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1. Introduction

1.1. Background of problem. In this paper we are concerned with the motion
of viscous incompressible fluid past a rigid obstacle in two space dimension.

Let B C R? be a bounded and open set whose boundary is of class C2 and let
Q2 be the exterior domain to B, i.e.,, 2 = R2\ B. Here B and Q denote a rigid
obstacle in the plane and region which is filled with viscous incompressible fluid,
respectively. We choose an Ry > 0 in such a way that Bg,(0) O B and fix it
throughout this paper.

The stationary motion of the fluid past obstacle B is governed by the following
boundary value problem of the Navier-Stokes equations.

(v-V)v =vAv—-Vp, divv =0, x €8,

(N-S) Vg = v, Iim v = U .
|x|—>00
Here v = “(v1,v2) and p are the velocity and pressure, respectively; v, is

prescribed velocity on the boundary; v > 0 denotes the viscosity constant of
fluid and U  is constant vector which stands for the uniform flow; (v - V)v =

E~_1 v;0;v, where 3; = 8/3x; (j = 1,2); A = 32 + 9% is the Laplace operator
on R?, Vp = (8, p, 0, p) is the gradient of p, and divv = Zj_.l djv; is the
divergence of v. A main feature of (N-S) is that the boundary condition at space
infinity is imposed on the velocity.
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One of the standard ways to investigate (N-S) is linear approximation. First
we shall introduce the idea due to G.G. Stokes. Since the nonlinear term (v - V)v
is quadratic with respect to v, it may be vanishingly small in comparison to vAu
when v > 1. Therefore (N-S) may be reduced to the Stokes equations:

0=vAv—-Vp, divv =0, x € Q,

(1.1 vog = vs, lim v = Uc.
|x]—>00

To understand the slow-motion of fluid mathematically, it seems to be enough
to investigate linear problem (1.1). However, does (1.1) give any approximate
solution of (N-S)? It is well known that the answer is no (Stokes paradox). Un-
fortunately, Stokes’s linearization does not make contribution to two dimensional
flow past an obstacle. We shall explain why the Stokes paradox occurs very
briefly. Let vs denote the dominant of solutions to the Stokes equations when | x|
is sufficiently large. It is well known that vs ~ log|x|. Therefore from simple
calculation, we see that

|(vs - V)vs|  |x|log|x]|
(1.2) my Ty >

This shows that the ratio of viscous force vAvg to convection (vg-V)vg diverges
when |x| goes to infinity even if v is very large. This simple observation yields
that the convection term cannot be negligible when we concentrate on the slow
motion.

To get rid of the Stokes paradox, C.W. Oseen [3] has introduced another lin-
earization of (N-S). Set v = Uy + u. Here u stands for the flow caused by
the presence of rigid obstacle B and it should converge to O when |x| — oo.
Suppose that (u - V)u is very small in comparison to linear terms, we obtain the
Oseen equations.

(Uw - V)u =vAu—-Vp, divue =0, x € Q,
(1.3) ulagg = Ve — Uco, lim u =0.

]x]—=>o00
Blessedly, we do not encounter a paradox like Stokes in Oseen’s approximation.

Therefore to understand the motion of fluid mathematically, a study on (1.3) is
important. ‘

oo (|x|] = o0).

' 1.2. Mathematical problem and main result. A good understanding of (1.2)
is that the ratio of viscosity to convection is quite small when |x| is not large
and v > 1. Therefore we can expect that Stokes’s linearization make some con-
tribution to mathematical analysis of the fluid even in two dimensional exterior
domains, if the neighbourhood of the boundary is considered.

Our aim of the present paper is to investigate the relationship between the Os-
een equations and Stokes equations near the obstacle. In particular, we would
like to get an error estimate between solutions of the Oseen and Stokes equations
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near the obstacle. For such purpose, here we shall introduce the dimensionless
form of our problem. Without loss of generality, we may assume that the uni-
form flow is along with x;-axis, that is, we may take U, = |U o] - *(1,0). Set
k = |U|/2v. The positive real number 2k denotes the dimensionless Reyrnolds
number. Our problems of this paper are the following boundary value problems
of the Oseen equations and the Stokes equations.

