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Abstract

A method for simulating the hole-tone feedback cycle (Rayleigh’s bird-call), based on a
three-dimensional discrete vortex method, is described in detail. Evaluation of the sound
generated by the self-sustained flow oscillations is based on the Poweh-Howe theory of vortex
sound and the boundary element method. Emphasis is placed on the development of a model
for the coupling between the vortex-dominated main flow and the acoustic field. The final
part of the paper considers, briefly, an analysis based on the method of proper orthogonal
decomposition.

Keywords: aeroacoustics; self-sustained flow oscihations; three-dimensional vortex method;
vortex sound; boundary element method; proper orthogonal decomposition

1 Introduction

Self-sustained fluid oscihations can occur in a variety of practical applications where a shear layer
impinges upon a solid structure $[16, 17]$ . The praeent paper is concerned with such oscillations
in the hole-tone problem $[15, 2]$ , where a fluid jet issuing from a circular hole in a plate (or kom
a nozzle) impinges upon a (second) plate with a similar hole, located a little downstream from
the nozzle. Self-sustained oscihations of the jet are generated, accompanied by sound with a
definite tone. The common teakettle whistle and the bird-call1 is an example of utilization of
the phenomenon.

In his $Theo\eta$ of Sound [15] Rayleigh explained the basic mechanism as follows: “When a
symmetrical excrescence reaches the second plate, it is unable to paes the hole with freedom, and
the disturbance is thrown back, probably with the velocity of sound, to the first plate, where it
gives rise to a further disturbance, to grow in its turn during the progress of the jet.”

The system is thus one where the sound generation is caused by synchronization [14] between
the sound-generating flow and the acoustic field.

The dominating frequency $f_{0}$ satisfies the criterion

$\ell/u_{c}+l/q=n/f_{0}$ , (1)

where $\ell$ is the length of the gap between the nozzle exit and the end plate, $u_{c}$ is the vortex
convection velocity ($u_{c}\approx 0.6u_{0}$ , where $u_{0}$ is the mean flow velocity), $c_{0}$ is the speed of sound,
and $n$ is a mode number which may take the values 2’ $Z$

1 1, $\theta\ldots$ . A change in the value of $n$

implies a corresponding ‘jump’ in the frequency $f_{0}$ .
$\overline{1A}$whistle u8\’etosimulate natural bird calls.

数理解析研究所講究録
第 1594巻 2008年 18-33 18



A number of experimental studies on the hole tone problem have been published; particularly
noteworthy is the comprehensive work of Chanaud &Powell [2]. Theoretical and numerical
studies are however few, A large body of work has been done on the related, $tw\sim dimeoional$

edge-tone problem; some parallels between the two problems are drawn in Ref. [2].
As explained in an earlier paper [8], one of the main purposes of this work is to investigate

the effects of non-axisymmetric flow disturbances, imposed ‘mechanically’, in the experiments
via piezoelectric actuators placed around the circumference inside the nozzle. In the numerical
computatioms, this is simulated via a deformable nozzle. A threedimensional formulation is
thus necessary. The forcing (control) problem will be considered in a future paper. In this
paper the numerical method will be described in detail in Sections 2-3. A numerical example
will be presented in Section 4. Finally, an analysis based on the method of proper orthogonal
decomposition will be described briefly in Section 5.

2 The discrete vortex flow model

2.1 Vortex fllament model of the jet flow

The shear layer of the jet issuing from the nozzle is represented by discrete vortex rings. These
rings will be disturbed mechanically at the nozzle exit such that they loose their natural ax-
isymmetric form, and are thus represented by three-dimensional vortex filaments. The induced
velocity $u_{fv}=(u_{1},u_{2}, u_{3})_{fv}$ , at position $x=(x_{1}, x_{2}, x_{3})_{i}$ and time $t,$ $homN_{fv}$ vortex rings
represented by the space curves $r_{j}(\xi,t)$ , is obtained &om the generalized Biot-Savart law [9]

$u_{fv}(x,t)=-\sum_{j=1}^{N_{f\nu}}\frac{\Gamma_{j}}{4\pi}\oint_{C_{j}(}\frac{\{x-r_{j}(\xi,t)\}x\partial r_{j}/\partial\xi q(|x-r_{j}(\xi,t)|/\sigma_{j})}{\epsilon)|x-r_{j}(\xi,t)|^{3}}d\xi$ . (2)

