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Mathematical modeling to traffic assignment problem

and bridge location problems via fuzzy analysis
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Abstract :In this paper we introduce results of D. Han and H. K. Lo (2004)
on traffic assignment problems and variational inequality problems. We
discuss modeling of bridge location problems y applying the fuzzy theory.

1.Variational inequality problems

Let Q be a nonempty closed convex subset in the n-dimensional linear
space R2. Let F: Q — R=be a mapping and consider the following variational
inequality problem :

(v - uWTFw*) >0 for Vv €Q. (VD
Here T is the transpose and u* €Q is an optimal solution for (VD).
Denote the projection by
Pax) ={y* €Q: | |ly* - x| | =miny c al ly — x| | }.
Fig.1 shows that the following inequality of the projection:
(z - Pa@)T(v - Pa(z)) < Oforz €Rr,v €Q

Pa(2) z

Q

Fig.1. projection Po

The equivalence conditions for optimal solution to (VD) holds as follows
(see[1)):
u* is optimal solution for (v - uw®)TF(u*)>0forv € Q
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& Denoting e(u,8)= u - Py(u — BF@)) for B >0 it holds that
|| etu*,B) | 1=0.

2. Solution algorithm
‘Ha-Lol1] show the descent method as follows:

Theorem 1. Assume that F is a co-coercive mapping. Let parameters be
0<e<l, £1>0,{B:Bmn>0, Bx<4u(l- ¢) and 0< &§<2.
Denote the residual function e and the iteration {ux} by
e(u, B =u — Polu - BxFW)) and uk+1 = ux — txe(uk, S 1) V.V
withts = 6 (1- (Bx/4 1)). Then the iteration {ui is bounded and convergent
to an optimal solution for (VI).OJ

Properties of co-coercive or monotone mappings play important roles to
guarantee the optimal solutions for (VI). .

Theorem 2[1]. The following statements (a)-(d) hold.
(a) F is said to be monotone on 9, if
(- vVEFW -FW) 20
for u,v € Q. Then (VI) has at least one optimal solution € Q.
(b) F is said to be strictly monotone on &, if
(u - VIFQ®) - FG) >0
for u,v € Q, u # v. Then (VI) has the only optimal solution € Q.
(c) F is said to be strongly monotone on @ with modulus y > 0, if
u - VTFQ@) -FO) = yllu - v| |2
for u,v € Q. Then (VD) has the only optimal solution in Q.
(d) F is said to be co-coercive on & with modulus y > 0, if
(u - VTF@) -F®) 2 vyl IFW - Fv)| 12
for u,v € Q. Then (VI) has the only optimal solution in Q.00

The following theorem shows that the majorant residual function means
the linear convergence of (A) to the optimal solution for (VI).

Theorem 3[1]. Suppose that conditions of Theorem 2 hold. Furthermore,
suppose that the residual function e(u, 8) with 8 > 0 a constant, provides
an error bound for the optimal solution u* to (VI) such that

llu —u*|Is¢lle(,B) || forue Q. ©
Then the algorithm (A) converges linearly with

| Juker— u* | 12<[1- {6 @ - 6)e2(&20)} ]| luk — u* | 12,
where ¢ =1Gf B8 < Bmin): B2 B%mn (otherwise). O
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Remark. Sufficient conditions for (C) to hold have been proposed in [2] and
references therein.

3.Traffic assignment problems
While the descent algorithm is applicable to variational inequality
problem (VI) with co-coercive mappings, this section specializes it for traffic
assignment problems. Consider a strongly connected transportation network,
1.e., containing at least one directed route from every node to every other
node.
Denote the following notations.
G(N,A) : strongly connected transportation network
N : set of nodes
A = {a} : set of links
RS ={rs} : set of origin-destination (O-D) pairs
Prs = {p} : set of routes connecting rs
H = {h} : set of feasible route flow vector
Defining M =( § p) as the link-route incidence matrix such that
8 ap =1 (if a route p contains link a); 6. = 0 (otherwise).
F=MH={f=Mh:h € H}
Ca® : link cost function fora € A and f=Mh
C(h) : route cost function of h such that
C(h)=(C:1(®, Cz(h), ..., C:(h))T, where r =| M| is the number of
links of A.

The equilibrium traffic assignment problem can be formulated by the
following variational inequality problem:

find f* €F such that (f - fTC{E*) = 0 forfeF.
Or equivalently, find h* €H (f* = Mh*) such that

t - h*)™TC(Ah*) = OforhEH.
The following lemma shows that the mapping MTCM is so as C is
co-coercive.

Lemmal(ll. If Cis aco-coercive mapping with modulus ,i.e.,
(- VTCu- v) > p | IC- v)| |2
foru,v € Re, then it follows that
(u- VIMTCM@u- v) > (u/|IM|1)2] IMTCMG@u- V)| |2
foru, v €Rn. -

4.Example of non-fuzzy traffic assignment problems
Ha-Lo [1] discussed a transportation network with two origins(1 and 4),
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two destinations(2 and 3), additionally 9 nodes and 19 links. See Fig. 2.
There are two types of the link cost functions as follows:

1) affine type with C() = Pf + b with constant matrix P and vector b;

2) nonlinear type with C(®. = (c;(®), where c;(® = a; (1 + b / V)4)
f. = 0,1 (f: route vector), a; : free travel cost of linki, b: coefficient
Vi: traffic capacity of i, d : magnitude of the congestion effect (d=3,4).

Origin

Destination

e
10 1)

16

Destination

Fig. 2 Transportation network with four origins and destinations.

In the other example we illustrate a transportation network with two
origins (1 and 2), two destinations (3 and 4), additionally 3 nodes and 8 links.
See Fig. 3. There are six routes from one origin to one destination: route 1
with links al and a5 starts from originl to ends at destination 3, etc as the
below table.

Route p Link a

a1, a5
a2, aé
az, a7
al. aé
a3, a7

a4, a8

N ]| WIN]|~

Fig. 8

Then the set of links is
A={al, a2, a3, a4, a5, a6, a7, a8}
and the number of the links is | A] =8. In this case we have the following
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variational inequality problem

(f - PITCE >0
for f € F . Here F is the set of feasible route vectors and f = Mh, M is the
incident matrix as follows:

f csnnnd
The vector f=(10001000)T cR8withf=Me;ande:=(1000000 0)T.
C® =(c:®, c2®,...,csM)Tis the link cost function.

6.Bridge location problem of fuzzy case

In this paper we discussed the following two points.
1) The traffic assignment problem with the link cost function C® of link f
passing through from one origin to one destination is reduced to the
variational inequality problem (VI):

(£ - M)TCE*) =o0.

The mapping C with monotone or co-coercive conditions gives linear
convergence to an optimal solution of (VI). '
2) The above modeling in traffic assignment problems is fairly useful in
modeling to bridge location problems(see Fig. 4). Where are the best location
of bridges over the river under an objective function attains the optimal
value? In this case we have some questions which is the objective function
to the bridge location problems where the traffic volume of streets (links
between two nodes) has the fuzzy number, etc. It is considered that the fuzzy
numbers are L-fuzzy numbers, i.e, symmetry types. It is expected that jam
function is considered as the objective function. The Jam situation of streets
in Japan is considered from three viewpoints: traffic velocity(average),
traffic length and time of keeping the situation. On the other hand a new
denition of traffic jam is considered with traffic volume = velocity * density
(see [3] and refences therein).
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, 14t (river)

BOMBERYT (Location of bridges)
Fig. 4 Bridge location problem
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