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Characteristic polynomial averages of
a random matrix from compact symmetric

spaces !
Sho Matsumoto
Faculty of Mathematics,
Kyushu University.
Abstract

We calculate the average of products of characteristic polynomials of random
matrices associated with classical compact symmetric spaces. These averages are
expressed in terms of a Jack polynomial or a Heckman and Opdam’s Jacobi poly-
nomial.

1 Introduction

One can consider the following general problem: Let S be a set of n X n matrices and let
dM be a probability measure on S. Then we would like to calculate the average

(1.1) <Hdet(I+x,~M)> = / Hdet(I+x,-M)dM, Zi,y...,Zm € C,
S
S

i=1 i=1

where I = I, is the n x n identity matrix. The consideration of this problem is motivated
by its connection with Riemann zeta functions and L-functions, as developed by Keating
and Snaith [KS1, KS2], which we will briefly review in §2.

In the present note, we consider the following compact symmetric spaces:

U(n)/O(n), U(2n)/Sp(2n), U(n +m)/(U(n) x U(m)), O(n +m)/(O(n) x O(m)),
Sp(2n)/U(n), Sp(2n + 2m)/(Sp(2n) x Sp(2m)), SO(2n)/U(n).

Let G/K be a compact symmetric space given above. Then G is a classical group and K
is a closed subgroup of G. The space G/K can be realized as a subset S of G: S = G/K.
For example, if G/K = U(n)/O(n), then we can take S as the set of all symmetric
(unitary) matrices in U(n). We consider the probability measure dM on S given by the
Haar measure on G, in which case the pair (S, dM) is a probability space over matrices.
We call this space the random matrix ensemble associated with the symmetric space G/K.

We also treat the classical groups U(n), SO(n), and Sp(2n). For these cases we let S
be the group itself while dM is the normalized Haar measure. Note that these Lie groups
G can be identified with the symmetric space (G x G)/G.

Cartan’s classifications for classical groups and compact symmetric spaces are given
in the following List 1.

!Workshop “Number Theory and Probability Theory”, 15-16 October, 2007 at RIMS and IIAS.
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space (G/K or G) type parameter(s)

U(n) A g =2

U(n)/O(n) Al B=1

U(2n)/Sp(2n) All B=4
SO(2TL + 1) B (kl, ’Cz, k3) = (1, 0, 1)
Sp(zn) C (kl’ k2a k3) = (07 1, 1)
List 1. SO(Q?’L) D (k1, kz, ks) = (0, 0, 1)
U2n+7)/(Un+r)xUn)) ATIL-r | (ki ko, ks) = (r,3,1)
O(2n+r)/(O(n+r) x O(n)) BDI-r | (ky, ks, ks)= (%0 3)
Sp(2n)/U(n) Cl (k1, k2, ka) = (0, %, :')
Sp(4n +2r)/(Sp(2n+2r) x Sp(2n)) | CII-r | (ki ke, k3) = (2, %,2)
SO(4n+2)/U(2n+ 1) D III - odd (kl,kg,k;;) = (2,%,2)
SO(4n)/U(2n) D III - even | (ky, k2, k3) = (0, 3,2)

We will calculate the characteristic polynomial average (1.1) on S & G/K (or S = G).
The characteristic polynomial of a matrix M depends only on its eigenvalues, and so we
require a density function for these eigenvalues. As described by [Du] for example, we
know from classical representation theory that these density functions are given as follows:

For type A, A I, and A II, the probability density function (pdf) for eigenvalues

21,22, .., 2 Of a matrix M in S = G/K is proportional to
(1.2) AJad((zla ey 203 2/B) = H |2 — zjlﬂ’
1<i<j<n

where B is 1,2,4 as given in List 1. Similarly, for type B, C, D, AIIIl, BDI, C I, CII,
and D III, the corresponding pdf is proportional to

(13) AHO(Z1,...,Zn;k1,k2,k3)
= [I 11—zzl™st—az e [ 11— 21— 2%,
1<i<j<n 1<j<n

where the k;’s are given in List 1 for each case.

Our goal in this note is to express the characteristic polynomial averages as a Jack
polynomial for type A, A I, A II spaces, or as a Heckman and Opdam’s Jacobi polynomial
for symmetric spaces of other types. These results will be given in §5. In §2, we review
the Keating-Snaith conjecture. In order to describe our main results in §5 we recall Jack
polynomials and Heckman and Opdam’s Jacobi polynomials in §3 and §4, respectlvely
In §6, we discuss some related works.

2 Keating-Snaith conjecture

In this section, we recall the motivation for the calculation of characteristic polynomial
averages. Specifically, we review the Keating-Snaith conjecture for the Riemann zeta
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function stated in [KS1], see also [KS2, CFKRS1, CFKRS2].

2.1 Unitary groups
Let U(n) be the unitary group:

U(n) ={M € GL(n,C) | UU* = I}.

Let dM be the normalized Haar measure for U(n). By definition, the measure d M satisfies
the invariance

d(MMM,) = dM, My, M, € U(n),
and fU(n) dM = 1. By employing Selberg’s integral evaluation, Keating and Snaith [KS1]
calculated the moment of the characteristic polynomial as

7! (J + 2m)!
s L +m)‘}2’

Note that this value does not depend on £. Bump and Gamburd [BG] (see also §3 and
§5) gave a simple proof of expression (2.1) by using Schur polynomials. Furthermore, in
the limit as the matrix size n goes to the infinity, we have

(| det(I + EM)*™)yny ~ funitary(m) - n™

(2.1) (| det(I + EM) ™) y(ny = H €] = 1.