Here $\Gamma_{j}$ is the strength (circulation) of the $j’ th$ vortex ring and $C_{j}(\xi)$ its contour, described by
the parameter $\xi$ . The ‘smoothing function’ $q(y)$ represents the structure of the vortex core, with
$\sigma_{j}(\xi,t)$ being the core radius. It eliminates the logarithmic singularity at $x=r_{j}$ , and smoothes
out the vorticity distribution. In the present work the Rosenhead-Moore function

$\dot{q}(\kappa)=\frac{\kappa^{3}}{(\kappa^{2}+\alpha)^{3}z}$ (3)

is chosen [9]. If (2) and (3) are to give the same single-ring speed as the Gaussian core distribution

$\varpi(\rho)=\pi^{-g}2\exp(-\rho^{2})$ , (4)

with the corresponding smoothing function

$q(n)=4 \pi\int_{0}^{\kappa}\varpi(\rho)\rho^{2}d\rho$ , (5)

then the parameter $\alpha$ should have the value 0.413 [1]. This value is accordingly used in the
numerical simulations.

2.2 Representation of solid surfaces

The solid surfaces are represented by rectilinear vortex ring ‘panels’, made up of four straight
vortex filaments, as indicated in Fig. 1. The velocity induced from such a vortex panel can be
obtained by evaluating the integral in (2), with $q\equiv 1$ , along the line segments between $y_{j}$ and
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$y_{j+1},$ $j=1,$ $\ldots,$
$4$ , where $y_{5}$ $:=y_{1}$ . Following the approach of Katz&Plotkin [6], the velocity

induced from $N_{bv}$ panels is

$u_{bv}(x)=\sum_{j=1}^{N_{bv}}\sum_{i=1}^{4}\frac{\Gamma_{j}}{4\pi}[\frac{r_{i}\cross r_{|+1}}{|r_{i}xr_{i+1}|^{2}}r_{0}\cdot(\frac{r_{i}}{r_{i}}-\frac{r_{i+1}}{r_{i+1}})]_{j}$ , (6)

where $r_{i}=y_{i}-x$ and $r_{0}=r_{i}-r_{i+1}$ (and r5 $:=r_{1}$ ). The mean jet flow is also provided by
a number of such vortex panels, placed on the ‘back’ of the nozzle tube, and by a single point
source, which provides the induced velocity

$u_{\mu}(x)=\frac{\sigma}{4\pi}\frac{r}{r^{8}}$ . (7)

Here $\sigma$ is the source strength, $r=x-y$ and $r=|r|$ . The velocity at an arbitrary point $x$ is
thus given by

$u(x)=u_{fv}+u_{bv}+u_{ps}$ . (8)

The strengths of the bound vortex panels, and the single point source, are dictated by the
boundary conditions and the mean jet velocity.

Figure 1: Solid surfaces represented by vortex panels. The mean flow-generating pane18 are
placed at $z=0.O$, the nozzle exit at $z=2.5$ , and the end plate at $z=3.5$ .

First, it is required that the inviscid boundary condition of zero normal velocity is satisfied
on the exit pipe (surfaoe 2’) and the end plate (’surface 3’), i.e.

$u_{n}(x_{1\dot{0}}^{cpk})=0$ , $i=1,$ $\ldots,$
$N_{\theta k}$ , $j=1,$ $\ldots,$

$N_{rk}$ , $k=2,3$, (9)

where $x_{i_{\dot{O}}}^{cpk}$ are control points located in the center of the vortex panels, $N_{\theta k}$ is the number of
panels in circumferential direction, and $N_{rk}$ the number of panels in radial direction.

Second, the velocity distribution on the mean flow-providing upstream end of the exit pipe
(’surface 1’) is required to be uniform. This is obtained by the following two conditions:

$u_{n}(x_{i_{\dot{\theta}}}^{cp1})-u_{n}(x_{1+1,j}^{cp1})=0$, $i=1,$ $\ldots,$
$N_{\theta 1}-1$ , $j=1,$ $\ldots,$

$N_{r1}$ , (10)

$u_{n}(x_{1\dot{\theta}}^{cp1})-u_{\mathfrak{n}}(x_{i_{\dot{\theta}}+1}^{cp1})=0$ , $i=N_{\theta 1}-1$ , $j=1,$ $\ldots,$
$N_{r1}$ . (11)

Equation (10) expresses a zero velocity jump across any two adjacent pane18 in radial direction,
at any circumferential station. Equation (11) expresses a zero velocity jump across any two
adjacent panels in circumferential direction, for one particular radius.

