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1. INTRODUCTION
This article is based on the joint work [12] with Prof. Hideo Kubo

(Osaka University).
We consider the Cauchy problem for the following system of semi-

linear wave equations:

(1.1) $\square u_{i}(:=(\partial_{t}^{2}-\Delta_{x})u_{i})=F_{i}(\partial u)$ in $(0, \infty)\cross \mathbb{R}^{3}(1\leq i\leq N)$

with small initial data

(1.2) $u=\epsilon f$ and $\partial_{t}u=\epsilon g$ at $t=0$ ,

where $u=(u_{j})_{1\leq i\leq N}$ , and $\partial u=(\partial_{a}u_{j})_{0\leq a\leq 3,1\leq 1\leq N}$. Here we have set
$\partial_{0}=\partial_{t}$ and $\partial_{k}=\partial_{x_{k}}(k=1,2,3)$ . $\epsilon$ is a small and positive parameter.
We suppose

(1.3) $F(\partial u)=(F_{i}(\partial u))_{1\leq i\leq N}=O(|\partial u|^{2})$ near $\partial u=0$ .

The contents of this article can be extended to the quasi-linear case
with nonlinearity of higher order depending also on $u$ as well as its
derivatives, but for the sake of simplicity, we restrict our statement to
the above semilinear system (1.1).

We are interested in global existence of classical solutions for small
initial data, because some solutions blow up in finite time no matter
how small $\epsilon$ is. In fact, John [8] considered

(1.4) $\square u=(\partial_{t}u)^{2}$ in $(0, \infty)\cross \mathbb{R}^{3}$

with initial data (1.2), and showed that there exist $f$ and $g\in C_{0}^{\infty}(\mathbb{R}^{3})$

such that the solution to $(1.4)-(1.2)$ blows up in finite time for any $\epsilon>$

$0$ . Hence we have to impose some special condition on nonlinearity to
get global existence of small solutions. The null condition, introduced
by Klainerman [15], is one of such conditions:
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Definition 1.1 (The null condition). We say that $F=(F_{i})_{1\leq t\leq N}$

satisfies the null condition, if each $F_{i}(1\leq i\leq N)$ satisfies
$F_{i}^{(2)}((\omega_{a}\mu_{j})_{0\leq a\leq 3,1\leq j\leq N})=0$

for any $\mu=(\mu_{j})_{1<j\leq N}\in \mathbb{R}^{N}$ , and any $\omega=(\omega_{1},\omega_{2},\omega_{3})\in S^{2}$ with
$\omega_{0}=-1_{f}$ where $F_{i}^{(\overline{2)}}$ denotes the quadratic part of $F_{i}$ , namely we have
$F(\partial u)-F^{(2)}(\partial u)=O(|\partial u|^{3})$ around $\partial u=0$ .

The null condition is associated with the null forms $Q_{0}$ and $Q_{ab}$ ,
which are defined by

(1.5) $Q_{0}(v, w)=(\partial_{t}v)(\partial_{t}w)-(\nabla_{x}v)\cdot(\nabla_{x}w)$ ,
(1.6) $Q_{ab}(v, w)=(\partial_{a}v)(hw)-(\partial_{b}v)(\partial_{a}w)$ $(0\leq a<b\leq 3)$ .
It is known that $F$ satisfies the null condition, if and only if each $F_{i}$

$(1\leq i\leq N)$ has the form

(1.7)
$F_{i}( \partial u)=\sum_{1\leq j,k\leq N}A_{i}^{jk}Q_{0}(u_{j},u_{k})+$

$\sum_{1\leq j,k\leq N,0\leq a<b\leq 3}B_{i}^{jk,ab}Q_{ab}(u_{j},u_{k})$

$+O(|\partial u|^{3})$

with suitable constants $A_{i}^{jk}$ and $B_{1}^{jk,ab}$ .
Klainerman and Christodoulou proved the following global existence

theorem independently by different methods.

Theorem 1.2 (Klainerman [15], Christodoulou [3]). Suppose that $F$

satisfies the null condition. Then, for any $f,$ $g\in C_{0}^{\infty}(\mathbb{R}^{3};\mathbb{R}^{N})$ , there
enists a positive constant $\epsilon_{0}$ such that the Cauchy problem (1.1) -

(1.2) admits a unique global solution $u\in C^{\infty}([0, \infty)\cross \mathbb{R}^{3};\mathbb{R}^{N})$ for any
$\epsilon\in(0,\epsilon_{0}]$ .

Christodoulou’s method is called the conformal mapping method,
where the problem for $[0, \infty$) $\cross \mathbb{R}^{3}$ is transformed into that for $[0,\pi$) $\cross$

$S^{3}$ . On the other hand, Klainerman’s method is called the vector fields
method, where the following vector fields are used:

$L_{j}=x_{j}\partial_{t}+t\partial_{j}(1\leq j\leq 3),$ $\Omega_{jk}=x_{j}\partial_{k}-x_{k}\partial_{j}(1\leq j<k\leq 3)$ ,
$S=t\partial_{t}+x\cdot\nabla_{x}$ .
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These vector fields not only play an important role in Klainerman’s
weighted $L^{1}-L^{\infty}$ estimate for wave equations (which was later ex-
tended by H\"ormander [5]), but reveal the special structure of the null
forms.

To explain this structure, first we observe

(1.8) $Q_{0}(u_{j}, u_{k})= \frac{1}{2}\{(D_{+}u_{j})(D_{-}u_{k})+(D_{-}u_{j})(D_{+}u_{k})\}$

$+ \frac{1}{r}\sum_{1\leq\ell,m\leq 3;\ell\neq m}\omega_{m}(\partial_{\ell}u_{j})(\Omega_{\ell m}u_{k})$

for $1\leq j,$ $k\leq N$ , where $D\pm=\partial_{t}\pm\partial_{r},$ $\partial_{r}=\sum_{j=1}^{3}\omega_{j}\partial_{j}$ and $\omega_{j}=x_{j}/|x|$

for $j=1,2,3$ . Here we have set $\Omega_{\ell m}=-\Omega_{m\ell}$ for $1\leq m<\ell\leq 3$ .
We define $L_{r}= \sum_{j=1}^{3}\omega_{j}L_{j}=r\partial_{t}+t\partial_{r}$ with $r=|x|$ . Then we have

(1.9) $D_{+}= \frac{1}{t+r}(S+L_{r})$ ,

(1.10) $\Omega_{jk}=\frac{1}{t}(x_{j}L_{k}-x_{k}L_{j})$ .