2

for m fixed, with

m-—1 .
J!
2-2 uni = YR
(22) Funitary () ]1:[0 G
2.2 Riemann zeta functions
The Riemann zeta function is defined by
=1
(@)=Y= R>1
n=1

It has an Euler product expression

-1 —

p

where p runs over all prime numbers. The zeta function ¢{(s) can be extended to the
whole complex plane C as a meromorphic function that has only one simple pole, at
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8 = 1. In addition, {(s) has the following functional equation with respect to the critical
line R(s) = 1/2:

¢(1—8)=2"*1"%cos ( ) T'(s)¢(s) for any s € C,

where I'(s) is the gamma function. We have {(—2n) =0forn =1,2,.... These zeros are
called trivial zeros. It is known that other zeros, called nontrivial zeros, are in the critical
strip 0 < R(s) < 1.

‘The well-known Riemann Hypothesis claims that nontrivial zeros belong to the critical
line R(s) = 1/2. We are interested in the behavior of {(s) on the critical line.

The following statement has been conjectured concerning the moment of ((s) on the
critical line:

Conjecture 2.1 (Keating and Snaith [KS1]). For each positive integer m, the limit
1 TVU(1 | adt
A8, (log T)™* / ¢ (§ + zt)

T
a(m)funitary(m)’
where a(m) is defined by an Euler product

a(m)= ] [(1 —p )™ i (m+ : - 1)217"‘}

p:prime k=0

exists and equals

and fupitary(™m) is given by relation (2.2).

We remark that in [KS1] Keating and Snaith present this conjecture without a restric-
tion that m be an integer. The value a(m) is called the arithmetic part, while fynitary ()
is called the random matrix part.

The arithmetic part a(m) arises as follows (see e.g. [BH, Appendix]). The mth power
of {(s) is written as

(o =320 [+ dnlop™ + @™ ), R() > 1,

n=1 ?

where

dm(m)= > L

ninz - Nm=n

In particular, we have dn, (pF) = (™*F~!). Consider 32, din(,ﬁﬁ, which is the “diagonal”
term of [((s)|*™ = |3 o2, 9'ﬂ‘-ﬁﬁzlz’ Then we see that

> O ) gm),

n=
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where

(@) =[] |@-p)> dnlp’)

ks
? k=0 p

The function g,(s) is analytic at s = 1, and the value a(m) is equal to gn,(1).
Conjecture 2.1 has only been proved for the cases m = 1 and 2, with

1 1 6 1 1

—

a(1) funitary(1) =1x1=1 and a(2)funitary(2) = 0 X o = 5 X T3 = 5o

see e.g. [T].

2.3 Generalized conjecture

For two nonnegative integers K and L, we let Z;,x be the set of the (“3*) permutations
o € Sk such that 0(1) < 0(2) < --- < o(L) and 0(L+1) < 0(L+2) < --- < o(L+K).

With this notation the following conjecture, which is a generalization of Conjecture
2.1, has been made:

Conjecture 2.2 ([CFKRS1, CFKRS2]).
/; EC <-2—+a;+zt) -gc(-z- ——am.,.k—zt) dt

T
=/ Wa(t; 0, ... 0m; @mi1,y -« - O2m) (1 + O(t'*"“)) dt,
0

where
Wa(t;aq,. .., 0m; Oty - -« Qo)
-_—e% log f;(—al —see—Qm +Qm41 -+ 02m)
E e% log 2_';(—0‘0(1)—'---Qo(m)+ao(m+1)+---+a,(2,,,))
UGEm,m
X An(@o@); s @oem) T €1+ a0 = asmn).
1<l,k<m
Here Am(ul) ‘o ,um) is
m m
—1—u—
Am(ul,---,um) =H HH(l_p Uy um_H,)
/] k=1 l=1

i1 m
% / H(l _ e2m‘0p—-5‘-—u;,)—1(1 _ e--2m'0p—§+um+.,)—1d0 .
0

=1

x
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For the unitary group, we have the following statement.

Theorem 2.3 ([CFKRS1, BG]). For two nonnegative integers L and K,

L K
<H det(I + z;7'M™1) - Hdet(I + xL+kM)>
U(n)

i=1 k=1

(2.3) =(@1 - 2L) " 8(nt)(@1,. .., TLtk)
K —_
(2.4) — Z Hk:l(xa(11;+k)xlf+k)n
. I 1K - J
og€ZL K Ht=1 Hk=1(1 - $,(})1‘a(z,+k))
where s\(z1,...,zN) 8 the Schur polynomial (whose definition will be given in the next
section,).

If we consider z; = e~*** in equation (2.4), we obtain

L K
eM—art1——aLik) § Mo (L41)++ao(L+K)) H H(l - eaa(l)._ac(L-Ho))“"l_

o€EL Kk I=1 k=1

Compare this with the function W,, in Conjecture 2.2.

In order to prove expression (2.3), Conrey et al. [CFKRS1] employ the Selberg integral
evaluation, while Bump and Gamburd [BG] employ symmetric polynomial theory. The
expression (2.4) follows from (2.3) by the determinantal expression of the Schur polynomial
and its Laplace expansion.

There are similar relations between other classical groups and arithmetic L-functions,
see [KS2] and its generalizations [CFKRS1, CFKRS2]. This is our motivation for the
calculation of characteristic polynomial averages.

Our purpose in this note is to obtain analogues of equation (2.3) for some random
matrices.

3 Jack polynomials

In order to calculate characteristic polynomial averages associated with symmetric spaces
of type A, A I, and A II, we will employ the Jack polynomials reviewed in this section.