0
- k— = iV =
(1.4) Au +2 8x1u+Vp 0, divu =0, x €,

ujpg = ®.
We have the Stokes equations when we put £ = 0 in (1.4) formally.
—Au+Vp=0, divu=0, x € Q,
(1.5)
ulsgg = ®.
The main purpose of this paper is to get an error estimate between some solu-

tions of the Oseen equations (1.4) and Stokes equations (1.5) for small Reynolds
number. Our main result of the present paper is the following.

Theorem 1.1. Let uy be a solution to (1.4) with parameter k and uq be a solution

to (1.5). For any R > R, there exists an ¢ € (0,1) such that if 0 < |k| < ¢, the
Jollowing estimate holds.

. Cr
: - < :
(1.6) lux — uollcnsr) < Togk] I®llcon
Here || - ||c(p) = sup,ep |+ | and Cr is a constant which depends on R and

diverges when R — ooc.

Remark 1.2. (i) A similar estimates as in Theorem 1.1 are well known when
B is a disk or inside of ellipse. Indeed we can show such results by using
the method of stream functions in polar coordinate and conformal mapping.

(i) Our main theorem tells us that Stokes’s linearization still works well even
in the case of two dimensional exterior domain if the neighbourhoods of the
obstacle is considered. The authors believe that this fact has big significance
in terms of numerical study of hydrodynamics. In particular, our result and
its proof are closely linked to numerical scheme so called boundary element
method.

This paper is organized as follows. In Section 2, we will prepare some nota-
tions and preliminary results. In order to solve our problems: (1.4) and (1.5) by
hydrodynamic potential theory, we need singular fundamental tensor to the for-
mal Oseen and Stokes derivative operators which will be introduced in Section 2.
In particular, asymptotic behavior of such fundamental tensor are important. In
Section 3, we will introduce the layer potentials and investigate basic properties
of them. After investigation of the layer potentials, we will reduce (1.4) and (1.5)
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to the boundary integral equations on 9€2. We will solve associated boundary
integral equations by Fredholm alternative theory. In final section, we will show
our main theorem. The proof of our main theorem is based on the precise analysis
for fundamental tensors which will be discussed in Section 2.

2. Preliminaries

In this section we shall introduce some notations and preliminary resuits.

2.1. Green’s identities. We shall define the modified Stress tensor associated
with Oseen flow and the formal Oseen operator.

Definition 2.1 (Modified Stress tensor). For a smooth vector field # and scalar
function p, define the modified stress tensor by

Ti(u, p) = —2D(u) + pI, + k(u 0)
and its formal adjoint by

Ty (u, p) = =2D(u) — pl> — k(u 0),

(1 0) = (Z; g).

When k = 0, Tx(u, p) becomes usual stress tensor.

where

Definition 2.2 (Formal Oseen operator). For k > 0, we define the formal Oseen

operator by
[u _ (—Au+2kdu+Vp
O : (p) —> Or(u, p) = ( diva ),

and its adjoint operator by

« U —Au —2koju—Vp
Ok'(p)__)( - —divu )

When k = 0, @, becomes usual formal Stokes operator.

From the Gauss divergence theorem, we have the following Green’s identities
for Ok and O;. |

Lemma 2.3. Let G C R? be a bounded open set whose boundary is of class
Cl. For smooth and solenoidal vector fields u, v and scalar functions p,q, the
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following formulae hold.

/GOk(u,p)-(Z) dx:/a Tr(u, p)-vdo

+2/D(u) D(v)dx+k/——— vdx,

v *
[ (o ()~ (2 o)

= /BG (Tk(u, pn-v—u -T,’;(v,q)n) do.

2.2. Fundamental solutions. In this subsection we shall introduce the funda-
mental solution to the Oseen and Stokes equations which will be needed later.
The fundamental solution E; = (E e) je=1,2,3, K = 0, is a 3 X 3 matrix which
satisfies the following partial dlfferentlal equations

OrEx = 8I; in 8'(R?).

Here &’ denotes the class of tempered distribution, § denotes Dirac’s delta and 15
18 3 x 3 unit matrix.

It is well known that the explicit representation of E j’.‘e (seee.g., G.P. Galdi [2]).

1 X X
k -1 kx) kx; 1
(2.1) Ef;(%) Y ( =P + ke Ko(k|x|) + ke Xl |K1(k|x|)) :

D) Eh = Khe) = g (-2 + ke 2 Rukix) )

whn \xP x|
@Y Ehw = —(|—-[~2~+kek“Ko(k|x|)—ke""'g—lm(klxl)),
1 Xe k X1
Es() = Ef() = 5o U430 Es@) =) -0

Here and hereafter K,,(x), n € N U {0}, denote the modlﬁed Bessel function of
order n.