We also define $L=(L_{1}, L_{2}, L_{3})$ , and $\Omega=(\Omega_{12}, \Omega_{13}, \Omega_{23})$ .
From (1.8), (1.9) and (1.10), we find

(1.11) $|Q_{0}(u_{j}, u_{k})|\leq C(1+t+r)^{-1}|\Gamma u||\partial u|$

where $\Gamma u=(Su, Lu, \Omega u, \partial u)$ . In fact, I $Q_{0}(u_{j}, u_{k})|\leq C|\partial u|^{2}$ is triv-
iality, since $Q_{0}$ is quadratic. (1.8) and (1.9) yield $r|Q_{0}(u_{j}, u_{k})|\leq$

$C|\Gamma u||\partial u|$ . If we further use (1.10) to replace $\Omega_{\ell m}$ in (1.8), we also
find $t|Q_{0}(v,w)|\leq C|\Gamma u||\partial u|$ .

1(1.11) holds also for other null forms. To make use of (1.11), we
need some estimate for $\Gamma u$ , as well as $\partial u$ . It is easy to obtain

[$S$, 口] $=-2$口, [$L_{j}$ , 口] $=$ [$\Omega_{jk}$ , 口] $=$ [$\partial_{a}$ , 口] $=0$ ,

where $[A, B]=AB-BA$ for operators $A$ and $B$ . Hence, decay es-
timates for the solution $u$ to the wave equation immediately imply
decay estimates for $\Gamma u$ . For the solution $v$ to the homogeneous wave
equation $\square v=0$ in $(0, \infty)\cross \mathbb{R}^{3}$ , we have

(1.12) $|v(t, x)|\leq C(1+t+r)^{-1}(1+|t-r|)^{-\rho}$ ,

(1.13) $|\partial v(t, x)|\leq C(1+t+r)^{-1}(1+|t-r|)^{-\rho-1}$
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with some $\rho\geq 0$ depending on decay rate of the initial data at the
spatial infinity (if the initial data are compactly supported, $\rho$ can be
as large as we want, because of the strong Huygens principle which is
true for odd space dimensions).

Since we are considering small solutions to nonlinear wave equations,
we may expect that the solutions to the nonlinear equations behave
like those to the homogeneous equations (of course this expectation is
not always true, as is shown by the blow-up result mentioned above).
When this expectation is true, we find that the null forms behave like
$C(1+t+r)^{-3}(1+|t-r|)^{-1-2\rho}$ in view of (1.11), while general quadratic
terms of $\partial u$ is expected to behave like $C(1+t+r)^{-2}(1+|t-r|)^{-2-2\rho}$ .
In other words, the null forms gain extra decay $(1+t+r)^{-1}(1+|t-r|)$
compared to general quadratic forms. Observe that, away from the
light cone $t=r$ , this gain is nothing. More precisely, if $|t-r|\geq\delta t$

with some small $\delta(>0)$ , then we have $1+t+r\leq C(1+|t-r|)$ , and
$(1+t+r)^{-1}(1+|t-r|)$ is bounded from above and below. Hence
we can say that (1.11) plays its essential role only in a neighborhood
of the light cone. This observation is important when we consider
systems of wave equations with multiple propagations speeds.

Set $\coprod_{c}=\partial_{t}^{2}-c^{2}\Delta_{x}$ for $c>0$ , and consider the following system of
wave equations with multiple propagation speeds:

(1.14) $\coprod_{c}u_{i}:=F_{i}(\partial u)$ in $(0, \infty)\cross \mathbb{R}^{3}$

for $i=1,$ $\ldots,$
$N$ , where $c_{i}’ s$ are given positive constants. We still have
$[S, \coprod_{c_{*}}.]=-2\coprod_{c_{i}},$ $[\Omega_{jk}, \coprod_{c_{i}}]=[\partial_{a}, \coprod_{c}:]=0$ .

Hence these vector fields are favorable also for the multiple speeds
case. However, we have $[L_{j}, \coprod_{c}]=0$ if and only if $c=1$ . Of course,
we can modify the definition of $L_{j}’ s$ to get $[L_{j)}\coprod_{c}]=0$ for given $c$ , but
this modification depends on the propagation speed $c$ , and does not
work for systems with multiple propagation speeds. Thus we need the
vector fields method without $L_{j}$

)
$s$ .

This kind of vector fields method was studied by many authors (see
Kovalyov $[18, 19]$ , Klainerman–Sideris [17], Yokoyama [26], Kubota
-Yokoyama [20], Sideris–Tu [24], Sogge [25], Hidano [4], the author
[9-11], Katayama–Yokoyama [14] for example). In [4, 9, 10, 14, 19,
20, 24-26], global existence results for the multiple speeds case are
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treated. If we restrict our attention to (1.14), the null condition for
the multiple speeds case is satisfied if and only if each $F_{i}$ has the form
(1.15) $F_{i}(\partial u)=N_{i}(\partial u)+R_{i}^{I}(\partial u)+R_{i}^{II}(\partial u)+O(|\partial u|^{3})$ ,

(1.16)
$N_{i}( \partial u)=\sum_{j,k;c_{j}=c_{k}=c_{t}}(A_{i}^{jk}Q_{0}(u_{j}, u_{k};q)+B_{i}^{jk,ab}Q_{ab}(u_{j}, u_{k}))$

(1.17)
$R_{i}^{I}( \partial u)=\sum_{:j,k;c_{j}=c_{k}\neq c}C_{i}^{jk,ab}(\partial_{a}u_{j})(\partial_{b}u_{k})$

,

(1.18)
$R_{i}^{II}( \partial u)=\sum_{j,k;c_{j}\neq c_{k}}D_{i}^{jk,ab}(\partial_{a}u_{j})(\partial_{b}u_{k})$

with some constants $A_{i}^{jk},$ $B_{i}^{jk,ab},$ $C_{i}^{jk,ab}$ and $D_{i}^{jk,ab}$ , where

(1.19) $Q_{0}(v, w;c)=(\partial_{t}v)(\partial_{t}w)-c^{2}(\nabla_{x}v)\cdot(\nabla_{x}w)$

(among the above works, the case
$F_{i}=N_{i}(\partial u)+R_{i}^{I}(\partial u)+R_{i}^{II}(\partial u)+O(|u|^{3}+|\partial u|^{3})$

is treated in $[9, 20]$ ; even some quadratic nonlinearities depending both
on $u$ and $\partial u$ are handled in $[10, 14]$ , but we do not go into further
details here).

