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Sharp asymptotics for
the generalized Burgers equations
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Department of Mathematics, Osaka University

1 Introduction

This note is concerned with large time behavior of the global solutions to the generalized
Burgers equations:

(1.1) U+ (f(u)e =Uzz, t>0, TER,
(1'2) u(zio) = uﬂ(z)v

where ug € L'(R) and f(u) = 2u? + £u® with b # 0, c € R. The subscripts t and =
stand for the partial derivatives with respect to ¢t and z, respectively. In Kawashima (7]
and Nishida [11], it was shown that the solution of (1.1) and (1.2) tends to a nonlinear
diffusion wave defined by

(1.3) | x(z,t) = —1¢—1-+?'7X~ (—;\/——_}_——t) , t20, z€R,
where

1 (MP-1)e %
(1'4) . X*(w) b VT + (eb6/2 - 1) fh e"’zdy’
(1.5) o= /;uo(m)dw.

By the Hopf -Cole transformation in Hopf 4] and Cole [1], we see that it is a solution of
the Burgers equation

b
(1'6) Xt + (-2-)(2) =Xzzs t>0, z€ER,
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satisfying
(1.7) /x(z,o)dx =4.
R

More precisely, if ug € L3(R) N H(R) for some 3 € (0,1/2) and |jug||g: + ||uo||z: is small,
then we have

(1.8) lu(,2) = xC )l < C(1+ )=+ (Jluollm + [luollzz), t20,

where o = (1/2 — 3)/2. Here, H!(R) denotes the space of functions u = u(z) such that
O;u are L*-functions on R for I = 0,1, endowed with the norm || - || z», while L}(R) is a
subset of L*(IR) whose elements satisfy [|ul| 13 = Jglul(1 + |2])Pdz < co. They deal with
the hyperbolic - parabolic system of conservation laws. If we consider the single equation,
then we easily modify the estimate of (1.8). For 8 € (0,1) and [uol| g + |juo||z: is small,
then we have '

(1.9) lu(,8) = (s )lle= < CQ+ )7 **(Jluollen + lwollzy), ¢20,

where a = (1 — §)/2. However, the estimate (1.9) leads to a natural question whether it
is possible to take @ = 0 in (1.9) for the extreme case 8 = 1 or not. In [9], it was shown
that we can’t take a = 0 in (1.9), unless § = 0 or ¢ = 0. Indeed, the second asymptotic
profile of large time behavior of the solutions is given by

(110) V(z,t) = —%v. (—1\/1'1:5) (1+8)log2+8), t20, z€R,
where
(1.11) V(@) = (e~ T ) (2),
(1.12) 7.(z) = exp (% /_ . x.(y)dy) ;
(1.13) a= [ mwniwa.
R

The aim of this note is to strengthen the result of [9]in the following two points. One is
to show that V(z,t) is the second asymptotic profile not only in the sense of L* but also
in the sense of I?( 1 < p < 00 ). The other is to show that we can take the initial data
from rather wider class L}(R) N B(R). Here we denoted by B(R) the Banach space of
- all bounded and uniformly continuous functions on R¥ with the usual supremum norm.
And we set Eg = [lug||z= + ||luo|z3. Then we have the following result.

Theorem 1.1. Assume that up € L'(R) N B(R) and Eg is small. Then the ini-
tial value problem for (1.1) and (1.2) has a unigue global solution u(z,t) satisfying u €
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C°([0, 00); L*) N C°([0, 00); B). Moreover, if ug € L}(R) N B(R) and E, is small, then the
solution satisfies the estimate

(L14)u(,8) = x(8) = V() SCE A +)7HY0P, £>0, 1<p<oo.
Here x(z,t) is defined by (1.3), while V(z,t) is defined by (1.10).

