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Abstract

The extremely precise conjecture of Keating-Snaith about the asymp-
totics of the moments of the Riemann Zeta function on the critical line,
as the height T tends to +o0 is presented, together with some striking
similarities between the Riemann Zeta asymptotics, as T' — oo, and
asymptotics about the generic matrix Ay on the unitary group Uy,
as N — oo. Explicit Mellin-Fourier computations done by Keating-
Snaith about (Ay) are interpreted probabilistically. Further heuristics
for the (KS) conjecture are also discussed. '

1 The Keating-Snaith conjecture

(1.1) The importance of the Riemann Hypothesis:

(RH)

All non-trivial zeros of the Zeta function .
(¢(s); s € C\ {1}) lie on the critical line: Re (8) = 3

justifies the intensive studies which keep being developed about the
behavior of {C (-;— + it) ;t € ]R}.



128

In particular, (RH) implies the (still unproven) Lindelsf hypothesis:
<(5+¢)
for any € > 0.

This conjecture can be shown to be equivalent to another one, relative
to the moments of ¢ on the critical line, namely: for every k € N,

=0(t%), t = o0

2k

= 0(T%), as T — o0

T
Iu(T) %.‘if-lz-, [ ds lc (%+is)

again for any € > 0.
Until now, it has been shown rigorously that:

e L(T) ol logT; [Hardy-Littlewood (1918)]
1
o B(T) ~ 5—(log T)*; [Ingham (1926)]

(1.2) These two results, together with a number of other arguments
led Keating-Snaith [5] to formulate the extremely precise conjecture

(KS) Vk €N, I(T) ~ Hp(k)Hy(k)(logT)*

where Hp(k) is a factor which takes care of the "arithmetic" of the set
of primes P, while Hyat(k) is a factor which takes more into account
some hidden randomness and is associated with some asymptotics, as
N — oo, of the characteristic polynomial

Z(AN,0) = det (IN - ANe-ie)

where Ay is the generic unitary matrix, distributed with the Haar
probability measure on Uy.
(1.3) The remainder of this Note is organized as follows:

e in Section 2, two strikingly similar results between asymptotics
for:

* on one hand, the Riemann Zeta function, on the critical line,
as the height T tends to +o0;

* on the other hand, (Ay) asymptotics, as N — oo,
are presented;

e in Section 3, explicit computations of Keating-Snaith related to
(An) are discussed;



e in Section 4, I shall come back to the Keating-Snaith conjec-
ture, and present some attempt by Gonek-Hughes-Keating [3] to
"justify" the conjecture from a purely Riemann Zeta function
perspective.

Convention: When discussing some points pertaining to the Riemann

Zeta function, I shall use a box meaning Number Theory, whereas
when discussing some point about Random Matrix Theory, I shall use

[RMT]

2 Similarities between Riemann Zeta
asymptotics, as T' — oo, and (Ay) asymp-
totics, as N — oo

(2.1) The pair correlation laws of H. Montgomery (:NT) and F. Dyson

(:RMT)

For simplicity of exposition, let us assume here the validity of
the Riemann hypothesis, and write all non-trivial roots of the Zeta
function as:

—2-:I:it,.,0<t1<t2<---<tn<---

Let w, = o o
the prime number theorem is that, denoting: N(W) = fi{n;wn, < W},

then:
NwW)
w W—ooo _
As a further step, the following quantities have been considered:

_&;ﬂ{(wmwm) € [0, W% a < wn — wm < B}

and, more generally, for a generic function f:

R W)= 3 flwj—wy)

wj,w<W

tn log (-t-'l) ; then, a key step towards an analytical proof of

Then, there is the following

Theorem 1. (H. Montgomery [6]; 1973)

Define f('r) = / o dz f(x) exp(2inrz); then, if supp(f) C [-1,+1],
there is the lz'mitgr‘:; result:

+00
Ra(f, W) e /; dzx f(z)Rs(z), where Ra(z) =1 — ( —
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Furthermore, H. Montgomery has conjectured that this result holds
true even if f does not have compact support, but this is still open.