The new features for the multiple speeds case are the nonresonant
terms $R_{i}^{I}$ and $R_{i}^{II}$ . The reason why these terms behave better can be
explained by the decay property for $\partial u$ . Similarly to the single speed
case, we can expect

(1.20) $|\partial u_{j}(t, x)|\leq C(1+t+r)^{-1}(1+|c_{j}t-r|)^{-1-\rho}$

with some $\rho\geq 0$ , which yields

(1.21) $|R_{i}^{II}( \partial u)|\leq(1+t+r)^{-3-\rho}(\min_{1\leq\ell\leq N}(1+|c_{\ell}t-r|))^{-1}$

because we have
$(1+|c_{j}t-r|)^{-1}(1+|c_{k}t-r|)^{-1}$

$\leq C(1+t+r)^{-1}(\min\{1+|c_{j}t-r|, 1+|c_{k}t-r|\})^{-1}$

for $c_{j}\neq c_{k}$ . Hence there is some gain in the decay rate for $R_{i}^{II}$ ,
compared to general quadratic terms. It is rather difficult to explain
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the advantage of $R_{i}^{I}$ ; there is no gain in its universal decay rate, but
$R_{i}^{I}$ behaves like

(1.22) $|R_{i}^{I}(\partial u)|\leq C(1+t+r)^{-4-2\rho}$

near the light cone $qt=r$ , because $R_{i}^{I}$ consists of $\partial u_{j}$ whose propaga-
tion speed $c_{j}$ is not equal to $c_{i}$ . This property is helpful, because the
principal influence of nonlinear terms to the element $u_{i}$ comes from
some neighborhood of the light cone $qt=r$ . We do not go into further
details here, but the point of these observations is that the vector fields
in $\Gamma$ do not play any essential role in the treatment of the nonresonant
terms. Hence we concentrate on the null forms.

Fix $i\in\{1, \ldots , N\}$ . Observing that the null forms which are included
in the nonlinearity for $u_{i}$ consist of elements $u_{j}$ and $u_{k}$ which have the
same propagation speed as $u_{i}$ , we may assume $q=1$ for each fixed
$i$ without loss of generality. Thus we shall discuss $Q_{0}(u_{j},u_{k})$ instead
of $Q_{0}(u_{j}, u_{k};q)$ . In the above works, various kinds of decay estimates
without $L_{j}’ s$ are adopted instead of Klainerman’s $L^{1}-L^{\infty}$ estimate
which contains $L_{j}’ s$ . However, the estimates for null forms used in
those works are essentially the same as

(1.23) $|Q_{0}(u_{j}, u_{k})|\leq C(1+r)^{-1}(|\Gamma_{*}u||\partial u|+(1+|t-r|)|\partial u|^{2})$ ,

where $\Gamma_{*}u=(Su, \Omega u, \partial u)$ . Other null forms also enjoy the same
estimate. A variant of (1.23) was first introduced by Hoshiga-Kubo
[6] for the two space dimensional systems. To prove (1.23), we use

(1.24) $D_{+}= \frac{1}{r}(S-(t-r)\partial_{t})$

instead of (1.9). (1.8) and (1.24) lead to (1.23) immediately.
(1.23) may seem to be quite weaker than (1.11), but this is not

true, because this kind of estimate for null forms has its meaning only
in a neighborhood of the light cone $t=r$ , as we have pointed out
in the above. When $|t-r|<\delta t$ with some small $\delta>0$ , we have
$1+t+r\leq C(1+r)$ , and in view of (1.12) and (1.13), we expect from
(1.23) that $Q_{0}$ behaves like $C(1+t+r)^{-3}(1+|t-r|)^{-1-2\rho}$ , which is
the same expectation as we have got from (1.11). In this way, we can
exclude $L_{j}’ s$ from estimates for the null forms.
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Note that weighted $L^{\infty}-L^{\infty}$ decay estimates, where we need only $\Omega$

and $\partial$ (see Lemmas 3.2 and 3.3 below), are used in $[9, 20]$ , and (1.23)
is the only reason why $S$ was adopted in these works.

Our aim in this article is to get rid of not only $L_{j}’ s$ , but also $S$ from
the argument. In other words, we would like to prove Theorem 1.2
using only $\partial$ and $\Omega$ . Instead of using (1.9) or (1.24), we will directly
obtain enhanced decay of $D_{+}u$ for the solution $u$ to the wave equation,
using only $\partial$ and $\Omega$ . Once we get such estimates, we are able to observe
extra decay of null forms by going back to (1.8).

2. ENHANCED DECAY OF A TANGENTIAL DERIVATIVE TO THE
LIGHT CONE

In this section, we introduce the main result of [12], which gives
us enhanced decay of $D_{+}u$ . To state the result, we introduce some
notations.

We put $Z=(Z_{j})_{1\leq j\leq 7}=(\partial, \Omega)$ , and $Z^{\alpha}=Z_{1}^{\alpha_{1}}\cdots Z_{7}^{\alpha_{7}}$ with a multi
index $\alpha=(\alpha_{1\cdots)}\alpha_{7})$ .

For a function $v=v(t, x)$ and a nonnegative integer $s$ , we define

(2.1)
$|v(t, x)|_{s}= \sum_{|\alpha|\leq s}|Z^{\alpha}v(t, x)|$

, and $\Vert v(t, \cdot)\Vert_{\epsilon}=\Vert|v(t, \cdot)|_{\epsilon}\Vert_{L^{2}(\mathbb{R}^{3})}$ .