REMARK 1.2. In Liu [8], the initial value problem for the Burgers equations (1.1) and
(1.2) is studied, provided ¢ = 0 implicity at page 42. After the proof of Theorem 2.2.1, it
is mentioned, without proof, that if we assume (1 + |2])2|uo(z)| < & and & is small, then
the estimate

lu(yt) = x(, )l < CEA+1)F, t2>1

holds. However, from our result, the above estimate fails true for the case ¢d # 0. In
Matsumura and Nishihara [10], it was shown that, for some initial data, the estimate

(1.15) lu(12) = x(, D)l < CA+12)7 log(2+1), t20

holds instead of (1.9).

We also remark that the estimate similar to (1.14) was obtained for other types of
Burgers equation such as KdV-Burgers in Hayashi and Naumkin [3] and Kaikina and
Ruiz-Paredes [5], and Benjamin-Bona-Mahony-Burgers in Hayashi, Kaikina and Naumkin

[2].

2 Preliminaries

In order to prove the basic estimates given by Lemma 3.2, Lemma 3.3 and Lemma 3.5,
we prepare the following two lemmas. The first one is concerned with the decay estimates
for semigroup e*4 associated with the heat equation.

Lemma 2.1. Let | be a nonnegative integer and 1 < g < p < oo. Suppose go € LU(R).
Then the estimate

(2.1) |0LetAgol| s < Ct=Wa-PD2goll e, t>0
holds.

The second one is related to the diffusion wave x(z,t) and the heat kernel G(z,t).
The explicit formula of x(z,t) and G(z,t) are given by (1.3) and

1

(2.2) Glz,t) = %, t>0, zeR,

;
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respectively. It is easy to see that

o2
(2.3) Ix(z,t)| < CJo|(1 +t)~2e @, t>0, ze€R
Moreover, we get the following (see e.g. [10]).

Lemma 2.2. Let a and B be positive integers. Then, for p € [1,00]|, the estimates

(2.4) 10202 x(, t)z» < Cl8|(1+1)"80-2)-%-F ¢ >,
(2.5) 18282G(, )|l < CtH0-P-%-F ;50
hold.

For the latter sake, we introduce 5

(2.6) n(w,t)Em( ﬁr)—exp( [ xwom.
We easily have
2.7) min{1,e¥} < n(z,t) < max{1,e¥}.

Moreover, we can deduce the following. For the proof, see [9].
Corollary 2.3. Let | be a positive integer and 1 < p < 0o. If |6] < 1, then we have

(2.8) 1840, t)llze < CI8|(1 + £)=C-1/P)2,

3 Basic estimates

We deal with the following linearized equations which coressponds to (4.4), (4.5) below:

(3.1) 2t =2gp — (bx2)z, t>0, z€R,
(3.2) 2(2,0) = 2(2).

The explicit representation formula (3.4) below plays a crucial role in our analysis.

Lemma 3.1. If we set
v
33) Ul(s,t,7) = fn 02(G(z =y, t — T)n(z, )~ (v, 7) /_ w(§)dédy,
0<7T<t, =z€eR,

then the solutions for (3.1) and (3.2) is given by

(3.4) 2(z,t) = Ula)(z,2,0), t>0, zeR.
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ProOF. If we put

(3.5) r(z,t) = [: 2(y,t)dy,
then we see from (3.1), (3.2) that r(z,t) satisfies
(3.6) Ty =Tz —bxre, t>0, zT€ER,
3.7 0,0 = [ aa.
Then a direct computation yields
r(z,t r(z,?) |
¢4) (5%57;) - (nzw,t;)m’
where 7 is defined by (2.6). Therefore, we have
(3.9 r(e,t) = (o,1) [ Glo - vt 07r(w, Ody:
Hence (3.9), (3.5) and (3.7) yield (3.4). ]

Next we derive the decay estimates (3.10) and (3.11) below for the homogenous equa-
tion (3.1). For the proof of Lemma 3.2, see [9).

Lemma 3.2. Let § € [0,1] and 1 < p < 0o, Assume that 2o € L3(R) and [ 2o(z)dz =
0. Then, the estimate

(3.10) 1UT20) (-, 8, 0)llz» < CEO5+ 503, £>0
holds.
We modify the L? estimate of [9] to the following.