3.1 Partitions

We employ the standard notation used in [Mac, Chapter I-1].
A partition is a weakly decreasing sequence of nonnegative integers with finitely many
nonzero entries:
A= (/\1,/\2,...).
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We put
(N =#{>1|%>0 ad A=K,
. 521
and call £()) the length and [A| the weight. We identify a partition with the associated

Young diagram {(i, j) € Z? | 1 < j < A;}. For example, the Young diagram of A = (5,3, 3)
is given by
L]

In particular, when all nonzero A; are equal, the Young diagram is rectangular and we say
that such a partition A is rectangular-shaped. For a partition A, the conjugate partition )’
is determined by the transpose of the Young diagram ) on the diagonal line. For example,
for A = (5, 3,3), we have \' = (3,3,3,1,1) with the diagram

R
e

- It is sometimes convenient to write a partition in the form A = (1™2™2...), where
m; = m;(A) is the multiplicity of ¢ in A given by m; = A} — A,,. In particular, a
rectangular-shaped partition is written in the form

(nk) = (n,n,...,n).

k

For two partitions A and p, we write A C p if the diagram of u covers the diagram of ),
that is, if A\; < p; for all . In particular, the notation A C (m™) means that )\ satisfies
A1 £mand A} =£4()) < n.

3.2 Definition of Jack polynomials

In this section we recall relevant details of Jack polynomials; the reader may refer to [Mac,
Chapter VI] for further details.

Let T be the unit circle {z € C | |z| = 1} and let dz be the normalized Haar measure
on T. By definition, we have

1

27 .
/T f@)dz =g [ fle)as

for a continuous function f on T, where df is the Lebesgue measure on the interval [0, 27].
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Fix a positive real number o. Define a function on T" by

(3.1) A (2 q) = H |z = z|Y%, z=(21,...,2,) €T

1<i<j<n

(cf. equation (1.2)). The function A**(z, @) is the probability density function (pdf) for
eigenvalues of random matrices associated with U(n), U(n)/O(n), or U(2n)/Sp(2n).

Denote by C[zy,...,z,]%" the space of symmetric polynomials in n variables, and
define an inner product on Clz;,...,2,]%" b
1 —_—
(3.2 (6 )ame = 1 | 6@PEA" (z;0)ds,

where dz = dz; - - -dz,.
For a partition A of length £()\) < n, put

(3.3) mi(zy,...,Tn) = Yo g,

V=100 W0 )EGR A

where the sum runs over the Sp-orbit S = {(Asq), - - - ,,(,,)) | o € S,}. Here the suffix
‘A’ means that G, is the Weyl group of type A 2. The set {mA | A are partitions with £()\) < n}
is a basis of Clzy,...,T,)%".

Jack polynomials

{P{**(zy,...,zn; ) | A are partitions with £()\) < n}

are uniquely determined by the polynomials in Q(e)[z1, ..., z,]®" satisfying the following
conditions:
o pjack =mj\‘+2“”<“uf\‘2m uf\‘;) € Q(a).

o (Pjock PIock) s =0 if A #p.

Here “<4,” denotes the dominance order for root systems of type A:

w<a A & Al=ul and m+pe+ - +p <A+X+---+) foralli>1.

Note that for the empty partition (0) it holds that Pgi™ = 1.
It is well known that the Jack polynomial at a = 1 agrees with a Schur polynomla.l

det (2" ) 1< i<n

det (Z‘;-l'_i) 1<i,5<n .

2In Macdonald’s Book [Mac], polynomials m#% A are wrxtten as m,, for conciseness. In the present study,
however, we must distinguish the Laurent polynomial m C given in the next section.

Pf“k(zl,...,xn; 1) = sa(Z1,...,2Zn) =
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The Schur polynomials are irreducible characters of U(n) associated with the highest
weight (A, ..., A,), further details may be found in any standard text on representation
theory of classical groups. Moreover, when o = 2 and o = 1/2, the Jack polynomial is (a
constant times) a spherical function associated with the symmetric space U(n)/O(n) and
U(2n)/Sp(2n) respectively, see [Mac, Chapter VII]. However, while the Schur polynomials
may be expressed as a quotient of determinants, such an expression is not known for Jack
polynomials, even for a = 2,1/2.
In this note, we use the following properties of Jack polynomials:

Lemma 3.1. Jack polynomials satisfy the following properties.
o ([Mac, Chapter VI (4.17)]) If £(\) = n, then
(3.4) Pj*k(z), ..., Tp;0) = 2129 - -znP,f"“k(a:l, ey Tni Q)
with p= (A1 -1, -1,...,, — 1).
o ([Mac, Chapter VI (5.4)]) Dual Cauchy identity:

(3.5) Z PPX(zy, ... 2m; 1)) PP (yy,. .., Yn; @) = HH(I + z:Y;).

AC(mn) =1 j=1

o ([Mac, Chapter VI (10.88)]) For a positive real number a, a positive integer n, and
a partition A with £(\) < n, we have

(P (s @), P{™*(+; 0)) ptnck
_ H P =X+ (G —i+1)/a)T(N — A +1+(J—-z——1)/a)
- Ti=A+ (G —9)/a)T(=N+1+(—i)/a) '

where I' is the gamma function. In particular, for any nonnegative integer L,

1<igj<n

(36) (PSS (5 ), PSS (5 0)) aoms = (1, 1) s
o ([Mac, Chapter VI (10.20)]) Principal specialization: for any partition A\ of length
(X)) <,
—(i-1
(3.7) PP, L) = [] ntej—)-(G-1)

v e a(h—J)+ (A; - +1

where (2, j) run over all bozes in the Young diagram A, i.e., 1 <i<f()), 1 <j< A\
Remark 3.1. If you read Macdonald’s book [Mac|, you should attend the fact that
the Jack polynomial is a- degenerate case of a two-parameter symmetric polynomial
Py(z1,...,Zn;q,t). Specifically, Jack polynomials are obtained by setting ¢ = t* and
examining the limit as ¢ — 1. The polynomial Py(zy,...,Zn;q,t) is called the Macdonald

polynomial. Note that PJ**(z,,..., z,; ) is written as Pﬁ"‘)(zl, ...,Ty) in Macdonald’s
book.
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3.3 Characteristic polynomial averages for type A

For a real number 8 > 0 and a function ¢ on T", we define the value (¢), 5 by

= _ Jun 6(2)A%%(2; 2/B)dz
o (Ohno = (§(2))na = Tf,r.. AVek(2;2/f)dz

where the denominator is equal to (1,1) s« with parameter a = 2/3. We do not need
an explicit expression of the denominator.