We introduce

(2.2) $A_{\rho,k}[f,g]= \sup_{x\in \mathbb{R}^{3}}\langle x\rangle^{\rho}(|f(x)|_{k}+|\nabla_{x}f(x)|_{k}+|g(x)|_{k})$

for $\rho\in \mathbb{R}$ , a nonnegative integer $k$ , and $f,$ $g\in C_{0}^{\infty}(\mathbb{R}^{3})$ , where $\langle x\rangle=$

$\sqrt{1+|x|^{2}}$ for $x\in \mathbb{R}^{3}$ . We shall also write $\langle a\rangle=\sqrt{1+|a|^{2}}$ for $a\in \mathbb{R}$.
Let $c_{1},$ $\ldots c_{N}$ be given positive constants. We set $c_{0}=0$ , and define

(2.3) $w(t, r)= \min_{0\leq j\leq N}\langle c_{j}t+r\rangle$ .

We introduce

(2.4) $N_{\rho,\kappa,k}[G](T)=$ $\sup$ $\langle x\rangle\langle t+|x|)^{\rho}w(t, |x|)^{\kappa}|G(t, x)|_{k}$

$(t,x)\in[0,T]xR^{3}$

for $\rho,$
$\kappa\in \mathbb{R}$ , a nonnegative integer $k$ , and a smooth function $G=$

$G(t, x)$ decaying sufficiently fast as $|x|arrow\infty$ .
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Consider the Cauchy problem for the linear wave equation

(2.5) $\coprod_{c}v(t, x)=G(t, x)$ for $(t, x)\in(O, \infty)\cross \mathbb{R}^{3}$ ,

(2.6) $v(O, x)=\phi(x),$ $(\partial_{t}v)(0, x)=\psi(x)$ for $x\in \mathbb{R}^{3}$ ,

where $c$ is a given positive constant, and $\coprod_{c}=\partial_{t}^{2}-c^{2}\Delta_{x}$ . We write
$U_{c}[G]$ for the solution $u$ to the problem $(2.5)-(2.6)$ with $\phi=\psi\equiv 0$ ,
and $U_{c}^{*}[\phi, \psi]$ for the solution $u$ to the problem $(2.5)-(2.6)$ with $G\equiv 0$ .

We define
(2.7) $D_{\pm,c}=\partial_{t}\pm c\partial_{r}$

for $c>0$ , where $\partial_{r}=\sum_{j=1}^{3}\omega_{j}\partial_{j}$ , and $\omega_{j}=x_{j}/|x|$ for $j=1,2,3$ as
before. Now we are in a position to state our result.

Theorem 2.1 (Katayama-Kubo [12]). (i) Let $1<\rho<2,$ $\kappa>1,$ $\mu\geq 0$

and $\delta>0$ . Then there exists a positive constant $C$ depending only on
$\rho,$ $\kappa,$

$\delta$ and $c$ such that we have

(2.8). $\langle t+|x|\rangle^{2-\mu}\langle ct-|x|\rangle^{\rho-1}|D_{+,c}U_{c}[G](t, x)|\leq CN_{\rho-\mu,\kappa,2}[G](t)$

for any $(t, x)$ satisfying $t\geq 0$ and $|x|\geq\delta t$ .
(ii) Let $1<\rho<2,$ $\kappa>1,$ $\mu\geq 0$ and $\delta>0$ . Then there exists a
positive constant $C$ depending only on $\rho_{f}\kappa$ and $c$ such that we have

(2.9) $\langle t+|x|\rangle^{2-\mu}\langle ct-|x|\rangle^{\rho-1}|D_{+,c}U_{c}^{*}[\phi, \psi](t, x)|\leq CA_{\rho-\mu+\kappa,2}[\phi, \psi]$

for any $(t,x)$ satisfying $t\geq 0$ and $|x|\geq\delta t$ .
Though more general result was obtained in [12], we have restricted

our statement here to the estimate which will be used directly to prove
Theorem 1.2.

Let $u=U_{1}[G]$ , and suppose $supt\in[0,\infty$) $N_{\rho,\kappa,2}[G](t)<\infty$ for some
$\rho\in(1,2)$ and $\kappa>1$ . Then Lemmas 3.2 and 3.3 below show

(2.10) $|u(t, x)|\leq C\langle t+|x|\rangle^{-1}\langle t-|x|\rangle^{-\rho+1}$ ,

(2.11) $|\partial u(t, x)|\leq C\langle t+|x|\rangle^{-1}\langle t-|x|\rangle^{-\rho}$

near the light cone $t=r$ , while Theorem 2.1 implies

(2.12) $|D_{+}u(t, x)|\leq C\langle t+r\rangle^{-2}\langle t-|x|\rangle^{-\rho+1}$

near the light cone $t=r$ . Thus we find that $D_{+}u$ gains
$\langle t+|x|\rangle^{-1}\langle|t-|x|\rangle$ (resp. $\langle t+r\rangle^{-1}$ )
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in its decay rate near the light cone, compared to $\partial u$ (resp. $u$). This
is exactly what we need to treat null forms, as we have stated in the
previous section.

After we prove Theorem 2.1 in Section 4, we will give a proof of
Theorem 1.2, where only $\partial$ and $\Omega$ are used, in Section 5.

3. PRELIMINARY RESULTS

After the pioneering work of John [7], various weighted $L^{\infty}-L^{\infty}$ es-
timates were studied by many authors. Here we state some known
results. For the proof of each lemma, consult to the works indicated
therein.

Lemma 3.1 (Asakura [2]). For $\rho>1$ and $\mu\geq 0$ , we have

(3.1) $\langle t+|x|\rangle^{1-\mu}\langle ct-|x|\rangle^{\rho-1}|U_{c}^{*}[\phi, \psi](t, x)|\leq CA_{\rho-\mu+1,0}[\phi, \psi]$

for $(t, x)\in[0, \infty)\cross \mathbb{R}^{3}$ .
Lemma 3.2 (Kubota-Yokoyama [20]). Assume $p>1,$ $\kappa>1$ and
$\mu\geq 0$ . Then we have

$\langle t+|x|\rangle^{1-\mu}\langle ct-|x|\rangle^{\rho-1}|U_{c}[G](t, x)|\leq CN_{\rho-\mu,\kappa,0}[G](t)$

for any $(t, x)\in[0, \infty)\cross \mathbb{R}^{3}$ .