Lemma 3.3. Let 1 < p < 0o. Assume that zo € L*(R) N LP(R) and [} z(z)dz = 0.
Then the estimate ‘

(311)  Ulz)(+2,0)llze < C(1 + )" C~D2(| 2] 1 + ||20]l20), >0
holds.
PRrROOF. We have from (3.3)

Ulkal(@,6,0) = [ 0.(6(@ — v, (e, )~ (w,0) [ “ z0(E)dédy
= Bun(s,1) / 6@ -ty w0 [ Lzo(emdy

(3.12) +n(z,1) /. G(z — v,4)8,J (v)dy,



135

where we put

(313) 1) =170 [

v

zo(§)dé.
(~+}
Therefore we have from (2.5) and Corollary 2.3

IUz0] (-, ¢,0)le < ClIGan(-,t) e IG(:, )| 22 |20l 2
+Clin(:,t) || = le*[82 ]l o
< C(1+t)y" O3 5| Ly
(3.14) 40|28, J] || 2o

From (3.13), (2.4) and Corollary 2.3, we have

el < Cllx@,0) [ a(de]  +Claola
B L'(Ra)
(3.15) < Clalw,
and
1 . ) ]
OzJ < C 6, "n " (z,0)0% d{“
0Tl < O3 o w00z [ )]
< CIOn(, 0)llzs20llzx + Cllm(-,0) o 20l 2

(3.16) < Olzollz: + l1zllz0)-

Hence, from (3.15), (3.16) and Lemma 2.1, we have

le2Belllr < O +8) 0P8, |l 1s + (|82 |22)
(3.17) < CQ+t) 0D 2]| 21 + || 20]| o)
Therefore by (3.14) and (3.17), we obtain (3.11). This completes the proof. 0O

From Lemma 3.2 and Lemma 3.3, we get the following uniform estimate.

Corollary 3.4. Let 1 < p < co. Assume that zp € L1(R) N B(R) and f; 20(z)dz = 0.
Then the estimate

1U20l(:,2,0)|lze < CEy(1 + 1)~ CO-YP/2-172 1 ¢ 5 0
holds.

By using Lemma 2.1 and Corollary 2.3, we derive the decay estimate (3.18) below for
the imhomogenous equation (4.4) below. The estimate will be used to get the decay rate
of the solution w(z,t) for the problem (4.4) and (4.5).
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Lemma 3.5. Let 1 < p < oo. Suppose w,0,w € C°(0,00; L) N C°(0,00; B). Then
the estimate

/2
< Cf (=7 w(,7)|ndr
0

[ et e

0 L»

(3.18) +0 [ (6= 77l
t/2

holds.

4 Proof of Theorem 1

In order to prove our result, we introduce the following auxiliary problem:

(4-1) Ut = Vg — (bxv)c - (%Xs)z, t>0, z€ R’
(4.2) v(z,0) = 0.

By using Lemma 3.5 and Lemma 2.2, we derive the decay estimate for the solution v(z, t)
to the above problem.

Lemma 4.1. Let 1 < p < 00. Then we have
(43) lo(,)lze < Cl8P(L+2)"+/ ¥ log2 + 1), t20.
Our first step to prove Theorem 1.1 is the following.

Proposition 4.2. Let 1 < p < 0o. Assume that ug € L*(R) N B(R) and E, is small,
Then the initial value problem for (1.1) and (1.2) has a unique global solution u(z,t)
satisfying u € C°([0, 00); L') N C°([0, 00); LP). Moreover, if up € L}(R) N B(R) and E; is
small, then the estimate

(1) = x(+2) = v(, t)llr < CEL(1+8)7+V/ER), ¢ >,

holds. Here x(z,t) is defined by (1.3), while v(z,t) is the solution for the problem (4.1)
and (4.2).

PROOF. We shall prove only the decay estimate. We put

w(z,t) = u(z,t) — x(z,t) - v(z,t).
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Then w(z,t) satisfies

(4.4) Wy = e — (bxw)e + (9(w, X,V))e, £>0, z€ER,
(4.5) w(z,0) = wo(c),
where we have set wp(z) = up(z) — X(z, 0) and
g(w,x,v) = -;(w +v)?

