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Blocks and strongly p-embedded Frobenius subgroups
EFHE (ARAZEEMENERANBEER)

FEM—ERKIZFAX H) OFTROFEEEXTVET,

FR GCEERE, pREK BEGOp7uviid3. &L, Irr(B) DZETHZVER
TREIJT, w= 2y e Xi(Dx; WFRTD psingular L ETELRDERIRD LT 5 L,
J & Irr(B) L —&T 5.

(COTFHEDOBOMEIX, K<HONTMBERTT. )

COFEIELUTORSICIEATNTHET.
(a) B AKEIREREFFDOL Z, [H],
(b) G A p-AIfRTHBH L E, [KO],
(c) GD¥a— p-Ei5EED p = 2 T dihedral, semidihedral, ¥ =13 quaternion T#% 3 h,
p=3 TUHMIODHTHZ L E, [K]
(d) G = PSLy(q) [11],
(e) G = PSp(4,q) £7ziX Ga(q) T. (¢,2p) =1 &% B L ZE, [12]
) &L, BDETNTOENT 57— liftable TH B & ¥, [12].

T DERIITRITINCHET 2HEBEME> TITODNTWVET, TORITIE. D
HEZBNMLESELE S, BB, Yu—piad P DIEREEE No(P) A’ strongly p-
embedded 7 INZY AERGEE L VS RFDOTIC, LOFERELWT & E2HRRITHIRE
OTIEHT B3 DI T,

EE GREMRBLL pEEM PEGOVO—pHoBLLET. &L, PH7—
~NIVEET. Ng(P) 1 strongly p-embedded 7UNRZU R L TH L, G & p il
TFEMNELL.

TEXRODIEEA  Suppose false and let B be a block and J € Irr(B) is a counterexample to
the conjecture, that is, @ # J # Irr(B) and w = 3 .; x(1)x vanishes on all p-singular
clements. In order to simplify the arguments, we may assume that P is not cyclic by [H].
Set N = Ng(P) and let K be a Frobenius kernel of N and H a complement of K in N,
then K = P x C and |H| < |P|, where C' = Oy (Cg(P)). .

Lemma 1. K is a T.I.-set.

[Proof] For 1 # ¢ € C, Cg(c) contains a strongly p-embedded subgroup Ng(P) N
Ca(e) = P x Ce(c). Therefore, Ci(c) = Op(Cgq(c)) x P. Since rank(P) > 2, we have
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C N for any 1 # ¢ € C. Therefore, for any 1 # E C C,
Ny (P)Ce(E) < N, which implies that K is a T.I.-set.
O

In this paper, pp denotes the regular representation of P. We note that Zpp is an
ideal of the character ring ch(P) of P. The assumption of the theorem implies w\p € Zpp.
We will divide the proof into three parts.

(1) Assume that K = P and H acts on P ~ {1} tran31t1vely
Then P is an elementary abelian group and Irr(P) = {1p,&" | h € H} for some nontrivial
linear character &, of P. Since & — (1 p)" vanishes on p-regular elements, we have

(15 -&6%18 - &%) = ¥ - &M, 18 — &) = |H| + 1.

For any p € Irr(G), if (i, 1€ — &°) = 0, then {p, 1p) = (pp, &™) for all h € H and so
wp = app for some a € Z. In this case, i has a trivial defect group and {u} is a block.
Therefore, we may assume that for any pu € B, (u, 1§ — &, )G =a, # 0. Then

pp = (e +t)1p+t(D_ &") =aulp (mod Zpp)
heH

for some t € Z and so
u(l)=a, (mod |P]).

Hence we have
p(L)pp = af,lp (mod (|P], pp)) and
0=3,cspMmp =T, e, ahlp  (mod (1P|, pp)),

where (| P|, pp) denotes an ideal of ch(P) generated by |P| and pp. On the other hand,
since 0 < Z“Emw)a < |H|+1<|P|and Irr(B) — J # 0 and a, # 0 for u € Irr(B), we
have 0 < }° ;a7 < |P|, a contradiction.

(2) Assume that K = P and H does not act on P — {1} transitively. Set Irr(P) =
{1p,¢5,...,8" | h € H}. By the theory of exceptional characters, there are x; € Irr(G)
and e E {il} such that

(¢: ~ ¢J) e(xi — x;j)

fori,57 > 2. There is also a virtual character A satisfying (A, x;) = 0 such that

(lp =~ o) = (A= x2+5)_xi)
1=2
for some s € Z since ((1p — ¢2)°, (¢; — ¢;)¢) = —di2 + 0;2. For p € Irr(G), if

(1, (95 — ¢2)%) =0 =_(u» (1p — 62))
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for all i, then (wp, i) = (up, 1p) for all ¢ and so

Mip € ZPP,
which implies that {u} is a block with trivial defect. Therefore we may assume
Irr(B) € {x: | i=2,...,7} UIrr(A),

where Irr(4) = {p € Irr(G) | (u, A) # 0}. Set (u, A) = a,. Since (¢; — ¢;)¢ vanishes on
all p-regular elements, we have (w, (¢; — ¢;)¢) = 0. Therefore, if J contains some Y;, then
J contains all x;. Taking J or B — J as J, we may assume

J C Irr(A).
For any p € Irr(A), since (u, (¢; — ¢;)€) = 0 and (u, (1p — ¢2)¢) = €a,, we have

mp = eaylp  (mod pp)

and so
u(l) = ea, (mod |P)).
Hence
O=wp=) ump= ailp (mod (|P|,pp)),
ned
which contradicts to
0< > a2=(A,A)=|H <|P|
u€lrr(A)
(3) Assume C # 1. Since H acts on C fixed point freely, C is nilpotent. Set Irr(P) =
{1p = ¢1,62,..., 7} and Irr(C) = {1c = &,&",...,&" | h € H}, where deg(&2) = 1.
Then Irt(K) = {¢; ® £1,4: @ &", ..., 6: @& | h € Hyi = 1,...,|P|} and (¢; ® €;)V
irreducible for (%, ) # (1,1) since N is a Frobenius group with the kernel K.

