢ € Mor(V,W), n € ranyp and € > 0, there ezists £ € p~1(n) such that
M <[{] +e.

Proof. The triangle inequality follows from the fact that 7(pVq) < 7(p)+7(q). The second
assertion follows from the fact that p§ = § implies zpf = £ and [z€] < 7(I(zp)) < T(p).
For the third assertion, we observe that [¢{] = 0 iff M¢ is a torsion submodule. Indeed,
the “if” part is rather easy and the “only if” part follows by considering the morphism
w: M >z z£ € V. Since ker ¢ is a left ideal with dimp kerp = 1, ie.,, T = M,
Proposition 5.17 implies that there is a net p; € L of projections such that p; — 1. This
means [€] = 0. The rest are trivial. O

We recall that the completion of a metric space (X, d) is the metric space of all equiva-
lence classes of Cauchy sequences in X. Here, two Cauchy sequences (z,)32., and (y,)32,
are equivalent if d((zn), (¥n)) := lim, d(zn,yn) = 0.

Definition 5.27. The rank completion of a left M-module V is the completion C(V) of
V w.r.t. the rank metric d, where d(§,n) = [§ — 7] for £,7 € V. We observe that

C(V) = { Cauchy sequences in V }/{ Null sequences }
and that C(V) is naturally a left M-module (thanks to Lemma 5.26).

The rank metric is actually a pseudo-metric. More precisely, it is a metric on V/Vz. The
constant “embedding” c: V — C(V) is a dimp,-isomorphism and it induces a canonical
inclusion V/Vy — C(V). Moreover, C(V) is the unique torsion-free complete M-module
containing V/Vr as a dense submodule. Indeed, one has:

Lemma 5.28. Let V,W be M-modules with W torsion-free and complete. Then, every
w € Mor(V, W) extends to ¢ € Mor(C(V),W), i.e., poc= .

Proposition 5.29. The rank completion c is an ezact functor.
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Proof. Let a short exact sequence 0 — V; R i B, Vo — 0 be given.

Exactness at C(Vp). Let £ € C(V;) and choose a representing Cauchy sequence (£,)n
in Vp such that d(¢,,&nv1) < 27+, We will construct my,7s, . .. such that 01(Mn) = &n
and d(7n, Mm4+1) < 27". Suppose 7y, ...,7M, have been chosen. Lift &1y — &, € V; to
Cn+1 € Vi with [(aya] < [€nt1 — &n] + 27D, Set 7,41 = D + Cny1 and we are done. Now
the sequence (7,), is Cauchy in V; and hence converges to an element 7 in C(V;) such
that 61(1']) = f '

Exactness at C(1}). It is clear that C(8,)oC(8;) = 0 by continuity. Let £ € ker C(8)
be given and choose (£,), in V; such that & — &. Since 8;(€,) — C(8,)(¢) = 0, the
sequence (01(£n))s is null. Hence, one can lift (8;(£,))n to a null sequence (1,), in V3. It
follows that (£, — 7s)n is & Cauchy sequence in ker 8, = ran 8;. Therefore, '

§= nli—lo:go €n = ﬂll.lf’lo(gn - nn) € ra.n@ = 1'8-110(62),

where we used the result of the previous paragraph for the last equality.
Exactness at C(2). Since ; is an isometry, C(8,) is an isometry as well. Since C(V3)
does not have a non-zero torsion element, C'(8;) is injective. a

5.5. Gaboriau’s theorem (after Sauer and Thom).

Proposition 5.30. Let M C N be finite von Neumann algebras with Taq = Tyr|pm. Then,
N is a flat M-module and dimp V = dimy N @p V for any M-module V.

Proof. We use Lemma 5.9 to prove flatness. Let V C M®™ be a f.g. submodule. It follows
that there is T € M,, ;n(M) such that V = M®"T. Let P be the left support of 7" and
observe that V = M®"T 35 (T +— €P € M®"P is an isomorphism. Since M®"P is a
direct summand of M®", one has the following kosher identifications

NOuVEN QM (MOP) 2 N®np o NfORT C NO™ X A @)y MO™.