(46) 500’ +9° + 3w+ )W+ )+ )l
Since uo(z), X(z,0) € L}(R) N B(R), we have wo(z) € L} N B. Bisides by (1.5) and (1.7),
@7 /R wo(z)ds = 0.

Now, we define N(T') by
(48)  N@) = sup {0+0 (Ol + A+, )=}

First of all, we shall show that
(4.9) loC:t)lze < C(1 +2)~2V/E)((|8]10g(2 + 1))? + N(T)?).

Here and below, |6| and N(T') is assumed to be small. We put hy(z,t) = w(z,t) +v(z,t),
ha(z,t) = w(z,t) + x(z,t) and ha(z,t) = x(z,t) +v(z,t). Then, we have from (4.8), (4.3)
and (2.4)

(4.10) I(w +v)?(,)|ze < CQ +£)~2Y/ (6] 1og(2 + £))? + N(T)?),
(4.11) I, )lze < C(L +¢)*+/CAN(T)?,

(4.12) I3, )l e < C (1 + £)~2+/CP)(|5] log(2 + 1))?,

(4.13) I(h1hahs) (-, t)llz» < C(1 + )2+ ((15] log(2 + £))* + N(T)?).

Suming up these estimates, we obtain (4.9) from(4.6).
Applying the Duhamel principle for the problem (4.4) and (4.5), we have

t

(414) w(z,t)= Ulwo)(z, ¢, 0) +/ Ulozg(w, x,v)(7))(z,t,7)dr, t>0, z€R.
0

We have from (4.14), Corollary 3.4 and Lemma 3.5

t/2
Il < OQ+™ OB +C [ =YDl i
0

t
+C [ (t= )y V3gl, lzmdr
t/2

(4.15) L+ I+
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First we evaluate I;. From (4.9), we have
t/2
C [ (t—7)""VOD(1+7)"% ((|6]log(2 + 7))% + N(T)?) dr
0
(4.16) < C(1+t)~1+Y0) (1512 + N(T)?).

Next we evaluate I3. From (4.9), we have

I

IA

IL < C t (t — 7)712(1 4 7)) ((|5] log(2 + 7))* + N(T)?) dr

t/2
(4.17) < C(1+1¢)~B-Vo)/2 ((|5|1og(2 +t))? + N(T)?).
Since |0| < Eh, if E is small, then we obtain the inequality
(4.18) (1+8)"VQLw(., t)|1» < C(Ey + N(T)?).

Therefore, (4.18) gives the desired estimate N(T') < CE;. This completes the proof. O

To complete the proof of Theorem 1.1, it is sufficent to show Proposition 4.3 below
by virtue of Proposition 4.2. Although the similer estimate was shown by Lemma 3 in
[5], but we need to modify the proof of it, in order to avoid the logarithmic term in the
right-hand side.

Proposition 4.3. Assume that |6| < 1. Then the estimate
(4.19) oG, t) = V (-, 8)llee < CIOP(L+)7HV0P, ¢ >1

holds. Here, v(z,t) is the solution for the problem (4.1) and (4.2), while V (z,t) is defined
by (1.10).

PROOF. By the Duhamel principle, we have

o)) = ~% [ UBaw(et,ir

- ¢ //2 /, 0:(G(z — y,t — T)m(2,8))m (v, )X (v, T)dydr

o [H?
3| [ o6t - wt = (e hmu,c )
First we evaluate I;. By the integration by parts with respects to y, we have
t b .
L = —--c-m(w,t) f / (azG(a: -y t—7)+ =x(z,t)G(z — y,t — 1'))
3 t/2 JR 2 .
xa(y, 7)x°(y, T)dydr
c ¢
= —gmied) [ [ G- wt-n)(omexwm)
t/2 JR

+gm(y,T)x(m,t)xs(y,f))dydr.
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Therefore, we get from Lemma 2.2 and (2.7)
t
Ha(: e < C/;M%J-TWDOR%JWU+ﬂﬂwﬂﬁdﬁahfwu
t

+||X('at)"Lwllxa(',")“u}dr

IA

t
claf? / (1+7)"2+3/Gr) gy

t/2
(4.21) < CJoP(1 +t)~1+V/Gn),

Next we evaluate I,. If we put
c
(422) A(:B, t) Y, T) = _§03(G($ -Y t— T)nl(zyt))a
then we have
t/2 .