The third and final condition is the specification of the mean velocity at a specified point
$x_{*}$ ;

$u_{3}(x_{*})=u_{0}$ . (12)
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The conditions (9)$-(12)$ constitute $\sum_{k}(N_{\theta k}\cross N_{rk})+1$ equations with the same number of
unknowns. The matrix equation system corresponding to these equations takes the form

Ar $=b$ . (13)

Here the matrix A contains the influence coefficients and $\Gamma$ the unknown $vortex/source$ strengths.
The vector $b$ contains the induced velocities from the free vortices; the elements are given by

$b_{j}=- \sum_{i=1}^{N_{fv}}$ 害{ufv} , (14)

where $S\{\}$ repraeents the ‘operations’ defined by (9)$-(12)$ .

2.3 Vortex shedding mechanism

The rate of continuous shedding of circulation $\gamma$ from the nozzle is given by

$\frac{d\gamma}{dt}=_{R}^{1}(u_{t-}^{2}-u_{t+}^{2})$ , (15)

where $u_{t-}$ is the (tangential) velocity at the pipe exit, $z_{exit}$ say, on the inner surface, and $u_{t+}$ is
the corresponding velocity on the outer surface. This equation can be obtain\’e by integrating
the tangential component of the Euler equations over the tube surface, and using the Kutta
condition, which demands that the pressure a little above the nozzle edge equals the pressure a
little below.

In the simulation a vortex ring is released at every timestep, at the position

$z_{z^{1}e1}=z_{exit}+ \frac{1}{2}\Delta t(u_{t-}+u_{t+})$ . (16)

Its strength is obtained from (15) as
$\Gamma=arrow 1\Delta t2(u_{t-}^{2}-u_{t+}^{2})$ . (17)

The vortex rings, described by the space curves $r_{j}(\xi, t)$ , are discretized by employing $N_{mp}$

marker points on each curve, connected via cubic splines. The positions of the marker points
on the shed vortex rings, described by the vectors $r_{m}(\zeta_{n}, t)$ , are updated by solving numerically
the system of ordinary differential equations

$\frac{dr_{m}(\zeta_{n},t)}{dt}$ $=$ $- \sum_{j=1}^{N_{fv}}\frac{\Gamma_{j}}{4\pi}\oint_{C_{j}(\xi)}\frac{\{r_{m}(\zeta_{n},t)-r_{j}(\xi,t)\}x\partial r_{j}/\partial\xi}{\{|r_{m}(\zeta_{n},t)-r_{j}(\xi,t)|^{2}+\alpha\sigma_{j}^{2}(\xi,t)\}^{\frac{3}{2}}}d\xi$ (18)

$+$ $u_{bv}(\zeta_{n},t)+u_{p\epsilon}(\zeta_{\mathfrak{n}},t)$, $m=1,$ $\ldots,$
$N_{fv}$ , $n=1,$ $\ldots,$

$N_{cp}$ .
To this end the fourth-order Runge-Kutta method is applied. The integrations over $C_{j}(\zeta)$ in
(18) are carried out using Gaussian quadrature [7].

Except for the viscous effect simulated by the Kutta condition, the computations are basically
inviscid. This means that the vortex rings keep their strengths throughout the simulation, once
released. The volume of each individual ring must thus be kept constant; this constraint is
imposed via the equations

$\frac{d}{dt}(\sigma_{n}^{2}\ell_{\mathfrak{n}})_{m}=0$, $n=1,$ $\ldots,$
$N_{cp}$ , $m=1,$ $\ldots,$

$N_{fv}$ , (19)

where $\ell_{n}$ is the instantaneous length of the n’th filament.
Finally, it must be mentioned that, following an advice of $L\infty nard[9]$ , the core radius $\sigma_{j}$

in (18) is replaced by - $(\sigma_{m}^{2}+\sigma_{j}^{2})^{1/2}$ . This symmetric form will preserve linear and angular
momentum.
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3 Aeroacoustic model

3.1 The equation of vortex sound and its formal solution in terms of integral
equations

To evaluate the sound generated by the self-sustained flow oscillations, the start point Is taken
in Howe’s equation for vortex sound at low Mach numbers [5]. Here the sound pressure $p(x, t)$

is related to the vortex force $L(x,t)=w(x,t)xu(x,t)$ via the $non- homogen\infty us$ wave equation