This lemma plays an important role in the proof of Theorem 2.1.
Hence we give a proof here.
’Proof. Suppose that $\rho>1,$ $\kappa>1$ and $\mu\geq 0$ . Without loss of

generality, we may assume $c=1$ . We write $U[G]$ for $U_{1}[G]$ in the
following.

For $(t, r)\in[0, \infty)\cross[0, \infty)$ , we define

(3.2) $H(t,r)= \sup_{\omega\in S^{2}}|G(t, r\omega)|$ ,

and we set $\tilde{G}(t, x)=H(t, |x|)$ . Then we have $|G(t, x)|\leq\tilde{G}(t, x)$ for
any $(t, x)\in(0, \infty)\cross \mathbb{R}^{3}$ . Therefore, in view of the positivity of the
fundamental solution to the wave equation in $(0, \infty)\cross \mathbb{R}^{3}$ , we obtain

(3.3) $|U[G](t, x)|\leq U[\tilde{G}](t, x)$ .
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Since $U[\overline{G}]$ is spherically symmetric, we get

(3.4) $U[ \tilde{G}](t, x)=\frac{1}{r}\int_{0}^{t}\int_{|r-t+\tau|}^{r+t-\tau}\lambda H(\tau, \lambda)d\lambda d\tau$

for $r=|x|>0$ . Observing that

$\sup_{(\tau,\lambda)\in[0,\infty)x[0,\infty)}$

$N_{\rho-\mu,\kappa,0}[G](t)=$ $sup\langle\lambda\rangle\langle\tau+\lambda\rangle^{\rho-\mu}w(\tau, \lambda)^{\kappa}H(\tau, \lambda)$ ,

we obtain

(3.5) $U[\tilde{G}](t, x)\leq\cdot N_{\rho,\kappa,0}[G](t)I_{\rho-\mu,\kappa}(t, r)$ ,

where

(3.6) $I_{\rho-\mu,\kappa}(t, r)= \frac{1}{r}\int_{0}^{t}\int_{|r-t+\tau|}^{r+t-\tau}\langle\tau+\lambda\rangle^{-\rho+\mu}w(\tau, \lambda)^{-\kappa}d\lambda d\tau$ .

If we set

$J_{\rho-\mu,\kappa,i}(t, r)= \frac{1}{r}\int_{0}^{t}\int_{|r-t+\tau|}^{r+t-\tau}(1+\tau+\lambda)^{-\rho+\mu}(1+|q\tau-\lambda|)^{-\kappa}d\lambda d\tau$

for $0\leq i\leq N$ , it is easy to see that $I_{\rho-\mu,\kappa}(t,r) \leq C\sum_{i=0}^{N}J_{\rho-\mu,\kappa,i}(t,r)$ .
For each $i\in\{0,1, \ldots , N\}$ , performing the change of variables $(p, q)=$
$(\lambda+\tau, \lambda-q\tau)$ , we obtain

(3.7) $J_{\rho-\mu,\kappa,i}(t, r)= \frac{1}{(q+1)r}\int_{|t-r|}^{t+r}(1+p)^{-\rho+\mu}(\int_{p}^{p}(1+|q|)^{-\kappa}dq)dp$

$\leq\frac{C}{r}\int_{|t-r|}^{t+r_{\sim}}(1+p)^{-\rho+\mu}dp$

$\leq\frac{C\langle t+r\rangle^{\mu}}{r}\int_{|t-r|}^{t+r}(1+p)^{-\rho}dp$ ,

where $2p_{i}=(1-q)p+(1+q)(r-t)$ . Here we have used the assumption
$\kappa>1$ . Now we have shown

(3.8) $\langle t+r\rangle^{-\mu}|U[G](t, x)|\leq\langle t+r\rangle^{-\mu}U[\tilde{G}](t, x)$

$\leq CN_{\rho,\kappa,0}[G](t)\frac{1}{r}\int_{|t-r|}^{t+r}(1+p)^{-\rho}dp$ .
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It is easy to obtain

(3.9) $\frac{1}{r}\int_{|t-r|}^{t+r}(1+p)^{-\rho}dp\leq\frac{t+r-|t-r|}{r}(1+|t-r|)^{-\rho}$

$\leq 2(1+|t-r|)^{-\rho}$ ,

and

(3.10) $\frac{1}{r}\int_{|t-\dot{r}|}^{t+r}(1+p)^{-\rho}dp\leq\frac{C}{r}(1+|t-r|)^{-\rho+1}$ .

If $r\geq(1+t)/2$ , then we have $\langle t+r\rangle\leq Cr$ , and (3.10) implies the
desired result. On the other hand, if $r<(1+t)/2$ , then we have
$\langle t+r\rangle\leq C\langle t-r\rangle$ , and (3.9) implies the desired result. This com-
pletes the proof. $\square$

Lemma 3.3 (Katayama-Yokoyama [14]). Assume $\rho>1,$ $\kappa>1$ and
$\mu\geq 0$ . Then we have

$\langle t+|x|\rangle^{-\mu}\langle x\rangle\langle t-|x|\rangle^{\rho}|\partial U_{c}[G](t, x)|\leq CN_{\rho-\mu,\kappa,1}[G](t)$

for any $(t, x)\in[0, \infty)\cross \mathbb{R}^{3}$ , where $\partial=(\partial_{t}, \nabla_{x})$ .

This lemma will be used in the proof of Theorem 1.2, but not in
that of Theorem 2.1.

To conclude this section, we introduce the following Sobolev type
inequality which will be used to combine the energy inequality with
weighted $L^{\infty}-L^{\infty}$ decay estimates:

Lemma 3.4 (Klainerman [16]). We have

(3.11)
$\sup_{x\in \mathbb{R}^{3}}\langle x$

)
$| \phi(x)|\leq\sum_{|\alpha|\leq 2}\Vert Z_{*}^{\alpha}\phi\Vert_{L^{2}(\mathbb{R}^{3})}$

for any $\phi\in C_{0}^{\infty}(\mathbb{R}^{3})$ , where $Z_{*}=(\nabla_{x}, \Omega)$ .