For the Stokes equations (k = 0 case), the following explicit representation
formulae are well known. '

1 X
0 _ Xj
ER) = 3= (~8etogled + 252,

1
2:4) E(x) = Epy(x) = Ixfz’ t#3,

Ed,(x) = 8§(x).
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In order to show our main theorem, sharp analysis for the fundamental solu-
tion of the Oseen equation plays crucial role. At this point we shall investigate
asymptotic behavior of E J’.‘e (x) (k > 0) when k|x| goes to 0. For such purpose,

the following lemma concerning the asymptotics of the modified Bessel function
is essential. '

Lemma 2.4. The modified Bessel functions have the following asymptotic behav-
ior when z — 0.

Ko(z) = —logz +log2 —y + 0(z%) log z,

1 =z 1
Ki(2) = - + 3 (logz —log2+y— 5) + 0(z%)log z,
where y = 0.57721 ... is Euler’s constant.

For (2.1)—(2.3), by Lemma 2.4 and Taylor series expansion, we have

1 x2 1
: EX(x)= —|-1 Bk W SR _
(2.5) n() = ( og |x| + lxlz) +.4n( logk + log2 —y)

+k logkCu(k,x),
1 x1x;

@6  EL() =En® =7

+ klogkCia(k, x),

2

1 X 1
) k = — [ -1 2 —(— —_y -
@ Ehe) = o (~loglxl+ 2 ) + (- logk +log2—y — )

+ k logkCyy(k, x),

where Cj¢(k, x) (j,£ = 1,2) stand for continuous kernel with respect to k and
X.

Remark 2.5. From (2.5)—2.7) and (2.4) Ex can be decomposed into E, and
C(k,x). This fact means that the fundamental tensor of the Oseen equations
has the same singularity as that of the Stokes equations when k|x| < 1. Such
decomposition will play crucial role to investigate some properties of layer po-
tentials which will be introduced in next section.
3. Layer potentials and boundary integral equations

With help of the fundamental tensor Ex (k > 0), we shall define the layer
potentials. For k > 0, let us define the single layer potential by

(Sk¥)(x) = /a O =)¥()do0),

and the double layer potential by
(Dx¥)(x) = [a _Dy(x,1)¥0) o).
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Here 3 x 2 matrix E ,ic) is determined from the fundamental tensor Ey by elim-
inating the last column and the double layer kernel matrix Dy (x, y) is given by
the following formula:

Di(x,y) =" ~Tex Ex(x = y)n(y) = ((~Tex EE = )y ), -
Here n(y) is the unit outer normal on 9<2.

From strait-forward calculation, we see that D (x, y) can be decomposed into
Do(x, y) and continuous part when v|x — y| — 0. This implies that the double
layer kernel matrix D (x, y) has the same singularity as Do (x, y).

Here and in what follows, let

3.1) (S2¥)(x) = fa _EPO(x = ))¥0) do ()
3.2) DI¥)(x) = fa D )¥() o).

Sy W and D;W¥ denote the single and double layer potentials associated with ve-
locity, respectively. Here the 2 x 2 matrix E ,g"c) is obtained from the fundamental
tensor E by eliminating last row and last column, and D,(c') is also obtained from
Dy by eliminating the last row.

From (2.5)—(2.7) and the fact that Dy (x, y) has the same singularity as Dy (x, y),

we have the following jump and continuity relations for the layer potentials cor-
responding to the velocity.

Proposition 3.1 (Jump and Continuity formulae). Let ¥ € C(3R)? and let Sp¥
and D}V be the layer potentials defined by (3.1) and (3.2), respectively. Then
the following formulae hold.

(3.3) (Sp¥) = Sp¥ = (Sp¥)°,

(3.4) ((S)™¥) = (Sp)*¥ = ((S)"¥)°,

(3.5) (D;¥) — Dp¥ = +%\1’ = D;W¥ — (D ¥)°,
1

(6 (DY"¥) — (D)"Y = —2¥ = (DP"¥ — (D)*¥)"

Here (S3)* and (D;)" denote the dual operator of S; and Dy, respectively.

w' and w® denote the limit from interior point and exterior point, respectively.
Namely,

i — : e = 1 i
w (2) Q"lall;l—-»z w(x), w (Z) ngl}-»z w(x)
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Next we shall reduce our problems (1.4) and (1.5) to boundary integral equa-
tions. According to Borchers & Varnhorn [1], we choose the following ansatz.

