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On the Brauer categories of p-blocks of finite groups
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For a prime p, let (K,0,k) be a p-modular system where @ is a complete
discrete valuation ring having the residue field k of characteristic p which is
algebraically closed and having the quotient field K of characteristic zero which
will be assumed to be large enough for any finite group we consider in this
article. Let R € {O, k}. Below, by characters, we mean K-characters.

Glauberman showed in {4] that, when a finite group G is acted by S where
S is a finite solvable group such that (|G|,|S|) = 1, there is a one-to-one corre-
spondence between the set Irr(G)S of S-invariant irreducible characters of G and
the set Irr(Cg(S)) of irreducible characters of Cg(S).

Watanabe showed in [10] that when an S-invariant block b of G has a defect
group centralized by S (often called Watanabe's situation), then all irreducible
characters in b are S-invariant, all of them are mapped by the Glauberman
correspondence bijectively to the irreducible characters belonging to a single
block w(b) of C¢(S), and b and w(b) have equivalent Brauer categories

In p-block theory, some “good relation” between blocks having equivalent
Brauer categories is expected. See, for example, articles by Uno and Narasaki
for a formulation in terms of characters.

Recently, Dade gave in [3] a new approach to the Glauberman correspon-
dence and partly generalized it.

In this article, we note that, under some assumptions (see Conditions 2.1,
3.2 and 4.1), blocks related by the correspondence of Dade have equivalent
Brauer categories, emphasizing the relation Prggf{;g)PrgE( p) = Prglk),( P)Prg’;,,

for groups E, E’ and P below. In particular, with {10, Proposition 1], this gives
an alternative proof of above mentioned Watanabe's result.
In fact, under our assumptions, the correspondence of Dade induces a perfect
isometry (isotypy) between groups of generalized characters of related blocks,
- as in the case of the Glauberman correspondence under Watanabe’s sitnation
([10]). A perfect isometry (isotypy) is a phenomenon in the character level which
is said to be a shadow of a (splendid) derived equivalence, see [1] and [7], and
we may expect a (splendid) derived equivalence between related blocks.
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For details, see [8], and for standard facts, see [9] and [5]. We also referred
to [11] in writing this article.

Notations: For a ring R, we denote by R* the multiplicative group con-
sisting of all units of R and by Z(R) the center of R. Let E be a finite group.
Denote by a*€kE the canonical image of a€OE. For a subset Eg of E, REg
is an R-subspace of the group algebra RE spanned by elements of Eq. When
E, is invariant by conjugation action of E, denote by (REq)E the R-subspace
of REg consist.ing of E-invariant elements. Let E’ be a sub%roup of E. De-
note by Prf, an R-linear map from RE to RE’ defined by Prg.(x) = x if xeE’
and Prg (x) = 0 if xEE E’, which induces an R-linear map from Z(RE) to

Z(RE". Denote by Trf, an R-linear map from (RE)¥' (D Z(RE')) to Z(RE)
deﬁned by TvE (1) = ZyG[E'\E] Y for T€(RE)E . For a subset C of E, we denote

C=3,cx€RE Fory e Irr(E) there is an algebra homomorphism wy

from Z(OE) to O determined by w,p(C(x)) = |E|¥(x)/|Ce(x)|¢(1) where C(x) is

a conjugacy class of E containing x, see (5, III, 2.5]. Let F be a cyclic group
and F=Hom(F, K*) the dual group of F. If there is an epimorphism 7 : E — F,
F acts on Irr(E), denoted by left multiplication, by (A)(x)=A(m(x))¥(x) for
AeF, yelrr(E) and x€E, see [3, Proposition 1.15, and (1.16)]. Let G=Ker(m).
If p€lrr(G) is E-invariant, that is, p€lrr(G)E={opelrr(G)|¢(g*)=¢(g) for any
geG and x€E}, then ¢ has |F| distinct extensions to characters of E, in fact,
which form a set Irr(E|@)={y€lrr(E) | [6,91E]c # 0} where [-, -] is the usual
inner product, and Irr(E|¢)={ M| F} where ¢ is any element of Irr(E|¢), see
[3, Proposition 1.19]. Denote by ey the primitive idempotent of Z(KG) corre-
sponding to ¢€lrr(G), see [5, III, 2.4].