IRMT' We now recall the strikingly similar result due to F. Dyson
[2], about the pair correlation for the eigenvalues of Ay € U(N); de-
noting these eigenvalues by their arguments: (6;,62,--- ,0y), taking

N
values in [0, 27[, we let: ¢, = Eﬂn. Then, F. Dyson’s result is:

1
= /U oy 00 (A ); 2 < — 6 < B}

¥ . 2
— / d (1 - (——-sm(")> )
N—oo J, T
(2.2) The central limit theorems of A. Selberg (:NT) and Keating-Snaith
(:RMT)

A. Selberg [7] proved the following result:

[ log¢ (3 +it) o [ 8y (-£522)
T 1loglogT T—’oo 2

where T' is any bounded regular Borel set in C, ie: I is negligible
for Lebesgue measure. This result translates as follows in probabilistic
terms: if one considers, on the probability space (u(€ [1,2]),du) the

variables:
log¢ (5 + zuT)

V3 1 log(log T)

then Selberg’s result states that L1 converges in distribution to N =
- Nj + iN3, where N7 and N; are two standard independent, centered,
variance 1, Gaussian variables.

I discuss a multidimensional extension of Selberg’s theorem in note C.

Lr(u) =

For 6 € [0, 27|, and A distributed with the Haar measure uy(n),
consider '

N
Z(A, 0) = det(IN - Ae-‘w) = H(l _ ei(an—a)) ’

n=1

where (e, .- - ,€¥) are the eigenvalues of A.
Then, Keating-Snaith [5] have proven:

:z:2+y2)

/ . )duU(N)(A) {%&%er} Frand / / dody P(- 5
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where again, I' is a regular bounded Borel set in C.
Formally, this result resembles Selberg’s, when one takes: T = exp(N)
(or, more generally, exp(N?)).

3 Explicit results of Keating-Snaith about
the law of Zy, which lead to an interpre-
tation of Zy as a product of independent
variables.

(3.1) Keating-Snaith [5] were able to calculate the generating func-
tion of the characteristic polynomial Z(A,#), when A is distributed
according to the Haar measure uy(n)(dA) (consequently, by rotational
invariance, the law of Z(A, §) does not depend on 8); precisely:

E(|Zn(A,0)[ exp(is arg Zn(4,0))]

N : .

mlU+5)r(+5%)

which yields, in particular, taking s = 0:

@ E(Zn(A,0)*] ~  Hua(R)N*,
where, thanks to the asymptotics of the gamma function:
k-1 jt
Hgai(k) = —_—
(3) Mat( ) J=1—I1 (J + k)!

Note that it is this constant Hpsei(k) which is featured in the state-
ment of the KS conjecture, presented in Section 1.

(3.2) We now give some indications about some representations of
Zn(A,6) as a product of independent random variables; this may be
done purely by interpreting formula (1) in terms of beta and gamma
variables, or, independently from (1), by constructing the Haar mea-
sure uy(N) in a recursive manner.

o A beta-gamma interpretation of (1)

For simplicity, let us only consider s = 0 in (1), so that (1) now ex-
presses the Mellin transform of |Zy(A4,0)|. It is immediate, from the
expression of the Mellin transform of a «; variable, that is: a gamma
variable with parameter j whose density is:

P(yje dt) ti—le?
d  T(@)
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that (1) yields:

N (law)
(4) [1v =" 12~ H(*mr,)2

j=1 =1

where all the random variables in sight are assumed independent.

« A recursive construction of the Haar measures uy ()

This recursive construction, which is lifted here from [1], yields, as a
consequence, the following stochastic representation of Zn:

(law) 777 . .0 :
(5) zy =" [J+e®*(Brr-1)7),
k=1 :

where, on the RHS, the 6i’s are independent uniforms on [0, 27|, in-

dependent of the beta variables with indicated parameters. We recall:

ua—l(l - u)b-—l
B(a, b)

P(Bap € du) = du (O<u<1l)

We leave to the interested reader the task of verifying that (5) implies
(4).