The value defined by equation (3.8) is reduced from the average of a function on
random matrices associated with U(n), U(n)/O(n), or U(2n)/Sp(2n) at 8 = 2,1, or 4
respectively.

We consider a polynomial on T defined by

n

UA(z;7) = H(l + z2;), zeT', zeC.

j=1

This corresponds to the characteristic polynomial of a (unitary) matrix with eigenval-

ues 2i,...,2,. The following _theorem gives an average of the product of characteristic
polynomials.
Theorem 3.2. Let L and K be nonnegative integers and let x,,%2,...,T14x be complex

numbers. Then we have

L K
<H‘I’A(Z‘1;$z.1)'H‘I’A(z;xb+k)> = (21 -2L) Pt} (1, - .., TLek; B/2).
k=1

=1 n,g

1 -1

Here 271 = (z7%,...,27Y).

Proof. By the dual Cauchy identity (3.5) we have

L K L L+K n
H\IIA(z‘l; o) - H UA(z;2p08) = Hm;n N ARE H H(1 + Tk zj)
=1 k=1 =1 k=1 j=1

L
=Hxl-n * (Zl *t 'zn)_L Zpi]'a'ck(xh oo 71;L+K;16/2)P£Mk(211 s )'zn;z/ﬂ)'
=1 A ‘
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Since PN (21, - -+, 20;2/B) = (21~ 22)" by (3.4), we have
L

<H TA(z YY) H‘I’A(z $L+k)>
I=1

L -
=TTz S5 P, ..., 30eks B/2) (P (2 2/ 8) P (23 2B
= A

(PRX(2/8), PERS(2/B))amas
(1, 1) pdack

n,3

L
=I-I$l—n'ngla‘(:k($1, ,xL+K,,8/2)
=1 A

If we make use of the orthogonality property of Jack polynomials and relation (3.6), then
the above expression can be re-expressed as

Hw[" ety (@1, -+ TLk; B2)-

O
Corollary 3.3. For £ € T we have
mAT(Z(i+1)I'(n+ Z(m+i+1))
TA(2; €)2m — B B )
(%42 O, 5 Izl TEm+i+ DT+ 2G+1)
Moreover,
m-l D(2(i + 1))
A 2m 8
lim 75 (UM O™, = H TGm+itD)
Proof. In Theorem 3.2, let L = K =m and 2, = - -+ = T3, = £. Since Jack polynomials

are homogeneous, we have
(1T (2 0)P™), 5 = ET RS (€, -, & B/2) = Pms(1%™; B/2).

The first claim follows from relation (3.7) and a straightforward calculation. The second
claim is obtained from the first claim together with the asymptotics

lim I'(n+a)

A yne =1 for a fixed.
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4 Heckman and Opdam’s Jacobi polynomials

In this section, we review multivariate Jacobi polynomials due to Heckman and Opdam
(see e.g. [Di]). Note that the structure of this review follows that conducted for Jack
polynomials in the preceding section.

4.1 Definition of multivariate Jacobi polynomials
Fix three real numbers ky, k3, and k3 such that

| ki+ke>—1/2, ky>—1/2, ks >0.
Define a function on T" by

(41) ATO(ziki,kyks) = ] 11— zz i —zgl™s - [ 11— 2™ - 22
1<i<i<n 1<j<n

(cf. equation (1.3)). For special parameters (k,, ks, k3) given in List 1, the function
ABO(z Ky, ks, k3) is the pdf for eigenvalues of random matrices for type B, C, D, A III,
BD I, and so on.

Denote by Clz{,...,zZ!] the algebra of Laurent polynomials in n variables. Let W
be the wreath product Z21 6, = Z} x &, which is the Weyl group of type BC. The group
W acts naturally on Z" and Clz$,. .., zX!] respectively. Denote by C[zi!,. .., 21" the
subalgebra of all W-invariants. Define an inner product on Clzi!,...,zE!W by

1 -
(4.2) (¢ ¥haro = [r ¢(2)0(2) A¥O(z; ky, k2, ks)dz.

For a partition A of length £(\) < n, put

(4.3) _ myC(z1,...,2n) = Z L 2AEREY
v=(V1,..0¥n)EWA

where the sum runs over the W-orbit of A in Z". The set {m5C | A are partitions with £(\) < n}
is a basis of C[z}!,...,zEW.
The Heckman and Opdam’s Jacobi polynomials

_{P)I‘{o(xh .+, Zn; k1, ko, k3) | A are partitions with £()\) < n}

are uniquely determined by the Laurent polynomials in R{z{!,...,zZ!]W satisfying the
following conditions:

HO _ ,,,BC BC
d PA =my~ + 2y:u<gc,\ Urp, ™ Uy, € R.

o (PO, PHOY\uo =0  if A # p.
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Here “<pc” denotes the dominance order for root systems of type BC:

p<scA B pitp+Fotui<A+d+eo-+X foralli>l.