2
We say that (*)g g e 6, holds if the following holds:

E is a finite group with a normal subgroup G such that the quotient group
F = E/G is cyclic of order r. Let 7 : E — F be the canonical epimorphism.
E’ is a subgroup of E such that E=GE’. G’ is a normal subgroup of E’
defined by G’ = G N E". Let Fo be the set of generators of F, Eq = 7~} (Fo)
and Ej = 771 (Fo)N E’. Ej is a trivial intersection subset of E with E’ as
its normahl,er, that is, Eg ﬂ E)” = 0, the empty set, for any 7 € E - E’.

Under the above condition, Dade gives a one-to-one correspondence between
. Irr(G)E and Irr(G')E'. [3, Theorems 6.8 and 6.9] should be referred for precise
statements. Below, we always assume the following:

Condition 2.1. r = g™ for a prime q and n € Zs,.

Thronghtout this article, let E, G, E', G’ be such that (*)g g, g ,¢r holds.
Let F=E/G and let 7 : E — F be the canonical epimorphism. For a subgroup
H of E such that 7(H) = F we will consider the action of the dual group F of
F on Irr(H) defined by the restriction of = to H.

Under Condition 2.1, the correspondence of Dade can be described as:



Theorem 2.2. (Dade) There is a bijection
Irr(G)E — Irr(G) ¥, ¢ — P (%)
which satisfies the following:
o When q is odd, there are a unique sign e, € {1} and a unique bijection
Irr(E | ¢) — Irr(E' | d(ar), i = dige) (%)
such that .
(¥ = Ag¥) LB = es(¥(&r) — M%&) (#x)
holds as generalized characters for any element /\qeﬁ’ of order q.

o When q is 2, if we choose a sign €, arbitrary, there is a unique bijection
(**) such that (*xx) holds.
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We call both the correspondences (*) and (**) in Theorem 2.2 the Glauberman-

Dade correspondence of characters. For a relation to the Glauberman corre-
spondence, see [3, Section 7).

Below, we denote by C(z) the conjugacy class of E containing x € E and
by C(z') the conjuga.cy class of E’ containing 2’ € E'.

Remark 2.3. Since Eg = Ue(sr\£)(Ep)" (disjoint union), see [3, Lemma 6.5),
we see that there is a one-to-one correspondence between the set of conjugacy
classes of E conta.med in Eg and the set of conjuga,cy classes of E’ contained in

E}, and Prg, (C(a )) = 5@’ for 2’ € Ej. Hence, Prg, induces an isomorphism
between R-spaces (REo)Z and (RE})E".

The correspondence in Theorem 2.2 can be described in terms of central
primitive idempotents corresponding to characters, see also [6]:
R E —— — E
Propositlpn 2.4. Prp.(C(z')ey) = C(2') €4 s, for 2’ € Ej and ¢ € Irr(G) ",
For Proposition 2.5, see also the proof of {10, Proposition 2(ii)]:

Proposition 2.5. Let ¢ € Irr(G)¥ and ¢ € Irr(E|¢). Then, for o € (OE,)¥,
it holds that 161 b (1)

= ZEen -/, " PrE (o
wy () € ¢(1) Ted Y(e" ( g ))
In the remainder of this section, let P be an arbitrary subgroup of G’ such
that there is some element s€ Ej centralizing P.

Lemma 2.6. (*)cy(P),Cu(P),Cy (P),Coi (P),r AN
(*)ck(P)/2(P), Ci(P)/Z(P), Cpi (P)/Z(P), Cur (P)/2(P),r hold.

Remark 2.7.
E Pr:’;, _ , E,
(REy) > (REy)
'y !
Prgacp) l CS(P) 1”3,;.”')

(RCE(P)o)°=") 22 (RCer (P)o)Cu (P
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Lemma 2.8. Nb(P)=NEJ(P)CE(P) and NG(P)=NG'(P)CG P)

Remark 2.9. Note that TrL, is the inverse of Pré, (REp)? — (RE})E’. For

¢’ €lrr(G')E" and o' €lrr(E'|¢'), denote by Pic) and P the Glauberman-Dade
corresponding characters respectively. Similar sta,tements as in Propositions 2.4
and 2.5 and Remark 2.7 hold, replacing E, G, E', G, ¢, ¢y, ¥, Y&y, 0,

) Cr(P ar
Pr% and PrCf‘:’((P)) 1by E', G, E, G, ¢ (lrr(G')E", by ¥'(€ Irr(E'|¢')), Yy,
o' (€(OEYE"), TrE and 'D‘g:f’((P }3), respectively.