(4‘23) L= A /RA(ﬂ",t,y,"')')z(y: T)X (y)T)dydT'
Spliting the y-integral at y = 0 and making the integration by parts, we have

I

t/2 poo - |
/o /o- 6yA(:n,t,y,'r) /; '72(5,T)X3(£,T)d£dyd7-
t/2 (0 |
_/o /;w OyA(z,t,y,7) /j;o"z(€’f)x’(£,r)d£dydr

t/2 .
+ [ Awton) | me (e midgar

(4.24) L+ I + I,

First we consider I3. By using the Young inequality, (2.5) and (2.8), from (4.24), we
have

t/2 poo poo
(D)l < CeG-Yo2 / / / Ix(€, 7P dgdyar.
y

Then, by the integration by parts with respect to y, it follows from Lemma 2.2 and (2.3)
that

' t/2 poo
Ms(r )l < Ce@-1/on2 [o / Ylx(y, ) Pdydr

" _lyl
CJ%“*MN/ 1+7)7! Y_e-wtraydr
9] A (1+7) T
(4.25) < Cl5P( +t)1HYem,

IA
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Similarly, we have
(4.26) Ma(r8)llze < CIB[8(1 + 1)1/,

Next we consider 5. From (2.6), (1.3) and (1.13), we have

/;772(61 T)Xs(f, T)d£ = d(l + T)—I:

it follows from (4.22) and (4.24) that

. t/2
Is = d A(z,t,0,7)(1 + 1)~ ldr
0

cd t/2
= -Sm) [+ (@6Et-7) - 0.061)
0
+5x(@,1)(Gla,t - 7) = Gla, ) )ar
--cg"?l(“”t) (6,,G(a:,t) + -g-x(x,t)G(z, t)) log (g—}—t)
(4.27) = Is1+ Iss. '
In order to evaluate Iy ;, we shall use
(428) 182Gyt — ) = 8:G(:,t)|z» < C(t — 7)~C- M2
for |=0,1and0< 1<t /2 This estimate can be shown by observing that

1
AG(z,t — 1) — 8.G(z,t) = -7 / (6:6LG)(z,t — 07)d6
0 .

and by recalling (2.5). Since |d| < C|6]® by (1.13), we have from(4.28)
t/2
saC,Olle < CIP [ (L7)" (= 1) #V0r 4 (14 1)kt = r)-C-YoVDr)gr
0 .
¢/2
(4.29) < Clf / (t = 7)"H/@Pdr < CloJ(L + £) Y0P,
0

Finally, we evaluate I52. From (4.27), (2.2), (1.3) and (2.6), it follows that

I5,2 = - lzc\d/:’?n, (—_1$+ t) (b——,_._.]\'/-_i tX* (—\/-lx_-]——i) — %) e—%—:'t—l(log(t + 2) _ log 2)'
Since
' t\:_t_ 1 - 1[ S C(l +t)‘1, 771- (—-i\/—..—_r_;) - T (.ﬁ) . S C(l +t)__1
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and
(=) -x(— <C(1+1t)?
X(\/H—t) X(s/Z>L = c+
we have from (1.10), (1.11), (1.4) and (1.12),
1 s.2(,8) =V, 9)lle < Cl6P7*Y0P 4 Ol \/L 1) t~1+1/CP) log(t + 2)
+CJsp 7,.( ) ( )‘ £141/08) og(2 4 1)
Loo
+C|6)2 || x. ( ) ( ) =141/ @) Jog(2 + t)
Lw
(4.30) < C|6]3(1+t)'1“/(2").
Summarizing (4.20), (4.21), (4.25), (4.26), (4.29) and (4.30), we obtain (4.19). This
completes the proof. O
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