It is known that the Jacobi polynomials agree with the irreducible character of SO(2n+
1), Sp(2n), and O(2n) at (k1, k2, k3) = (1,0,1),(0,1,1) and (0, 0, 1) respectively. Hence in
these cases, PHO can be expressed as a quotient of determinants (see e.g. [BG]); however,
such expressions are not known for other cases.

Lemma 4.1. Jacobi polynomials satisfy the following properties:

o ([Mi]) Dual Cauchy identity:

44)  JIIJG:+zt—w—u)

=1 j=1
= Z (_1)’S|P§{O(z1, ceey Ty kla k29 k3)PiHo(y1’ co oy Ymy Ely Z;2, E3)1
AC(mn)
where \=(n—X_,n—X__. ...,n—X\) and
(4.5) ky=ki/ks, ko= (ks +1)/ks—1, ks = 1/ks.

e ([Di]) For a partition A of length < m,

(pi + pj + ka)ata; (i — pj + Ka)ai-x
(4.6) P:IO(I, e 1; kla k2’ k3) =22|A| H i TA; J

m 1<i<j<m (p‘ + pj)Ai'i'Aj (pi - Pj))\.'—,\,-

y ﬁ (& + ko + pj)a, (B2 + pj)a,
j=1 (2p.7)2/\1

with p; = (m—j)ks+% +k,. Here (a), = T'(a+n)/T(a) is the Pochhammer symbol.
4.2 Characteristic polynomial averages for type BC

For a function ¢ on T", we define the value (@)k-F2*3 by

k1,k2,k3 f'll‘" ¢(z)AHo(Z; ki, ko, k3)dz
4.7 ()n T [ AEO(zi ky, ky, k3)dz

The value defined by expression (4.7) is reduced from the average of a function on random
matrices associated with symmetric spaces with BC type root system (recall List 1).
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We consider a polynomial on T" defined by

n
UBC(2; 1) = H(l +22;)(1 + xz]1), ze T, zeC,
j=1
which corresponds to the characteristic polynomial of a (unitary) matrix with eigenvalues
21,27 o 20, 201

Theorem 4.2. The following relation holds:

m ki,k2,k3
(48) <H \IIBC(z;:z:j)> = (.’El ---xm)"P(},I,g)(xl,. .'.,.'L‘m;iéhkg,és),

Jj=1
where parameters k; are defined by relations (4.5).
Proof. We see that

m n
WBC(2; 2,)UBC(2; 1) - - - WBC (25 2,) = (21 -+ - 2pn)" H H(xi +z7 2+ 2.
i=1 j=1 ‘

Using expression (4.4) we have
<‘I,BC(Z; xl)‘IlBC(Z; Tg)--- \I;BC(z; xm)>:hkz,k3
=(zy1*+ Tpm)" Z PO(x1,. .., Tm; k1, ko, ks)(PYO(2; ki, ka, k) ) E1kaks,
AC(mn)
By the orthogonality relation for Jacobi polynomials, we have
1, if A=(0)
PYO(z; ky, ko, kg)ykrkaks = & ’
(B (=i b, by ko) 0, otherwise,
and we thus obtain the theorem. O
Corollary 4.3. Let

m—1 \/7_1:
F(m; ka, ko, k3) = H 2k1+2k2+iks =11 (kg + ko + ’;’ + jks)

j=0
The m-th moment of UBC(z; 1) is given by

m—1

<\I’BC(Z' 1)m>k1,kz,k3 — .7"(m 791 ;72 Eg) H P(n + if:']_."f' 2’2’2 + ]]%3)1-‘(7?: + 1‘6‘.1 + Ez + % +.]E3) .
" ico T(n+ 84+ k+2EP(n+ & + &y + k)

Moreover,

‘I’BC z;l m k1,k2,k3
lim< (z1) >"

n—00 pm(k1+kz)+5m(m—1)ks

= f(m) I’;l, ’;27 E3)'

Proof. The proof follows from Theorem 4.2 and expression (4.6). |
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5 Random characteristic polynomial averages

We consider random matrix ensembles associated with classical groups and compact sym-
metric spaces (see [Du]). Our goal is to express the average of characteristic polynomials
on each ensemble as a Jack polynomial or as a Jacobi polynomial. Note that while our
results for classical groups have previously been presented in [CFKRS1, BGJ, the results
for symmetric spaces have not, to our knowledge, appeared in any previous studies.

5.1 U(n) — type A

Consider the unitary group U(n) with the normalized Haar measure. (Recall §2.1.) This
space has a simple root system of type A. The corresponding pdf for eigenvalues 21, ..., 2,
of M € U(n) is proportional to

AJ”k(z; 1) = H IZ,r - Zjlz.
1<i<j<n

This random matrix ensemble is well known, and is called the circular unitary ensemble
(CUE).

For complex numbers z1, ..., 1k, it follows from Theorem 3.2 that ([CFKRS1] and
[BG, Proposition 4))

L K
<H det(l +z;'M™1). Hdet(I + :r:L+,,-M)>
U(n)

i=1 =1

L K
= <H A (27 2 H ‘I’A(z§$L+i)> Hfb‘a + 8(nt)(T1, -+, TL4K)-
i=1 =1

n,2

In addition, from Corollary 3.3 we obtain ([KS1, BG])

m n+]+m)‘ n->oom
(I det(I + EMDP™Y, | = H S H (,+m)'

for any £ € T.