3

For a finite group G, a primitive idempotent of Z(RG) of RG is called a (p-)
block (idempotent). b — b* determines a bijection between blocks of G over O
and k, and so blocks over k are denoted with superscript *. Denote Irr(b) =
{p€lrr(G)|bey#0}. If ¢ € Irr(d), then ¢ is said to be in b and b contains ¢.
For blocks b of G and B of E where E is a finite group having G as a normal
subgroup, we say that b covers b if bb # 0.

For a finite group E and a block b of E, we denote by w the algebra homo-
morphism from Z (OE) to k determined by (wy(0))* for O‘GZ (OE), where v is
any element in Irr(b), see [5, II1. 6.4].

Lemma 3.1 follows from results in (2].

Lemma 3.1. Let E be a finite group with a normal subgroup G such that E/G
is cyclic of prime power order r. Let w: E — E/G be the canonical epimorphism
and Eo the inverse image by 7 of the set of generators of E/G. Let b be a block
of G and b any block of E covering b. Then:
(1) The following conditions are equivalent: (In (ii) and (iii), C(s) is the con-
jugacy class of E containing s.)
(i) b is covered by r distinct blocks of E.
(ii) There is an element s € Eg such that w"’(C s)) # 0.
(iii) There is an element s € Eq such that C’(s)b € Z(OEb)*.

(2) If the conditions in (1) hold, then p#q, b is E-invariant and Irr(b)€=Irr(b).

For groups E and G and a block b under the situation in Lemma 3.1, we say
that (%)g,c b holds, if the equivalent conditions in Lemma 3.1(1) hold.

Below, we always assume the following:
Condition 3.2. b is a block of G such that (x)g g holds.

A subgroup D of a finite group G is called a defect group of a block b of G
if D is a maximal p-subgroup of G such that PrCG(D)(b*) # 0, which is uniquely

determined wp to G-conjugation. If |D|=p¢, d is called a (p)-defect of b. A
block b has defect 0 if and only if Irxr(b) consists of only one character, called a
characrer of (p)-defect 0. For a p-subgroup P of G, Prg p : (kG)? — kCq(P)

becomes a ring epimorphism, and Png(P)(b ) is a central idempotent of kCg(P).
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A block e of Cg(P) such that PrgG(P)(b*)e*ze* is said to be associated with
b. PrgG(D)(b*) becomes a sum of blocks of Cg(D) which are Ng(D)-conjugate.

Every block of Cg(D) appearing in the decomposition of PrgG(D)(b*) contains
the unique irreducible character such that Z(D) is contained in its kernel, which
is called a canonical character of b. Canonical characters can be viewed as

irreducible characters of Cg(D)/Z(D), which have defect 0. Canonical characters
of b are determined up to G-conjugation.

Proposition 3.3. {¢(g)|¢p€lrr(b)} are contained in some uniquely determined
block b(GI) Of G'.

Remark 3.4. Prg,(cT(Z)b)=Prg,(0(m)b)b(c,). HencePrz,((OE,)Fb)C(OEY)E by

Lemma 3.5. There are some s€ E} and a defect group D of b such that D < G’,
s centralizes D and C(s)be Z(OEb)*.

Below, let D and s be as in Lemma 3.5.

Lemma 3.6. If (x)g,gb holds and, for a p-subgroup P of G, e is a block of
Cc(P) associated with b, then (*)cg(p),co(p),e holds.

By Remarks 2.7 and 3.4 and Lemmas 2.6 and 3.6, we have:

Proposition 3.7. Let P be a subgroup of D and e a block of Cq(P) associated
with b. Then e(c,,,(py) is a block of Cg:(P) associated with bigy. In particular,
bigy have a defect group containing D.

If a block & of Cg(P) is associated with a block b of a finite group E, then
wi (0) = wi (Prg,p)(0)) for o € Z(OE), (1)
see [5, V, Theorem 3.5).

Proposition 3.8. Let (€lrr(Cg(D)/Z(D)) be such that its inflation to Cg(D)
.45 a canonical character (€lrr(Cg (D)) of b. Then the following are equivalent:
(i) (*)E’,G',b(G») holds.
(i1) bc') has the same defect as b.
(i11) Z(CG,(D)/Z(D)) is a character of defect 0.