I now explain the recursive construction, and how (5) follows from it.
a) Let M € Uy such that its first column M; is uniformly distributed
on the unit complex sphere:

S¥1={(ct,....en) €CV P +... +en]2 =1}

Then, if Ay_1 € Un_1 is chosen independently of M according to the
Haar measure uy,_,, the matrix:

def 1 0
(©) AN-M(O AN_I)

is distributed with the Haar measure uy, .
b) One easily deduces from (6) that:

(1a.w)

(7) det(IN - A ) (1 - Mu)det(IN 1— ANn- 1)

with M;; and Anx_-; independent.
Since M is uniform (see a) above), one obtains readily that:

(8) My U2 gion (Bun-1)%,

where 6y is uniform on [0, 27|, and independent from G nx-1.
c) By iteration, (7) and (8) imply (5).



4 Further heuristics for the (KS) con-
jecture

A main difficulty inherent to the (KS) conjecture is: how to "see" the
random matrix part in terms of the Riemann Zeta function?

This is the aim of the paper by Gonek-Hughes-Keating [3], which I
only discuss in vague terms:

(i) In [3], the authors "factorize" approximately ¢ (% + it) as:

1\ 1. 1,
C(-2‘+2t> ~ Px (-2-+zt) Zx (-2-+2t) ,

where X is a real parameter, X > 2, and:

Px (% +it) ~ H (1 —p_%_it)'l
peP
p< X

but I need to refer the reader to Theorem 1 of [3] for a precise definition

of Px and Z X.
(ii) The authors make the Splitting Conjecture:

Ik(T9 C) ~ Ik(Ta PX)'-[k(T’ ZX)

when X and T tend to +00, with X = 0((logT)®~¢) and we note:

(T, f) d;f% OT dt‘f (% +it) *

(iii) They prove:

I(T, Px) = Hp(k)(¢" log X)** (1 + O (logIX))

(iv) They conjecture:

logT )k2

Ik(T7 ZX) ~ HMat(k) (6‘7 ].OgX

when X and T tend to oo, with X = 0((log T)%~°) .

% %k %k ok %k k %k ok %k k %k %k ok

Thus, clearly, the conjunction (ii), (iii), and (iv) yields the (KS) con-
jecture.
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Comment: I apologize for this very rough "first aid" treatment of the

(KS) conjecture. Despite quite some evidence, it is really tough to
make NT and RMT meet there, but nonetheless, we are learning a
number of "facts" in one or the other domain, on our way.
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Abstract

The derivative at 1 of the characteristic polynomial of the generic
random matrix valued in SO(2N + 1) is shown to be a product of N
independent beta variables. A similar discussion is done with respect
to the celebrated Selberg distributions.

1 A probabilistic discussion of some re-
sults from N. Snaith

(1.1) For a matrix U € SO(2N + 1), distributed with the Haar mea-
sure:

a) the characteristic polynomial takes the form:

N
AU(eiO) = (1 _ e—ie) H(l _ ei(o,,—o))(l - ei(—e,,-o)) .

n=1
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b) hence, it admits the derivative at € = 1:

n=1

d N . .
v(l) = o [(1 —e) [ - e - e‘”"““)] |

a=0
N . N

H |1 —eifn|2 =2V H(l — cosby)

n=1 n=1

c) N. Snaith ([3], bottom of p. 101) studies the distribution of A}, (1),
starting from its Mellin transform:

N (T3 +s+37) (N +7)
’ 8] __ o2Ns \2 J
W Ar =2 ,1;11( L' (3+4) )(P(8+N+j))

The right-hand side of (1) is easily understood as the Mellin transform
of a product of independent beta variables.
Indeed, recall the "beta-gamma algebra', in its most elementary form:

(1
(2) Ya ?—_—‘_'_v) ﬁa,b°'7a+b ’

where 7, and 7.+ denote two gamma variables, with respective pa-
rameters a and (a+b), and 3, a beta variable with parameters (a, b),
ie: '

to—le~tdt

’ P('Ya.edt):"—i;(_a"')'_',

t>0,
(3) < ua—l(l _ u)b—l
B(a,b)

On the RHS of (2), fap and 7,p are assumed to be independent.
Throughout this paper, products of r.v’s will occur with, unless oth-
erwise mentioned, independent r.v’s.