5.2 U(n)/O(n) — type A I
Let SA¥(n) be the set of all symmetric matrices in U(n):
SAl(n) ;= {M € U(n) | M is symmetric}.
Then SA!(n) is the ensemble associated with the symmetric space U(n)/O(n):

S41(n) 2 U(n)/O(n).
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The corresponding pdf for eigenvalues z, .. ., z, of M € S!(n) is proportional to A’ (z; 2) =
Hl <i<j<n |%—%;|- This random matrix ensemble is called the circular orthogonal ensemble
(COE). We have

L K
<H det(] +z; M) - T] det(I + a:L+,-M)>
SAl(n)

=1 t=1

L
<H\IIA(z'1, -1 H\IIA(z Tr4q > =[]z Pl (1, ..., 2043 1/2).
n,l

=1 =1

For £ € T, we obtain ([KS1])

. . m-—1 .
(Idet(I-i-EM)I’"‘)sM(,,) H (23 + D!(n+2m + 25 +1)! N H (25 + 1) . pm?

@m+2j+Dn+2+1)! " 14 @m+2j+ 1)

5.3 U(2n)/Sp(2n) — type A II
Let

SA(n):={M e U(2n) | M = JIMTJT}, |
where J = (% ) and MT stands for the transposed matrix of M. Then SAU(n)
U(2n)/Sp(2n). This random matrix ensemble is called the circular symplectic ensemble

(CSE). The eigenvalues of M € SAM(n) are of the form z), 21, 22, 22, . . . , 2n, Zn, and so the
characteristic polynomial is given as

n

det(] +zM) = [J(1 + 22;)% = ¥4 (2; 2)?.

Jj=1
The corresponding pdf for zy, ..., 2, is proportional to A’*(z;1/2) =[], <j<n |% - z;|4.
We have » T
L K
<H det(l +z;'M~1)/2 . T] det(Z + :cL+,-M)1/2>
i=1 i=1 SAll(n)

i=1 i=1 t=1

K L
<H‘I’A(z ;?1)'H‘I’A(z;$z.+i)> =[[z" P21, ... 2043 2).
n,4

)

For £ € T, we obtain

2m?

2ﬁ1 r(f—l)r(n +m+ 3 2m

(et + M sunn = 1L T T+ 50) ~ G- D7 TP 0"
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54 SO(2n+1) — type B

Consider the special orthogonal group SO(2n + 1). An element M in SO(2n + 1) is
an orthogonal matrix in SL(2n + 1, R), with eigenvalues given by 21,27, , 25,273, 1.
The pdf for 21, 22, ..., 2, is proportional to AH®(z;1,0,1), and it therefore follows from
Theorem 4.2 that ([CFKRS1] and [BG, Proposition 16))

<H det(I + a:,-M)>
i=1 50(2n+1)
m m 1,0,1 m
= H(l + i) - <H UPC(2; 33:‘)> = Ha:?(l +2;) - Py (@1, -+ -1 Tm3; 1,0, 1).

i=1 i=1 n i=1

Here PJO(z),...,7m;1,0,1) is the irreducible character of SO(2m + 1) associated with
the partition A. Corollary 4.3 and a simple calculation lead to ([KS2, BG])

m—1

2m |
(det(I + M)™)s00n41) = 2" ,I=Io 29(2] 1(217)ln+ 1*2(321:r f)y +1) H,-1(22; —y
5.5 Sp(2n) - type C
Consider the symplectic group

Sp(2n) = {M € U(2n) | MIMT = J},
where J = (% & ). The eigenvalues are given by 21, 27", , 2n, 2; . The corresponding

pdf of 2y, 2,,..., 2, is proportional to AH°(2;0,1,1) and therefore we have ([CFKRSl]
and [BG, Propos1t10n 11])

m 0,1,1 m
<Hdet(I+z,~M)> <H\IIBC(z w,)> =[]z PES)(z1,- .-, 2m; 0, 1,1).
Sp(2n)

i=1 i=1 n i=1

Here Pf°(z,,...,2m;0,1,1) is the irreducible character of Sp(2m) associated with the
partition A\. We obtain ([KS2, BG])

m—1

T'(2n+2j +3) 1 3/24+m/2
det(I + M)™ = : : : ~ : L™ /2m2,
{det( )" sp(am) J]-;Io 2. (25 + W T@2n+5+2) [l (25 — 1!
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5.6 SO(2n) — type D

Consider the special orthogonal group SO(2n). The eigenvalues of a matrix M € SO(2n)
are of the form 2y, 27, -+ , 2y, 2 —1. The corresponding pdf of 2, 23, . .., 2, is proportional
to AHO(2:0,0,1), and therefore we have ([CFKRS1] and [BG, Proposntion 13])

m 0,01
<Hdet(1+x,-M)> <H ¥BC(2; x,)> =[]=F PE2) (21 ., 2mi 0,0, 1).
S0(2n)

=1 i=1 i=1

Here PHO(zy,...,2;0,0,1) is simply the irreducible character of O(2m) (not SO(2m))
- associated with the partition \. We have ([KS2, BG])

m 2n + 2]) 2m m2/2—-m/2
(det(I + M)™)so(an) = H %-T(25 ~ DN T(2n+7) T(2j — I n .

]—1

5.7 U@2n+r)/(Un+r)xU(n)) — type A III
Let 7 be a nonnegative integer and let

ATII — — 1. (Intr O H € U(2n + r) is Hermitian
G* " (n,r) = {M =H ( o ~In ) of signature (n +r,n) :

Then GAM(n,r) 2 U(2n +r)/(U(n + ) x U(n)), see [Du]. The eigenvalues of a matrix
M € GAM(n,r) C U(2n + ) are of the form

(5.1) z,20 2,2, 1,100, 1

r
The corresponding pdf of 21, 23, ..., 2, is proportional to AHO(z;r,1,1), and therefore we
have

m
<H det(I + wiM)>
GAUI(n )

i=1

3l m
1
- BC(,,. . - . e =
I I(l +z;)" <| I v (z,x,)> = ,-I=I1(1 + 2;)"x? - (nm)(xl, ) ZTmi T 5 1).