Proof. (i)=(ii) follows from Proposition 3.7 and Remark 3.10 below.
(ii)=(iii) follows from the commutativity of the Glauberman-Dade corre-
spondence and the inflation. R
We show (iii)=>(i). Let {€lrr(Ci(D)|¢) and €lrr(E|¢) for ¢ € Irr(b) be
such that the block containing ¢ is associated with the block containing ¢. Let
Y'€lrr(E’) be such that the block containing ((c,, (b)) is associated with the

block ' containing 9. Note that b covers bcy- Note also that Z(CG:( D)/D)
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; e, oy (1
being defect 0 implies eclgé'((l)D ] C(ICL"G%’B)(I )EO X. Then, by (t) and Proposition

2.5,

|Cq(D)| C(cyr (D)) (1) Ci(D)

(CC () [Co (D) wwimm (p TCpi(D) (Prcb(D) (5(\))))>*
- <‘ECIC§'((11)))I C(|C57(;EI(JB§‘1)) (wf(cg,(n)) (Prg;:'(D) (Prﬁl (6(?)))))*
- (c

Ca(D)| ¢y @)\ , )
« G((1))l (I%‘c('l()l);)l)) <°’5wyw» (P&, () (C(s) )))
|Cc(D)| (e (D) (1) 1\
« cG() |Co (D)] ) (we (E(s1))

Hence, wf,(C (s) ) # 0, and so (i) holds for b(g'), see Lemma 3.1. [J

Remark 3.9. Assume that the equivalent conditions (1)-(iii) in Proposition 3.8
hold and that ¢ is odd. We use above notations. We can show that there is
some block b( gy of E' such that Irr(b( E:)) {1 y)ld)elrr(b)} see [8, Proposition
3.5(3)]. We can also show that b E) =V, see [8, Lemma 5.4], and we may take
¢(b y for 4’. Then we have, for any o€ (OEy)?,

: , 1
sjlo) = (2N eI o (pet (o).

On the other hand, by Proposition 2.5, we have, for any ¢ € Irr(b),

—— " 1 ——
wi (C(s)) = ( qISfil) ¢(|GG’(| )) wb(p,)(C(S)')

and we see that

( G| ¢(a')(1)) _ (e |Cc(D)] C(CG,w»(l))*
o) 1G] ¢ TICe (D) /-

Remark 3.10. Starting by the condition (x) g/ g/ v for a block b’ of G’, state-
ments as in this section hold, replacing E, G, E', G', b, ¢, ¢y, Pri,, ... by E,
G, E, G, V, ¢'(elrr(G")E), $ic): TrE,, .., respectively. We see immediately
that even when ¢’ has defect 0, ¢ () is not necessarilly has defect 0. On the
other hand, we do not solve the prob{em to find explicit example such that the

equivalent conditions (i)—(iii) in Proposition 3.8 does not hold (or to prove that
the conditions always hold) under (x)g ¢ b-
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Below, we assume the following:
Condition 4.1. (*)E,,G;,b(”,) holds.

Then, in particular, b and b(g/y have a defect group D. Below, for simplicity
we denote b’ = b gy, and denote (b*)' = (V')*.

Proposition 4.2. Irr(t')={¢g")|¢€lrr(b)}, and so Prg, (@b):@'b’ for
z'eEy.

Remark 4.3. b*) = b means b*) = bif R =0 and b*) =b* if R = k:

Prb:, o
(REp)? —=— (RE})®
(-)b<'>l o - l(»)(b“‘)’

D Pr"‘:, Ny
(REo)Eb¥ — (REH)E (4@

A pair (P,e*) of a p-subgroup P of a finite group G and a block e* of Cg(P)
is called a Brauer pair. G acts on Brauer pairs by (P, e*)é=(Pg, (e*)€) where
geG. (P,e*) is called a b-Brauer pair if e is associated with a block b of
G. For a Brauer pair (P,e*) and a normal subgroup Q of P, there exists a
unique P-invariant block f of Cg(Q) such that Prgggs)) (f*)e*=e*, in which case
denoted by (P,e*)>(Q,f*). See [9, Section 40] for the definition of the relation
(P,e*)>(R,1*) for Brauer pairs (P, e*) and (R, I*), which makes the set of Brauer
pairs of G a partially ordered set. It is known that (P,e*)>(R,I*) if and only
if (P,e*)>(P1,el)> - ->(P,,el)=(R,I*) for a sequence of subgroups P; of P
such that P>P;> --.>P,=R. In fact, for a subgroup R of P and a Brauer pair
(P, e*), there exists a unique block I* of Cg(R) such that (P,e*)>(R,I*). (P,e*)
is a b-Brauer pair if and only if (P,e*)>(1,b*).

The Brauer category Bg(b) of a block b of G is a category such that

Ob(Bg(b)) = {(P,e*) | (P,e*) is a b-Brauer pair}
‘and, for (P,e*), (Q,f*) € Ob(Bg(b)),
Mor((Q,f*), (P,e*))
={p : Q—P |there exists g€G such that (Q,f*)¥<(P,e*) and p(u)=u® for all ueQ}.