It follows from Lemma 5.9 that N is flat. ,

Since the dimension function is continuous w.r.t. inductive limits, it suffices to check
the identity dimy V = dimy N @V for a f.g. V. Since M®™P < V implies N®" P —
N ®um V, one has dimpyy V < dimy N ®p¢ V. To prove the converse inequality, take a
surjection 7: M®® — V. Then, id® m: N®* —» N ®, V is also a surjection such that
ker(id ® m) = N @ ker w by flatness. It follows that

dimy N ®pm V = n — dimp ker(id ® 7) < n — dimpg ker 7 = dimpy V'
by the previous inequality. . 0
Let T' ~ (X, 1) be an essentially-free probability-measure-preserving action. Let A =
L®(X,u), M = LT and N = AxT. Let Ry C N (resp. R C N) be the C-algebra
generated by A and ' (resp. by A and the full group [I']). Then,

ACRyCRcCcN
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and A is a left R-module: ayp - f = ap.(f) for a,f € A and ¢ € [[']. Now, Gaboriau’s
theorem that ﬂ£2)(I‘) is an invariant of [I'] follows from the following equalities:

BP(T") = dimpq Tor{" (M, C)

' = dimy N ®p TorST (M, C) by Proposition 5.30
= dimy TorS" (N ®m M, C)  since N is flat over M
= dimy Torf (N, A) ()
= dimy Tor2(V, A) Q)

The proof of (#) is rather routine: Since NV is also a right Ry-module and R, is a free left
Cr-module (Consider the conditional expectation onto .4), one has

Tor(.:r W,V)= TOI‘?O (N, Ry ®cr V)

for any CI'-module V. Indeed, if V is a projective resolution of V, then Ry ®cr V is a
projective resolution of Ry ®cr V with N ®g, (Ro ®cr V) 2 N ®cr V. We then observe
that Ry ®cr C & A as an'Rp-module. The proof of () is more involved, but reduces to
the fact that Ry C R is dense in an appropriate sense.

We write [£] 4 (resp. [€]x) for the rank norm w.r.t. A (resp. N) and note that [¢]y < [¢]4-
In particular, one has [z]4 = inf{ 7(p) : p € Proj(A), pz =z} for z € N. For z € N, we
define

|[z]l.a = sup{ [zp]a/[p]l4 : p € Proj(A)} € [0, o0].
We record several basic properties of this norm.

Lemma 5.31. (1) |[az]|4 = |[z]|4 for every a € C\ {0} and z € N.
(2) |[v]la =1 for every non-zero pseudo-normalizer v of A in N.
(3) |z + ylla < llzlla + [[ylla and [[zy)la < |[z]lall¥]la for every z,y € V.
(4) |lz}la < oo for every z € R.
(5) For every x € R, there is a sequence (Z,)n in Ry such that [z, — z]4 — 0 and
sup |[za]|4 < oo. :

(6) If V is an Ro-module, then [z€]4 < |[z]|al€]a for every z € Ry and £ € V. The
same thing holds for R.

Lemma 5.32. Let V be a left Ry-module. Then, the rank completion C(V) w.r.t. A is
naturally a left R-module. Moreover, C is a natural functor from the category of Ro-
modules into the category of complete R-modules.

Proof. By the previous lemma, one knows that C(V') is naturally an Ry-module. Let z € R
and £ € C(V) be given. Choose a sequence (), in Rp such that [z — z,]4 — 0. Then,
(zn€)n is a Cauchy sequence in C(V) and has a limit z¢ in C(V). We note that the limit
is independent of the choice of (z,),. Moreover, if |[z,]|4 is bounded and [y, ~ y]4 — O,
then [Z,ym — zy]4 — 0. This shows (zy)¢ = z(y€).