=1 n

We obtain
<det(I + M)m)GAm(n,r) =2 <‘I’BC(Z; 1)>:§’1

7{""/2 m—1

_ H Dn+r+j+ 1) ™2 3 /2rm
[T 29(r + A i Tn+ IHENT(n + 23 + 1) ™ omm-1)/2 [T (r + 4)! '
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5.8 0O2n+r)/(O(n+r)xO(n)) —type BD I

Let r be a nonnegative integer and let

BDI _ _ Ingr O H € O(2n + r) is symmetric
G (n,r) = {M =H- ( o —In) of signature (n + r,n) )

Then GBPl(n,7) = O(2n + r)/(O(n + r) x O(n)). The eigenvalues of a matrix M €
GPPl(n,r) C O(2n + ) are of the form (5.1). The corresponding pdf of 21, 23, .. ., 2, is

proportional to AHO(z;£,0,1), and therefore we have

<H det(7 + a:,-M)>
GBDI(n,r)

i=1
m m 50 m
=[Ja+=z)- <H \IIBC(z;x,-)> = [[ +z) e} - P2y (21, Zmi T, 1,2).
i=1 =1 n i=1

We obtain

(det(I -+ M)m)GBDl('n,T)

o ﬁl : T(2n + 45 + 2r + 3) N gmr T
o U145+ 2r + I T (2n+ 25 + 7 + 2) 1‘[;.";0‘ (47 + 2r + 1)
5.9 Sp(2n)/U(n) — type C 1
Let H € U(2n) is Hermiti
Cl — —J.(In O n) is Hermitian
§7(n) = {M_H (6 7.) l and JH = —HJ

Then S€!(n) C Sp(2n) and S€Y(n) = Sp(2n)/U(n) = Sp(2n)/(Sp(2n) N SO(2n)). The
eigenvalues of a matrix M € S€'(n) are of the form z;, 27, , zn, 2;1. The correspond-
ing pdf of 21,22, ..., 2n is proportional to AHO(2;0, 1, 1), and therefore we have

m m 0’%’% m

<H det(I + x,-M)> = <H UBC(2; xi)> = Hx? . P(’f,g)(xl, veeyTm;0,2,2).

i=1 SCI(n) i=1 n i=1

We obtain
T (425 +3)(2n +4j +5) 1 e

(det(I + M)™)sciiny = ]
=0

2724 + )N T(2n+2j +4) 271 (4 — DI
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5.10 Sp(4n +2r)/(Sp(2n + 2r) x Sp(2n)) — type C II

Let r be a nonnegative integer and let

clI _ atrn O H € Sp(4n + 2r) is Hermitian
G (’n,’r) = {M H. ( o I:H_,_n) I of signature (n +r,n)

with I, = ("¢ 9 ). Then G°"(n,r) C Sp(4n + 2r) and G°"(n,r) & Sp(4n +
2r)/(Sp(2n + 2r) x Sp(2n)). The eigenvalues of a matrix M € GC!(n,r) are of the form

-1 -1 -1 -1
Z1,21,2] 121 50t 1 ¥y 2ny %0 3%p 31,01
T

r

The corresponding pdf of 2, 2o, ..., 2, is proportional to AHC(z;2r, %, 2), and therefore
we have

<H det(I + m,-M)l/2>
GC Il(n’,.)

i=1

[
s

m 2r,%,2
(14 z)" <H UBC(2; a:,-)>

i=1 i=1 n

r n 11
(14 z;)"z? - (,,,..)(:vl, ,:L'm,'r,4,2).

s

i=1

We obtain
gdmr+m?+m 4':‘ [(n+r+ 2L
(det(] + M)'")gcn(n,r) =Trm-1,4. nooTem 3 ( i 4:1._1_ i
[T @i+4r+ D! [LET(n+5+ D0+ + 1)
94mr+m?+m .
m+4+2mr

T ) + 4r + )1

5.11 SO(4n+2)/U(2n+ 1) — type D III-odd

Let
SPIl(n) = {M € SO(2n) | MJ is dexter skewsymmetric} .

We omit a definition of a dexter matrix here, but the details may be found in [Du]. We have
that SPM(n) c SO(2n) and SPM(n) = SO(2n)/(SO(2n) N Sp(2n)) = SO(2n)/U(n).

Consider SP™(2n+1). This set is a “half” of {M € SO(2n) | MJ is skewsymmetric}.
The eigenvalues of a matrix M € SPM(2n 4+ 1) € SO(4n + 2) are of the form

-1 -1
21,31,21 azl y" " 9%n, 20y 2 ,Zn 71 1.
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The corresponding pdf of 21, 22, ..., 2, is proportional to A¥9(2;2,1,2) and therefore we
have

—1s

(1+ ) <ﬁ ‘I’Bc(z;xi)> B

m
<Hdet(l+x.-M)1/2> =
=1 SDUI(2p41) =1 =1 n

11
(1 + CL‘,)ZD? . P(},I,g)(ivl, ooy Ty 1, L 'é')

s

=1

We obtain

om+5m ﬁ T(n+i+3(n+1)
[Tl —D! 22T+ HM(n+1+3)

ij=

(det(I + M ™) spizas1y =

2m2+5m
T2, (45 — D

5.12 SO(4n)/U(2n) — type D IIl-even

Consider SP™(2n). Since all skewsymmetric matrices of even size are dexter, we have

2
,nm +m

SPM(9n) = {M € SO{4n) | MJ is skewsymmetric} .

The eigenvalues of the matrix M € SP(2n) c SO(4n) are of the form

-1 _-1 -1 -1
21921421 121 s 90y %y Ry 9%y .