For a b-Brauer pair (D, bp) where D is a defect group of b, Bg(b)<(p bg) i5 &
full subcategory of Bg(b) such that Ob(Bg(b)<(,bg))={(P,€*) | (P, e"')<(D bg)},
which is equivalent to Bg(b), see [9, Lemma 47.1 a.nd p.428].

We fix a b-Brauer pair (D, b},) of b and, for a subgroup P of D, denote (P, bp)
the uniquely determined b-Brauer pair such that (D,bd})>(P,bp). Note that
(*)cr(P),Cu(P),bp holds. For simplicity of notations, we denote (bp)'=(bp)(c,. (P))>
which is associated with b’ by Proposition 3.7 and hence (*)c., (P),c.,\ (P),(bp)’
holds by Lemma 3.6. Denote (bp)'=((br)’')*.

- We denote by C(z)(p) the conjugacy class of Cg(P) containing z € Cg(P)
and by C(z'){p) the conjugacy class of Cg/(P) containing 2’ € Cg/(P).
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Theorem 4.4. The Brauer categories Bg(b) and Bg: (V') are equivalent.

Proof. It suffices to show that categories Bg(b)<(p,ps,) and Be (V)< (p,53,))
are isomorphic. '

Firstly note that, for ' € G’,

!

CE Y pary (B3))7 = (CYpy)) = (PrSED) (Co)mbp))
B * \T ) __ Cr(P /:z:’-\ *\Z' TRV x\z'\/

=PSP ), ((Clo)imbp) )—PrC;'((Pz,))(C(s )y ()7 ) =C( Y pury (B3))'-

Hence, we have ' ‘

((65))" =((bp)*)" for z' € G ()

We show that for any objects (P, b"jp), (Q,b"‘Q) of Bg(b)<(p,by,) such that

(P b $)2(Q, b)), it holds that (P, (bp))2(Q, (bp)')- It suffices to show the case
bh) = (Q, b o) Note that P normahzes CE(Q) (by)' is P-invariant by (})

and P1g'k}§§g . (kCg(Q))P — kCg(P) is a ring homomorphism. We have
Prg,, ey (Cls)'(87)) (bp)

2107 (e (Prbuier (CE)) ) )

=P1‘8h((12)< 2;2,‘33( 8@ s)b')) )
=P (PrE2(8) (Pr8ocer (B) PrE(3) (1) 5 )
=Prge() (prg' (@) (Pr,q) (Cls)r )bQ)) (b)’
e @ (P (Prbucer C)e5) ) 05
=Prg® (3 (prgifgg) (Prcb(Q) c(s)b*)) (5«5)') (%)’

Cr(Q)

3 TR Cp * \/ *
=Prgr @ Prop @ (Prgmo) (Cls)b )))Pr s ((bq) )(bp)'

C(s) (b*))Pras (D ((bg)') (bp)"

Then since Prc .+ (P) (C'(s b)) € Z(kCEl(P)Per,(P)((b*) )) , multiplying

the inverse, we have (b} )’—PrgE'Eg;((bQ) )(b3)', and so (P, (bp))2(Q, (bg)").
On the other hand, G’ controls fusin in Bg(b)<(D,b3,), that is, we may assume
that morphisms in Bg(b)<(p b3,) are induced by conjugations of elements of G/,
see Lemma 2.8 and (9, Section 49]
Hence, the assertion follows from above arguments. [

/\/—\

=Pr&,,(p)
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Remark 4.5. With the notations in above proof,

rCE(p)
Cpr (P)

(kCu(P)o)°*Pby, (kCir (P)o)w ) (b3’

‘:r:’ o , .:l?,

Cpr (P

(kCi(P*)o) %P b, — (kC (P )o) o P )b, )

and
Cr(Q)
kC Ce(Q)px o5 (@ Cer(Q) (b2, )’
(kCe(Q)o) bo > (kCg(Q)o)“# 9 (bg)
P o |z
y CR(P) bt
. . o\ Crr(P) , .
(kC(P)o)CrPIPLEER) (b)) —> (kCpe- (P)O)CE'(P)PrgZ’E,Q,; ((68)")
(-)b% o l(-)(b;)'
Cr(P)
! Cr(P) "o (P) . Cpr(P) (h* \!
(kCE(P)o) =" bp > (kCgr (P)o)~ &'\ (bp)
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