By the theory of exceptional characters [S], there are x;; € Irr(G) for (4,5) # (1,1)
and ¢; € {£1} for j such that

(6 ® €)% = (6n ® &) = €(Xij — Xnk)

for (4,7), (h, k) # (1,1) and deg(§;) = deg(éx). We note that since deg(¢,) = deg(&;) = 1,
Xi,; are all well-defined for (4,5) # (1,1). We also note that since ((¢; ® &)¢ — (¢r ®
&€, (da ® En)C — (b ® €,)C) = 0 for j # h, we have x;; # xax for (i,5) # (h, k) except
J=1=k and ¢; is H-conjugate to ¢,. Since (¢1 ® & — P2 ® &1, 0 ® &3 — dp ® &) =0
and (¢1 @& — P2 @ &1, P2 ® & — Pr ® &) = —1 for h # 2, we also have a virtual character
A of G satisfying (A, x2,1) = 0= (A, xs2) for i = 1,...,|P| and r € Z such that

|P|

(61 ®&)° = (92 ® )% = e(A+ (r = V)xaq + (D x12))-

i=1
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However, since ((¢1 ® &1)9 — (¢n ® )%, (61 ® £)C — (¢ ® 6,)F) = 1 + |H| and the
number of x;» is greater than |H|, we have r = 0 and (A4, A) = |H|. Moreover, since
(e ®&)° — (1 ®E)C, (i REL)CE — (¢; ®&,)C) =0 for h > 2, if x; 4 € Irr(A), then Irr(A)
contains all {xin | 4 = 1,...,|P|}, which contradicts to (4, A) = |H| < |P|. Therefore
(A, xin) = 0for h > 2.

If p € Irr(G) satisfies (i, (¢ ® &) — (¢ ® &;)€) = 0 for all j, (h, k), then there are
Aj € Z such that ik = 375 Aj(X ey 2o:(¢ ® &)%), which implies yp € Zpp and {u} is
a block as we did in the first part. Therefore, we may assume

Irr(B) C {xi; | 4,7} Ulrr(A).
We also have:

Lemma 2. For (s,t) # (1,1),

(Xs)ixk =€) (6 ®E)" (mod pp ® ch(K)).
heH

[Proof] For t # j, since

(Xatr Xij = Xnj) = ((Xa,t) 15, €j(0: ® & — I R E;)) = 0,

((Xs,t) ik, di ® ;) does not depend on the choice of %, say a;j. Since 0,5 — 05 p = (Xsts Xist —
Xht) = ((Xst) 1K, €(hi @ & — In ® &), {(Xst)iK> §i ® &) does not depend on the choice of
i # s, say a;. Therefore (Xse)ix = 20,8 3 hen (PP ® )P + €3 chi (s @ &)™ O

Lemma 3. x;; and xpx belong to the same block if and only if j = k. In particular,
{xix|i=1,...,|P|} is a p-block of G for k # 1.

[Proof] Since ¢; ® £; — ¢; ® €, vanishes on all p-regular elements, so does X; s — Xj,s-
Hence x; s and x; , belong to the same block. Let G° and N° denote the set of all p-regular
elements of G and N, respectively. Since G — G° is a disjoint union of {(N — N°)9 | g €
G/N} and we have N — N® = {(g,c) | 1 # g € P,c € C}, if j # k, then we have:

(Xi,j, Xh,k)GO Xi,js Xh,k)c-c;o

(1Xi,j)le (XR,k)IN)N=NO

—W Z Xi,j (gC)Xh,k(gc)

1#g€P,ceC

—rfi’_l D> xis(90)xnr(ge)

1#g€P ccC

= - E T Y 0650 Y (0670

1#9€P ceC aeH beH

DM ROISE) PRCREET)

1#geP abe H ceC

=
=



14

since ) ,..c fj“(c)fkb(c) = 0 for any a,b € H. Therefore, x;; and x4, don't belong to the
same block. O

If B is a block {xi; | i =1,...,|P|} for some j # 1, then since (w, Xxi; — xk;) = 0, J
contains all xx,; and so J = B. Therefore, we may assume

Irr(B) CIrr(A) U {x:1 | i =1,...,|P|}.

Since (w, xi1 — X;1) = 0, taking J or Irr(B) — J as J, we may assume that J C Irr(A)
andJﬂ{x,-,l|z’=1,...,|P|}=@. .

Set a, = (u, A). For p € J, since a, = e(u, (¢1 ® &)€ — (¢4 ® £€,)¢) and (u, (¢ ®
Ej)G - (¢h ®€J)G> =0 for (1".7)3 (hij) ?é (1’ 1)) we have

mp =a,lp (mod pp) and
(1) =g, (mod |P])

and so
O=wp=) ulup=) allp (mod (|P|,pp)).
peJ HeJ
However, since
0<Y a2< Y a2 =|H| <P
neJ all 4

we have a contradiction.
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