1

The corresponding pdf of 21, 22, . . ., 2, is proportional to A#°(z;0, 1,

have

m 7 m 0‘%’2 | 1 1
<H det(I+x,-M)1/2> = <H \Ich(z;a:i)> =P(I;I,9.)($17---,xm;0’_27'2")'
SD1i1(2n)

i=1 i=1 n

2) and therefore we

Hence we obtain

2m’+m 2m-—1 I‘(n + 1 + l)l‘(n + J;l)
(det(I + M)™) - 1+ JTnt 3
SPHem T s (45 - DN H T(n+ Z5)T(n + &)
2m2+m

. ,m2—m

I/ (45 — 1
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6 Conclusions and related works

6.1 Conclusion

We have considered random matrix ensembles S associated with classical groups and
compact symmetric spaces.

The pdf for the eigenvalues in S is given by A¥8*(z;2/8) or AHO(z; ki, ky, k3), where
B or (ky, ko, k3) are “parameter(s)” tabulated in List 2. We have proved that the average
of the product of characteristic polynomials on S is given by a simple factor times a
Jack polynomial or Jacobi polynomial with a rectangular-shaped partition, and with
corresponding “dual parameter(s)”.

type matrix set S parameter(s) dual parameter(s)
A (CUE) Un) B=2(a=1) Bl2=1/a=1
A 1 (COE) SA(n) B=1(a=2) B/2=1/a=1/2
A 1I (CSE) SA(n) B=4(a=1/2) B/2=1/a=2
B SO(2n+ 1) (kl,k2,k3) = (1,0, 1) (k1,k’2,k3) (1 0 1)
C Sp(2n) (K1, k2, k3) = (0,1,1) | (K1, ko k3) = (0,1,1)
LiSt 2. D So(zn) (kla k2, k3) = (Oa 0, 1) (kl, k'b k3) (0’ Ov 1)
AIll-r GAHI(TL, ’f') (kl, kz, k3) = (T‘, %, 1) (kl, kg, ka) (7‘, %, 1)
BDI-r G’BDI(n,r) (kl,kz,k;;) = (%,0, %) (k‘l,kz,k;;) = (T,l 2)
CI SCI(n) (kl, kg, ks) = (0, %, %) (k}1, kz, k3) (0 2 2)
CIl-r GCII(TL, 7‘) (kl,kg, k3) = (2’!‘, 2,2) (kl, k2, k3) = (7’, 4, 2)
D 11 - odd | SP™ (20 + 1) | (ky, ko, ks) = (2, 2,2) | (K1, ko, ka) = (1, 4, I
DIII-even | SPU(2n) (K1, k2, k3) = (0,%,2) | (ku, ks, k3) = (0,15, 1)

6.2 Explicit expansions for the averages

Consider classical groups. Then the average of the product of characteristic polynomials
is given by an irreducible character. Corresponding irreducible characters have determi-
nantal expressions (Weyl’s character formula) and hence, via the Laplace expansion for
determinants, we obtained the explicit expansion of the average. For example, the average
on U(n) is given by expression (2.4). See [CFKRS1, BG].

The author could not obtain any similar expressions for symmetric spaces, because
Jack and Jacobi polynomials with general parameters do not have determinantal (determinant-
like) expressions.
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6.3 Ratio cases

For classical groups G, the averages of the ratios of characteristic polynomials are calcu-
lated in [CFS, BG, HPZ]. For example, for Sp(2n), we have that

<H;"=1 det(I + z;M) >
1

i €
_ Z ﬁ L-e) [T i O — 2 ws)
= , — .
(€1,emem)E{£1}™ G=1 ’ Hlsisjgm(l - z;'7}) H1g<jgt(1 — ¥%i¥5)
However, the problem of calculating the averages of the ratios over symmetric spaces
remains open.

6.4 Hermitian matrices

We have considered unitary matrices. Results for the case of Hermitian matrices (GUE
etc.) are seen in [BH] and the references of [BG].

6.5 Exceptional Lie groups

Consider the exceptional Lie groups Eg, E7, Eg, Fy, Go. These groups can not be realized
in matrix groups, so our problem is not formulated directly. Keating, Linden, and Rudnick
[KLR] studied unitary matrix representations of these groups. Given a unitary matrix
representation p : G — U(n) of the compact Lie group G, we can define the characteristic
polynomial average

fG | det(I + zp(g))|™dg,

where dg is the Haar measure on G. In [KLR], the average is calculated only for the cases
with 7- and 14-dimensional representations of G, and with z = 1. Other cases are open
problems.

6.6 Corresponding zeta functions

As we have seen in §2 (also [KS1, KS2, CFKRS1, CFKRS2]), the characteristic polynomial
averages for the classical groups are closely related to L-functions. In addition, the average
for the exceptional group Go (§6.5) corresponds to the zeta function over finite fields
[KLR].

How about symmetric spaces? As far as the author knows, the corresponding zeta
functions associated with symmetric spaces have not been found (even for the much-
studied COE). Farmer, Mezzadri and Snaith [FMS] suggest that if the zeta function
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associated with the COE (type A I) exists, it should have the functional equation but no
Euler product.

6.7 Study due to Yor et al.

Bourgade, Hughes, Nikeghbali, and Yor [BHNY] propose a probabilistic approach to the
characteristic polynomial averages over the unitary group. They proved the following
statement by such a probabilistic approach: Let Z,, := det(I,—M), where M is distributed
with the Haar measure on U(n). Then,

in the limit as n — oo, where A, and N, are independent standard normal variables.
This statement has previously been derived by Keating and Snaith [KS1] using Selberg’s
integrals.

Acknowledgement: The author is grateful to Professor J. P. Keating for bringing to the
author’s attention the papers [FMS, KLR] (by e-mail).
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