U 4o
A =DV —nStMV¥ + ——S; ¥,
(Ak) (Pk) k NSk +logk k

(Ao) ("") = DoW — nSoMV¥ — o f (‘I') do.
Do | i \0

Here M . ¥ —> MV = WV — W¥,,. where

1

i = Taq

/ V¥ do, |092|: Lebesgue measure of 92.
.19

From the boundary conditions of (1.4) and (1.5), (Ax), (Ao) and Proposition 3.1,
we have the following systems of boundary equations:

1 . . dra
(Bk) P = (—512 + Dk - T]SkM + @Sk) ¥ = Kk\l’,

1
(Bo) ®= (_512 + Dy — nSIM — «|3R|(I; — M)) ¥ = KW,

For boundary integral equations (B) and (Bo), we have the following proposi-
tion.

Proposition 3.2. Let ® € C(3S2). Then

(i) For any n,a > O there exists an € € (0, 1) such that if 0 < k < ¢, then there
exists exactly one solution W € C(02)? of the system of boundary integral
equations (Bg).

(ii) For any n > 0 and a # O there exists exactly one solution ¥ € C(92)* of
the system of boundary integral equations (Bo).

Proof. The second assertion (ii) was already shown by [1] (see also [4]), we only
show (1). '

Since the operator Kx (k > 0) is a compact on C(32)?, by virtue of the
Fredholm alternative theorem, solvability of (By) follows from the uniqueness
for the adjoint problem with respect to usual inner product in R2. Therefore we
shall investigate the following homogeneous problem:

_ 1 o % o\ & 4o o\ *
3.7) 0= ( 512 + (D))" + M(Sp)™ + _—logk(Sk) )\Il.
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Let ¥ be a non-trivial solution to (3.7). Our task here is to show that ¥ = 0.
From (3.4) and (3.6), we have

0=K;¥ = (-—%12 + (D))" —nM(Sp)* + ffﬂ(Sk) )

(((Dk) ) = M(S)" + (Sk))

Therefore we obtain the equahty:

(3.8) (D)%) = nM(S})"¥ — fff‘-(skw

Set *(v,q) = S;W¥(x). One can easily check that the pair of functions (v, q)

solves the following dual Oseen problem in a bounded domain Q; = B:
d
—Av—2k—v——Vq-0 —divy =0, x € ;.
8x1

Hence by virtue of Lemma 2.3 in 2; and (3.8), we have

0‘=/ ( Av — Vg — 2k—?——)-vdx
i 8x1
ov

=[ T,‘;x(v,q)n-vd0+2fD(v):D(v)dx—k — vdx
n Q Q; 0x1

. | k
_ fag((D;)*w)t .vd0+2Li D(v):D(v)dx—E/ n1|v|2d§

o

4o k
= n||Mv|? — ——||v||? 2||D(v)||2 - = f 2d
nll v"LZ(ag) Togk ”"HLz(ag) + 2| (v)“LZ(g,.) 2 Jog ni|v|*do

1 8ra
> '7||M””L2(as2) + = ( (l/k) ) ”v“iz(ag) + 2”D(v)”%'2(gz)
Choose k € (0, 1) in such a way that
8rna

——k >0,

log(1/k)
we can conclude that v = 0 in Q;. Therefore we have

. . dna
VW) = = — = Q.
((Dg)*¥) = (gn)’ = nMv logkv

On the other hand S;W¥ solves the following boundary value problem in the
exterior domain 2, = Q:

X1

{——Av—2k-§-—v——Vq=O —~dive =0, x € K2,
vlaq, = 0.
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Therefore from the uniqueness result due to Galdi [2], we have (v,4q) = (0,0) in
Q.. This yields that ((D;)*¥)¢ = 0.

Since W = ((Dp)*¥)¢ — ((D})*¥)' (see (3.6)), we conclude that ¥ = 0.
This completes the proof. | O

4. Proof of Theorem 1.1

This section is devoted to the proof of our main result. First of all we shall
show two key lemmas.

Lemma 4.1. For Ky and K, there exists a ko € (0, 1) such that if |k| < k¢ the
following estimate holds.