Lemma 5.33. Let V be a left‘ Ry-module. Then the constant embedding
id®c: N ®gr, V = N ®g, C(V)

is a dimps-isomorphism. The same thing holds for R.
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Proof. Suppose that Y ., z; ® & € ker(id ® c) and € > 0 be given. Then, one has

i=1

Za:,-@&- = Zbﬂ‘j ®'I7j -bj®r,-17j 1nN®c C(V)

i=1 j

Choose p; € Proj(A) such that pin; € V and nY (1 + |[rj]|la)7(p;) < €. It follows
~ that there is p € Proj(.A) such that pp; = pj, prjp; = rjp; and 7(p) < &/n. Since
>_; bi7i ® pn; — bj ® rjpin; is zero in N ®g, V/, subtracting it from the both sides of the
above equation, we may assume that

n
D m®&=) bri®pm;—b@rpm; in N @cC(V).
i=1 7

It follows that 3" z; ® & = 3 z; @ p&; in N ®c C(V), and a fortiori in N ®c V since
N ®cV C N ®cC(V) (recall any module over a field is free). Hence, one has

n n n
ZI&'@E,‘ = Zzu&p&; = Ew,'p@& in./\/'@no V.
=1 t=1 i=1

This implies that [3_;, z; ® &]x < 3[ziply < €. Since € > 0 was arbitrary, one sees that
ker(id ® c) is a torsion submodule. That ran(id ® c) is dense in N ®g, C(V) follows from
the fact that [z ® €]y < [€]4 for every z € N and & € C(V). .0

We omit the proof of the next lemma, which is similar to that of the previous one.
Lemma 5.34. Let V be a left R-module, then the surjection
N ®g, V -+ N@rV
is.a dimp,-isomorphism. |
We are now in position to complete the proof of Gaboriau’s theorem.

Proof of (V). Let V (resp. W) be a. projective resolution of .A as an Ryp-module (resp.
as an R-module). Then, by Theorem 5.3 (and Proposition 5.29), the identity morphism
id4: A — A (resp. the constant embedding c: A — C(A)) extends to a morphism ¢: V —
W (resp. a morphism ¢: W — C(V)):

V: >V, R > Vs A
#n l‘Po ida
R A A
' r% | l% v
Cc(v): o> C(Vo) —> -+ —C(Vo) —= C(A)
én lao  Jjde

OW): e O(Wp) —> -+ — O(W) — C(A)
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By the uniqueness part of Theorem 5.3, the compositions # o ¢ and @ o 4 are homotopic
to the morphisms of the constant embeddings. Taking tensor products, one has

N ®gr, V>o: voi e N ®p, Vg —— -
_ .lid@pn
N@rWy: cir > N @ W, ——
fan
N@rC(V)3o: oo —> N@rC(V,) — -
lld@?n
N ®zC(W)3o: coo —>= N @p C(W,) — -

The morphism from N ®g, Vo to N ®g C(V)>o and the morphism from N ® Wxo to
N ®g C(W)>o are homotopic to the morphisms of constant embeddings. Since constant
embeddings are dims-isomorphisms by Lemmas 5.33 and 5.34, the induced morphisms
on the homology modules are all dimp-isomorphisms by Lemma 5.10. It follows that
@ue: TorP (N, A) — Torf(N, A) are all dim-isomorphisms. 0

Let p € N be a projection and V be an N-module. It is not hard to check that
pN ®x V = pV and dimpnp pN ®n V = 7(p)~! dimy V, where one uses the normalized
trace 7(p)~17(-) for pN'p. If p € Proj(A) is a projection such that Y, v;pvf = 1 for some
pseudo-normalizers v, .. ., U, then N @z V = Np®,p, pV for every R-module V. whose
central support in N is 1. It follows that

* dimy Torf(N, A) = 7(p) dimur, PN @x Torf (N, A)

= 7(p) dimpy, Tor2™ (pN'p, pA).

Wlth little more analysis, one can show the above equation for every p € Proj(.A) with
full central support.
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