It follows immediately from the Mellin transform of ~,, which is:

I'(a+s)

du, u € (0,1),

L P(ﬂa,b € du) =

o Bl =+ 820
and from (2) that the Mellin transform of Ba,p is:
I'(a+s
(5) E[(Bap)*] = (—P%;;—) , 820
'%Wfl

Consequently, we deduce from (1) that:

N
(6) Ay(1) = 2 11 Pean-1)
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where, as just indicated, the RHS only involves independent beta vari-
ables.

(1.2) With the help of the Mellin transform (1), N. Snaith [3] obtains
a precise equivalent of the density of Aj;(1), which we shall denote here
by dn(y), near y = 0.

I shall now show how (6) provides this equivalent. For this purpose, I
denote 3; = ﬂ( 144,N-1)’ and its density by (b;(u),u € [0, 1]).

To compute the density dn(y), we may write, for every f: Ry — Ry,
Borel:

B @ ] 5] / dubs (B [ By

i=1 j=2
and the change of variables:

- Y
2N H;v-:z B;
together with Fubini’s theorem, yields the formula:
1 y
(7) on(y) =F [ = b ( = )}
2N Hf-r_-z Bi 22N H;'Y:z Bi

From (3), we deduce:
u1/2(1 _ u)N—3/2

nW="FIv-P

Thus, (7) yields the equivalent:

~3/2
y'/? 2N A,
(8) on(y) ~ o BN E (2 Hﬂj)

The RHS of (8) equals:

_y? o—3N ﬁ E[(B;)~¥?) = g2 F (V)

BAN-D L5 ’
j=2

with:

-3V N B(j-1,N-3})
i =sav—p Usgmiv—

This constant is also easily seen to be equal to:

L'+ N)LQ)

2—3N
BN %rwdﬂ FGEDTG+N =D

f(N) =

which agrees with N. Snaith’s constant given in formula (2.10) in 3].
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2 Extending the discussion to Selberg’s
distributions

[+
Here, we shall call Selberg’s distributions, and denote these by ™) Z,
a,b

the following probabilities on [-1, +1])"V, indexed by a > 0,b > 0, ¢ > 0:
(9)
N

c
(N) Z(dzh ey dTN) = c“'g |A(:c)|2°JI—II(I—:c,-)“"l(l-i-mj)b‘ldzl...dz;v

where C(’) is the normalizing constant given by Selberg’s formula:
(10)

N-1
© _ N _ L'(1+c(14+7)(a+ je)I'(b+ jc)
Cap = 2V[e(N ~1)+a+b-1] ]_IJ) Fl+cl(a+b+ce(N+j~-1))

and

A(x) = H (wJ - xl) ’

1<i<eSN
for .
T = (zj)1<i<N € [-1, +1]N
It seems of interest (and this will allow us to relate the following with N.

Snaith’s results as presented above) to consider the joint distribution
of

(11)
N N
Ox ET[(1-25); DX ET[+2); A@P= [[ (@5-ze)?
j=1 j=1 1<j<t<N
[
under (V) Z
a,b

For this purpose, we may replace in (10), the triplet (a,b,c)
by: (a + s,b+t,c+ u); to begin with, let us take u = 0.
Then, we obtain:

(12) @ Z{U X) (DX} = 2V H(
j=0

<I>(N)(a +8,b+t, c))
W™
j (a'v b) C)
F(a+ je)T'(b+ jc
where: ") (a,b,c) = T(a i by c)(N( +j —)1))

Recall again that the Mellin transform of a gamma variable is given
by:

Bl(1)'] = —rs
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Then, we can interpret (12) as follows:

s+t
1 1 ¢
E (H ’Ya+b+0(N+.1-—1)) (2N( )X> (-2'-1\7(+)X)]
j=0

[N-
= E|]] (~,a+,-c)’(7,,+,-c)‘]
j=0

with all gamma variables independent between themselves, and inde-
pendent of the pair (( )X, (M X ); thus, with the same notation, and
(X, ) X) being still considered under V) 3°5 ,, we see that:

N-1
(H ’Ya+b+c(N+J-1)) —(( )X +) X)

j=0
- N-1
la
(13) (=_‘;V) (H Ya+jes H 'Yb+jc)
j=0 j=0

To simplify formula (13), we now use the beta-gamma algebra as fol-
lows:

(law)

(’I‘) ('Ya+.1c, ’7b+,1c) = (ﬂa+jc,b+]c’7a+b+2jc’ (1- ﬂa+.1c,b+1c)7a+b+2_1c)

law)
() Ya+b+25¢ Ga) Bat+b+2je,c(N—=1)—7)) Ya+b+c((N—1)+5)

Importing ("K) and (f) on the RHS of (13), we obtain, after simplifi-
cation of both sides by:

N-1

H Ya+b+c(N+j—1)

j=0
the identity in law:

1 7N

1 (law)
(14) -2_5’-(( )X’ (+)X) = ( H 'B a+jc,b+jc® 'Ba(-JI-37+2jc,C((N—1)—J') !
j=0

N-1 .
H (1 ﬂa+,1c,b+jc)'ﬁagLZjC,c((N—l)“j))
j=0

 From this identity (14), we may derive quite a& number of consequences:
a) with the help of the identity in law (which is easily derived from
(2)):

(la.w)

,Ba,b ﬁa+b c Ba+b,c ’
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we obtain:
1 (law)

() ov X H ) sesbe(N-1)
1 (law)

(8) 9N (+)X H Jc,a+C(N 1)

(o]
Note the remarkable feature from (¢)): although under ™))", the
a,b
components (1 — z;) are not independent, their product (=) X may be
written as a product of independent beta variables; of course, we may

make the same remark concerning (+) X.
b) Going back to (14), we also note that:

(15) E_&’; (law) NHI 1(1.‘2,1(: b+jc
=0 (1= Bsepric)
which, again, from the beta—gamma algebra, may be written as:
(%) 2_3_; (law) H%oi 7¢Z-§Jc
=0 Tb+je

where, here, on the RHS, the numerator and denominator are inde-
pendent.

Thus, similarly to the remark in a) above, although under (N) z these
a,b

variables ()X and (!)X are not independent, their ratio may be ex-

pressed as a ratio of independent variables.

c) The previous identities, e.g: (13) in particular, may also be used in

order to obtain a recurrence relation between the laws of

(O xW) #) x(N)y and (I XD-D ) X (V-1

(the parameters a and b may vary, but ¢ remains fixed throughout).

3 From Selberg’s generalized beta dis-
tributions to Selberg’s generalized gamma
distributions

(3.1) We first make an elementary change of variables in formula (9),
i.e: ; = 1 — 2y, so that now y; takes values in [0,1]. We denote by
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v )iz’b, the image of (V) 3 _ap obtained from this change of variables

Thus:
(16)
N 1 al 1 b—1
WY @, dyn) = = 18w [ ] ((yj)“‘ (1—55)”" dyj)
’ Cap =1
_ (@)
where C((:g = a,b

oN[e(N-1)+a+5-1] '
To summarize the main result of Section 2, we simply write:

—_—C
under (V) Za b

N N-1
def b j
(17) Yv S | I y; is distributed as: I I ,Bﬁjc’b +e(N—1)
j=1 j=0

(3.2) We now wish to develop a similar discussion, when the beta
variables are replaced by gamma ones. For this purpose, let us note

that:
(law)

%= (bBap) (L)
so that, letting b — 0o, we obtain:

(law)

bﬂa,b b?o)o Ya

This remark allows to introduce the probabilities:

AW T, ot v,
MTS (dys, -, dyn) = I1(3+Z)| T[] @2 e ¥dy;)
a I1=1

where: D9 = E[|A(Y{;j < N)|*] and the result (17) now becomes:

N N-1
(18) under MT¢, Yy o Hy_,- is distributed as: H 'ygzjc
. Jj=1 3=0

4 Final comments

(4.1) Prior to her paper [3], N. Snaith wrote [4], in which she calcu-
lated the Mellin transform of the nt* derivative of the characteristic
polynomial averaged over the subset of matrices with n eigenvalues
conditioned to lie at 1.