4. PROOF OF THEOREM 2.1

Without loss of generality, we may assume $c=1$ . So we drop the
suffix $c$ from the notations (for example, we write $U^{*}$ for $U_{c}^{*}$ ). We only
give a proof for (2.8) here, because (2.9) can be proved similarly.
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We have $\partial_{a}U[G](t, x)=U[\partial_{a}G](t, x)+\delta_{a0}U^{*}[0, G(O)](t, x)$ for $0\leq$

$a\leq 3$ with the Kronecker delta $\delta_{ab}$ . Lemma 3.2 implies

(4.1) $\langle t+|x|\rangle^{1-\mu}\langle t-|x|\rangle^{\rho-1}(t, x)|U[\partial_{a}G]|(t, x)|\leq CN_{\rho-\mu,\kappa,1}[G](t)$ ,

while Lemma 3. $1leads$ to

(4.2) $\langle t+|x|\rangle^{1-\mu}\langle t-|x|\rangle^{\rho-1}U^{*}[0, G(O)]\leq CA_{\rho-\mu+1,0}[0, G(O)]$

$\leq N_{\rho-\mu,\kappa,0}[G](t)$

because we have $\langle r\rangle^{\rho-\mu+1}\leq\langle r\rangle\langle 0+r\rangle^{\rho-\mu}w(0, r)^{\kappa}$ . Therefore we ob-
tain

(4.3) $(t+|x|\rangle^{1-\mu}\langle t-|x|\rangle^{\rho-1}|\partial_{a}U[G](t, x)|\leq CN_{\rho-\mu,\kappa,1}[G](t)$.

If $\delta t\leq r\leq 1$ , then we have $\langle t+r\rangle\leq\sqrt{1+(1+\delta^{-1})^{2}}$ , and (4.3) leads
to the desired result.

We assume $|x|=r \geq\max\{1, \delta t\}$ in the following. Note that we
have $\langle t+r\rangle\leq Cr$ for such $r$ .

For $(t, r, \omega)\in[0, \infty)\cross(0, \infty)\cross S^{2}$ , we define

(4.4) $V(t, r, \omega)=rU[G](t, r\omega)$ .
Then we have

(4.5) $|D_{+}U[G](t, r \omega)|=\frac{1}{r}|D_{+}V(t, r, \omega)-U[G](t, r\omega)|$

$\leq C\langle t+r\rangle^{-1}(|D_{+}V(t, r, \omega)|+|U[G](t, r\omega)|)$ .

Since Lemma 3.2 implies
$|U[G](t, r\omega)|\leq C\langle t+r\rangle^{-1+\mu}\langle t-r\rangle^{-\rho+1}N_{\rho-\mu,\kappa,0}[G](t)$ ,

our task is to show

(4.6) $|D_{+}V(t, r,\omega)|\leq C\langle t+r\rangle^{-1+\mu}\langle t-r\rangle^{-\rho+1}N_{\rho-\mu,\kappa,2}[G](t)$.

For that purpose, first we observe

(4.7) $D_{-}D_{+}V(t,r, \omega)=r\square U[G](t, r\omega)+\frac{1}{r}\sum_{1\leq j<k\leq 3}\Omega_{jk}^{2}U[G](t, r\omega)$

$=rG(t, r \omega)+\frac{1}{r}\sum_{1\leq j<k\leq 3}\Omega_{jk}^{2}U[G](t, r\omega)$ .
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We have

(4.8) $|rG(t, r\omega)|\leq\langle t+r\rangle^{-\rho+\mu}\langle t-r\rangle^{-\kappa}N_{\rho-\mu,\kappa,0}[G](t)$ .
On the other hand, Lemma 3.2 again implies

(4.9)
$\sum_{j,k}|\Omega_{jk}^{2}U[G](t, r\omega)|\leq C\langle t+r\rangle^{-1+\mu}\langle t-r\rangle^{-\rho+1}N_{\rho-\mu,\kappa,2}[G](t)$

.

Observing that $t+r- \tau\geq\max\{1, \delta\tau\}$ for any $\tau\in[0,t]$ , provided that
$r \geq\max\{1, \delta t\}$ , we find from $(4.7)-(4.9)$ that

$|D_{+}V(t,r, \omega)|=|\int_{0}^{t}(D_{-}D_{+}V)(\tau,t+r-\tau,\omega)d\tau|$

$\leq\langle t+r\rangle^{-\rho+\mu}N_{\rho-\mu}[G](t)\int_{0}^{t}\langle t+r-2\tau\rangle^{-\kappa}d\tau$

$+C \langle t+r\rangle^{-2+\mu}N_{\rho-\mu,\kappa,2}[G](t)\int_{0}^{t}\langle t+r-2\tau\rangle^{-\rho+1}d\tau$

$\leq C\langle t+r\rangle^{-\rho+\mu}N_{\rho-\mu,\kappa,2}[G](t)$ .
This completes the proof, because we have

$\langle t+r\rangle^{-\rho+\mu}\leq\langle t+r\rangle^{-1+\mu}\langle t-r\rangle^{-\rho+1}$

for $\beta>1$ . 口

5. PROOF OF THEOREM 1.2
First we describe the estimates for the null forms precisely:

Lemma 5.1. Let $u=$ $(u_{1}, \ldots , u_{N})$ , and $Q=Q_{0}$ or $Q=Q_{ab}(0\leq a<$

$b\leq 3)$ . Suppose $\delta>0$ . Then, for a nonnegative integer $s$ , there exists
a positive constant depending on $s$ and $\delta$ such that

(5.1) $|Q(u_{j}, u_{k})|_{\epsilon}\leq C(|u|_{[\epsilon/2],+}|\partial u|_{\epsilon}+|\partial u|_{[\epsilon/2]}|u|_{s,+})$

$+C\langle t+|x|\rangle^{-1}(|u|_{[s/2]+1}|\partial u|_{s}+|\partial u|_{[s/2]}|u|_{s+1})$

at the point $(t, x)$ satisfying $|x|\geq\delta t$ , where

$|v(t, x)|_{\epsilon,+}= \sum_{|\alpha|\leq\epsilon}|D_{+}Z^{\alpha}v(t, x)|$

for a smooth function $v$ and a nonnegative integer $s$ .
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Proof. Since $Z^{\alpha}Q(u_{j}, u_{k})$ can be written in terms of $Q_{0}(\Gamma^{\beta}u_{j}, \Gamma^{\gamma}u_{k})$

and $Q_{ab}(\Gamma^{\beta}u_{j}, \Gamma^{\gamma}u_{k})$ with $|\beta|+|\gamma|\leq|\alpha|$ , it suffices to show the result
for $s=0$ .