@.1) 1Kk — Kollz < “C o

Here and hereafter ||-|| £ stands for the operator norm of the space £(C(92), C(92)).
Proof. Let W € C(3R)2. Then from (Bx) and (By), |

| Kk W — Ko¥|lcon) < |1Dr¥ — Do¥licn) + Inll|SeMY¥ — SgM¥| coa)
4

gk SE¥ + 09112 — M)W

= Jy + n|J2 + |a| /5.

J1 and J, can be estimated by (2.5)(2.7) and the fact that D (x, y) can be
decomposed into Do(x, y) and continuous parts. Estimate for J5 also follows -
from (2.5)—(2.7) and decomposition of double layer kernel. In fact, from direct
calculation, J3 can be estimated as follows.

4
log k

+ lo|

Cc()

J3 = sup

SW + |0Q(12 — M)\Il'
x€IN

4 (r,c) _
/ (long (x J’)+12) do|.

4r
logk

We shall estimate sup,.cyq f3q @j¢(x, ¥) do for each j, £. From (2.5), we obtain

< I¥llcn) sup
xe€ad

Set

A(x,y) = @je(x, Y)si,js2 = Ef(x—y)+8¢ j =12

4n
an(x) = ng_l;E{cl(x) +1
2

= ———(—logl |+ =3 P |2 +log2 —y) + kCu(k, x).

log
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Therefore we have

Cy
4.2) sup / aj(x,y)do| < + Cak.
xedq |Jog 1 | log k| ’
From a similar manner, we can conclude that
C,
4.3) sup / ax(x,y)do| < + Cak.
xeon | Jog [logk| =

Next we shall consider estimate of a;5(x, ¥). From (2.2), we see that
4

I (x1—y1)(x2— y7)
, = -—-——-—Ek — =
Gy = ek Ent =Y = T o

This implies that

+ 4nkCia(k, x — y).

Cy

44 su / ap2(x,y)dol| < + Cik.
) xeagz a0 12(x.7) | log k| 2
Combining (4.2)—(4.4), we have desired estimate for some k € (0, 1). O

Lemma 4.2. For syfficiently small k € (0, 1), we have
1K e < 20K5 e

Proof. From Theorem 3.2 (ii), the operator K, has bounded inverse. In view of
(4.1), we shall choose k is sufficiently small in such a way that

1

1Kk = Kolle = 5o
21 K5 lle

- Then the Neumann series

(Ip— A4 ' = i AL with Ay = K31 (Ko — Kx) = I, — K3 Ky,
£=0
converges absolutely in £(C(92), C(d2)) with
17z — A) Ml < (1 — | Aelle)™ < 1= |1K5 2l Ko — Kiell2)™! < 2.
Since Ax = I> — K5' Ky is equivalent to K;! = (I, — Ax) 'K, we have
IKe e < U2~ Al K5t e < 21K5 e
This is desired estimate. O

We are now in a position to show our main theorem.

Proof of Theorem 1.1. Let u; and ug be solutions of (1.4) and (1.5) , respectively,
4 : _
up(x) = Li¥ = (D,; —nSpM + B’é%s,;) ¥, with¥ =K'

uo(x) = Lo¥ = (Df — nSIM — a|3Q|(I — M))¥, with ¥ = K;'®.
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Then we have
i (x) — uo(x)| = Lk Kg'® — LoKy' @|
= |(Lk — Lo)K; ' ®| + |Lo(K;' — Kg)®| = Gy + Go.
We shall estimate G, and G5 over N B with R > Ry. First we consider G;.
From Lemmas 4.1 and 4.2

C
(4.5) sup Gy < ==
x€QNBR |log k|
Here Cr is a constant depends on R which diverges when R — oc.
Next we shall estimate G,. Since Ki' = (Io — Ax) 'Ky with Ay = I, —
Ko_lKk,

Cr
1K' ®llcea) < Tog |||‘1’||c(aﬂ)

o0 oo
=Y AL -K' =K'+ ) ALK
£=0 =1

Hence, from Lemmas 4.1 and 4.2, we see that

o0 o0
1K = Kotlle < | DAL 1K e < ldelle | D_Ab| - 1K5 e
£=1 & £=0 £
C
< ClKe = Kollz < oo
Therefore, we have
(4.6) sup |G| < Crll(Ki' — Ko D®licen) < | ®licen.-
x€QNBRr ‘ 1 |
Combining (4.5) and (4.6), we have our main theorem. O
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