Again, as in the present discussion, the result can be interpreted in



terms of a product of independent variables.

(4.2) A crucial ingredient in N. Snaith’s calculations is the use of the
Selberg integrals; however, with the help of recursive constructions of
the Haar measures, as the dimension increases, representations of the
variables of interest as products of independent variables arise natu-
rally. See [2] for a first development of this viewpoint, and P. Bourgade
[1] for a more complete picture. '

(4.3) The present discussion is much more modest, as it simply exploits
the beta-gamma algebra in order to interpret a number of results due
to N. Snaith, and obtained with analytic methods. For more in the
same vein, see Yor [5].
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Abstract

Looking for a process version of the central limit theorem of Selberg
for the logarithm of the Riemann Zeta function produces only "to-
tal disorder", and not a reasonable stochastic process. A number of
comments about this result are made.
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A well-known result of Selberg [2] states that the classical continu-
ous determination of the logarithm of the Riemann Zeta function is
asymptotically normally distributed, in the sense that, if I' is a regular
Borel measurable subset of C, then:
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where 14} is the indicator of A, and regular means that the boundary
of I has 0 Lebesgue measure.

If we let :

log (3 + 1uN?*)

LA(N,") = m



then Selberg’s result may be stated as:
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where G, = G(Al) +iG&2) is a complex valued Gaussian random variable

with mean 0 and variance (3), ie: Gf\l) and Gf\z) are independent,

centered, and: \
E(GP)) = EIGPY=5 -

It is now a natural question, at least from a probabilistic standpoint,
to look for an asymptotic distribution of the vectors (considered as
r.v’s on ([1,2],du)) (L (N,-)y..., Ly (N,)) for0< A1 <A <... <
A < 00.

This question has been resolved as follows:

Theorem 1. ([1]): For 0 < A1 < A2 < ... < Ax < 00, and for every
(Fjaj < k) regular,

2 k
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The remainder of this Note shall consist in commenting about this
result.

Comment 1. a) If (D) = Dg‘l) + z'Dgz),/\ > 0) is a totally disor-
dered complex valued Gaussian process, meaning that (Df\l),/\ > 0)

and (Df\2), A > 0) are two independent Gaussian processes all of whose
coordinates are independent, with

E[(DM)?) = E[(DP)) =

(] I

then the quantity on the RHS of (3) is:
P(Dy, €T1,...,Dy, € k)

b) The totally disordered real-valued Gaussian process (Di, A > 0)
barely deserves the name of "process”, as it does not admit any mea-
surable version (D)); indeed, if so, by Fubini, this version would sat-

isfy: ,
/ DydA =0, a.s.,
a

hence: 5; = 0, d\dP, which is absurd.
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Comment 2. a) In [1], Theorem 1 is proven using the method of
moments, following carefully and adapting Selberg’s original arguments
to our multidimensional study.

It might be interesting to be able to use another method, i.e: the char-
acteristic function method of Paul Lévy.

b) The method of moments was used in the original proof by Kallianpur-
Robbins of the following result:

@ oor |, 4520 &2 (%7)e,

where: (Zs,8 > 0) denotes planar Brownian motion,

e f:C — R is bounded, with compact support; f = / dzdy f(x,y) ;
C

e e is a standard exponential variable.

However, "more Brownian" techniques allow to prove (4) via asymp-
totics of one-dimensional Brownian local times, and also - unlike the
present study - to obtain an interesting process result when replacing
T in (4) by N?, for A\ > 0. (For details, see, e.g., [8], Chap. XIIL)
Thus, in this way, log (¢ (3 + it)) is more wildly random than Brow-
nian motion.
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