Since we have $\langle t+r\rangle\leq\langle r\rangle$ for $r\geq\delta t$ , we obtain (5.1) for $Q=Q_{0}$

and $s=0$ from (1.8).
For $Q_{ab}$ , we have

(5.2) $Q_{ij}(v, w)= \sum_{k\neq i}\frac{\omega_{j}\omega_{k}}{r}\{(\Omega_{ik}w)(\partial_{r}v)-(\Omega_{ik}v)(\partial_{r}w)\}$

$+ \sum_{k\neq j}\frac{\omega_{i}\omega_{k}}{r}\{(\Omega_{jk}v)(\partial_{r}w)-(\Omega_{jk}w)(\partial_{r}v)\}$

$+ \sum_{k\neq i}\sum_{l\neq j}\frac{\omega_{k}\omega_{l}}{r^{2}}\{(\Omega_{ik}v)(\Omega_{jl}w)-(\Omega_{jl}v)(\Omega_{ik}w)\}$ ,

(5.3) $Q_{0k}(v,w)=(D_{+}v)( \partial_{k}w)-(\partial_{k}v)(D_{+}w)+\sum_{j=1}^{3}\omega_{j}Q_{kj}(v, w)$

for $1\leq i<j\leq 3$ and $1\leq k\leq 3$ , which lead to the desired result for
$s=0$ . 口

Suppose that all the assumptions in Theorem 1.2 be fulfilled. Since
the local existenoe of classical solutions is well-known, what we need
is some a priori estimate. Let $u=(u_{1}, \ldots, u_{N})$ be the solution to
$(1.1)-(1.2)$ for $0\leq t<T$ with some $T>0$ . Fix some $\rho\in(1,2)$ and
we define
(5.4) $e_{\rho,\epsilon,i}(t, x)=\langle t+|x|\rangle\langle t-|x|\rangle^{\rho-1}|u_{i}(t,x)|_{\epsilon+1}$

$+\langle x\rangle\langle t-|x|\rangle^{\rho}|\partial u_{i}(t, x)|_{\epsilon}$

$+\chi(t, x)\langle t+|x|\rangle^{2}\langle t-|x|\rangle^{\rho-1}|u_{i}(t, x)|_{s-1,+}$

for a nonnegative integer $s$ , where

$\chi(t, x)=\{\begin{array}{ll}1, |x|\geq\delta t,0, otherwise\end{array}$

with some small $\delta>0$ .
We set

(5.5) $E_{\rho,s}(T)= \sum_{i=1}^{N}\sup_{0\leq t<T}\Vert e_{\rho,\epsilon,i}(t, \cdot)\Vert_{L^{\infty}(\mathbb{R}^{3})}$ .
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Let $s\geq 4$ . We are going to prove that if we assume

(5.6) $E_{\rho,s}(T)\leq M\epsilon$

for some large $M$ and small $\epsilon>0$ , then we actually have

(5.7) $E_{\rho,s}(T) \leq\frac{M}{2}\epsilon$ .

Once we establish such property, by the so-called continuity argu-
ment (or the bootstrap argument), we find that $E_{\rho,s}$ for small $\epsilon$ stays
bounded as far as the solution exists. This a priore estimate implies
global existence of the solution.

In the following, we use Lemmas 3.2, 3.3 and Theorem 2.1 repeatedly
with the choice of $c=c_{1}=\cdots=c_{N}=1$ so that we have

(5.8) $w(t, r)= \min\{\langle r\rangle, \langle t-r\rangle\}$ .

Here we note that we have $\langle r\rangle^{-1}\langle t-r\rangle^{-1}\leq C\langle t+r\rangle^{-1}w(t,r)^{-1}$ for
$(t, r)\in[0, \infty)\cross[0, \infty)$ .

Now we are going to prove (5.7), assuming (5.6). In the following,
we always assume $M$ is large enough, and $\epsilon$ is small enough.

Since we have $Z^{\alpha}\square u_{i}=\square (Z^{\alpha}u_{i})$ , the standard energy inequality
leads to

(5.9) $|| \partial u(t)\Vert_{2s}\leq C\epsilon+C\int_{0}^{t}\Vert F(\tau)\Vert_{2s}d\tau$

$\leq C\epsilon+C\int_{0}^{t}\Vert|\partial u(\tau)|_{\delta}\Vert_{L(\mathbb{R}^{3})}\infty\Vert\partial u(\tau)\Vert_{2\epsilon}d\tau$

$\leq C\epsilon+CM\epsilon\int_{0}^{t}(1+\tau)^{-1}||\partial u(\tau)||_{2s}d\tau$

for $0\leq t<T$ . Thus the Gronwall lemma leads to

(5.10) $||\partial u(t)\Vert_{2\epsilon}\leq C\epsilon(1+t)^{CM\epsilon}$

for $0\leq t<T$ .
Applying Lemma 3.4, from (5.10) we get

(5.11) $\langle x\rangle|\partial u(t, x)|_{2s-2}\leq C\epsilon(1+t)^{CM\epsilon}$,
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and we find

(5.12) $\langle x\rangle\langle t+|x|\rangle^{(1+\mu)-2\mu}w(t, x)^{\rho}|F(\partial u)(t, x)|_{2s-2}$

$\leq CM\epsilon^{2}\langle t+|x|\rangle^{CM\epsilon-\mu}$

for $\mu\geq 0$ . From Theorem 2.1, Lemmas 3.2 and 3.3, we obtain
(5.13) $\langle t+|x|\rangle^{-2\mu}e_{1+\mu,2s-3,i}(t, x)\leq C\epsilon+CM\epsilon^{2}\leq M\epsilon$,

where $\mu=CM\epsilon$ .
Let $F_{i}^{(2)}$ be the quadratic part of $F_{i}$ . We use Lemma 5.1 to obtain

(5.14) $|F_{i}^{(2)}(t, x)|_{2s-3}\leq CM^{2}\epsilon^{2}\langle x\rangle^{-1}\langle t+|x|\rangle^{-2+2\mu}\langle t-|x|\rangle^{-\rho-\mu}$

for $(t, x)$ satisfying $|x|\geq\delta t$ . On the other hand, if $|x|\leq\delta t$ , we have
$\langle t-|x|\rangle^{-1}\leq C\langle t+|x|\rangle^{-1}$ . Since $p_{i}^{(2)}$ are quadratic, we obtain

(5.15) $|F_{i}^{(2)}(t, x)|_{2s-3}\leq CM^{2}\epsilon^{2}\langle x\rangle^{-2}\langle t+|x|\rangle^{2\mu}\langle t-|x|\rangle^{-1-\rho-\mu}$

$\leq CM^{2}\epsilon^{2}\langle x\rangle^{-2}\langle t+|x|\rangle^{-1-\rho+\mu}$

$\leq CM^{2}\epsilon^{2}\langle x\rangle^{-1}\langle t+|x|\rangle^{-1-\rho+2\mu}w(t, |x|)^{-1-\mu}$

for $|x|\leq\delta t$ . We also have

(5.16) $|H_{i}(t, x)|_{2\epsilon-3}\leq CM^{3}\epsilon^{3}\langle x\rangle^{-3}\langle t+|x|\rangle^{2\mu}\langle t-|x|\rangle^{-1-\mu-2\rho}$

$\leq CM^{3}\epsilon^{3}\langle x\rangle^{-1}\langle t+|x|\rangle^{-2+2\mu}w(t, |x|)^{-1-\mu-2\rho}$

for any $(t,x)\in[0,T)\cross \mathbb{R}^{3}$ , where $H_{i}=F_{i}-F_{i}^{(2)}$ . Gathering the above
estimates, we obtain

(5.17) $|F_{i}(t, x)|_{2\epsilon-3}\leq CM^{2}\epsilon^{2}\langle x\rangle^{-1}(t+|x|\rangle^{-2+2\mu}w(t, |x|)^{-1-\mu}$

Since we may assume $\rho-2+2\mu\leq 0$ , we obtain
$N_{\rho,1+\mu,2s-3}[F_{i}](t)\leq CM^{2}\epsilon^{2}$ .

Finally, remembering $s\geq 4$ , from Theorem 2.1 and Lemma 3.3 we
obtain
(5.18) $E_{\rho,s}(T)\leq E_{\rho,2s-4}(T)\leq C_{0}(\epsilon+M^{2}\epsilon^{2})$

with some positive constant $C_{0}$ which is independent of $T,$ $M$ and $\epsilon$ .
Finally, if we choose large $M$ to satisfy $M\geq 4C_{0}$ , and choose small

$\epsilon_{0}$ to satisfy $C_{0}M\epsilon_{0}<1/4,$ $(5.18)$ implies (5.7) for any $\epsilon\in(0, \epsilon_{0}$].
This completes the proof. $\square$
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6. RELATED RESULTS
In this article, we have observed the enhanced decay of $D_{+}u$ through

the weighted $L^{\infty}-L^{\infty}$ decay estimate. Here we introduce some related
results.

Alinhac has obtained

(6.1) $\Vert\partial u(t)\Vert_{L^{2}(\mathbb{R}^{3})}+\sum_{j=1}^{3}\int_{0}^{t}\int_{\mathbb{R}^{3}}\frac{|T_{j}u(\tau,y)|^{2}}{\langle\tau-|y|\rangle^{\rho}}dyd\tau$

$\leq C(\Vert\partial u(0)\Vert_{L^{2}(\mathbb{R}^{3})}+.\int_{0}^{t}\Vert(\square u)(\tau)\Vert_{L^{2}(\mathbb{R}^{3})}d\tau)$

for $\rho>1$ , where $T_{j}=\omega_{j}\partial_{t}+\partial_{j}$ for $j=1,2,3$ with $\omega_{j}=x_{j}/|x|$ (see
[1] for example). Without the second term on its left-hand side, (6.1)
is the well-known energy inequality. The proof is also similar to that
of the. energy inequality: We define $\eta(a)=\int_{-\infty}^{a}\langle\tau\rangle^{-\rho}d\tau$ . Then we
integrate $e^{\eta(r-t)}(\partial_{t}u)(\square u)$ over $\mathbb{R}^{3}$ , perform the integration by parts,
and obtain (6.1). Note that without the so-called ghost weight $e^{\eta(r-t)}$ ,
which is bounded $hom$ above and below, the above argument gives
the standard energy inequality.

$T_{j}$ is closely connected to $D_{+}$ ; we have $D_{+}= \sum_{j=1}^{3}\omega_{j}T_{j}$ . Thus
(6.1) shows the enhanced decay of $D_{+}u$ implicitly. However it seems
difficult to recover the pointwise decay estimate for $D_{+}u$ from (6.1).

If we have the estimate for II $\langle t+r\rangle D_{+}u(t, \cdot)\Vert_{L^{2}(\mathbb{R}^{3})}$ , then we can
easily recover the enhanced pointwise estimate through Lemma 3.4.
Sideris-Thomases [23] obtained such estimate, but unfortunately $S$ is
used there.

To conclude this section, we give a few words on the mixed prob-
lem. The Dirichlet problem for nonlinear wave equations with sin-
gle or multiple speed(s) in exterior domains (domains outside some
obstacles) are also widely studied, and global existence results corre-
sponding to Theorem 1.2 and its counterpart for the multiple speeds
case were obtained (see $Metcalfe-Nakamura-Sogge[21]$ and references
cited therein).

Because $L_{j}’ s$ do not preserve the boundary condition, and have un-
bounded coefficients near the boundary, they are unfavorable even if
we consider the single speed case. This is the another reason why the
vector fields method without $L_{j}’ s$ have been widely studied. Though
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the same is true for $S$ concerning the boundary condition and the un-
bounded coefficient near the boundary, one can manage to use $S$ in
the argument, but careful treatment of $S$ was needed.

Our approach here for the Cauchy problem is also useful for the
mixed problem, and we can simplify the argument (see Katayama-
Kubo [13]). We also remark that, in [22], Metcalfe and Sogge gave
a simplified approach where $S$ can be used without special care, but
their approach needs the obstacle to be star-shaped.
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