$( \frac{1}{d}\frac{\partial^{2}}{\partial t^{2}}-\nabla^{2})p=\rho\nabla\cdot L$, (20)

where the vorticity $w=\nabla xu$ . The boundary conditions are

$\frac{\partial p}{\partial n}=0$ on the end plate, $parrow 0$ for $|x|arrow\infty$ , (21)

where $n$ denotes the outward normal vector.
Fourier transform with resPect to time $t$ and frequency $\nu$ are defined as

$P( x, \nu)=\frac{1}{2\pi}\int_{-\infty}^{\infty}p(x,t)e^{i\nu t}dt$ , $p( x,t)=\int_{-\infty}^{\infty}P(x, \nu)e^{-i\nu t}d\nu$. (22)

APplying the first of the equations (22) to (20) gives

$(\nabla^{2}+k^{2})P=-\rho\nabla\cdot \mathfrak{L}$ (23)

where $\mathfrak{L}(x, \nu)$ is the Fourier transform of $L(x, t)$ , and $k=\nu/c_{0}$ is the wave number. Ib solve
(23) use is made of the free-space Green’s function

$G( x,y)=\frac{e^{ikr}}{4\pi r}$ , $r=|x-y|$ (24)

which is a solution of the equation

$(\nabla^{2}+k^{2})G=-\delta(x-y)$ , (25)

and which satisfies the second of the boundary conditions (21). The function $\delta(x-y)$ is the
delta function. Here and in the sequel, $x$ denotes the location of an observation point and $y$ the
location of an acoustic source.

Multiplying (23) by $G$ and (25) by $P$ gives, after integration and use of Green’s second
identity,

$\sigma P(x, \nu)$ $=$

$\rho\int_{\int\int}\int\int G(x,y)\nabla_{y}\cdot.g(y,\nu)d^{3}y[G(x,y_{\beta})\frac{\partial}{\partial n_{\beta}}P(y_{\beta},\nu)-P(y_{\beta},\nu)\frac{\partial}{\partial n_{\beta}}G(x,y_{\beta})]d^{2}y_{\beta}$

.

(26)

The subscript $y$ on the del-operator in the first tem on the right hand side indicates differenti-
ation with respect to the source coordinates $y$ . The subscript $\alpha$ on $y_{\beta}$ indicates a point on the
end plate and $n_{\beta}$ the normal vector at that point. The notation $d^{3}y$ is used for $dy_{1}dy_{2}dy_{3}$ and
$d^{2}y_{\beta}$ for $dy_{\beta 1}dy_{\beta 2}$ . The parameter $\sigma$ is given by [13]

$\sigma=$ $\{\begin{array}{l}xf1x0x\end{array}$ (27)
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The first of the equations (21) gives that $\partial P/\partial n_{\beta}=0$ .
The first term on the right hand side of (26) can, via integration by parts, be rewritten as

$- \int\int\int\frac{\partial G}{\partial y_{j}}\mathfrak{L}_{j}d^{3}y$ . (28)

In this equation and in the sequel, summation over repeated latin indices is to be understood.
[Summation is not carried out over repeated greek indices.]

Considering a plate of vanishing thickness, Terai [19] has shown that the pressure at a
point $x$ away $hom$ the plate can be expressed as

$P( x, \nu)=-\int\int\int\rho\frac{\partial G(x,y)}{\partial y_{j}}\mathfrak{L}_{j}(y, \nu)d^{3}y+\int\int\tilde{P}(y_{\beta}, \nu)\frac{\partial G(x,y_{\beta})}{\partial n_{\beta}}d^{2}y_{\beta}$, (29)

where $\tilde{P}\rho$ is the pressure difference across the plate. To evaluate this quantity, use wiU be made
of the normal derivative of (29) at a point $x_{\alpha}$ on the end plate. As

$\frac{\partial P(x_{\alpha},\nu)}{\partial n_{\alpha}}=0$ (30)

we obtain
$\int\int\overline{P}(y_{\beta})\frac{\partial^{2}G(x_{\alpha},y_{\beta})}{\partial n_{\alpha}n_{\beta}}d^{2}y_{\beta}=\rho\int\int\int\frac{\partial^{2}G(x_{\alpha},y)}{\partial x_{1}\partial y_{j}}n_{\alpha i}\mathfrak{L}_{j}(y, \nu)d^{3}y$ . (31)

3.2 Discretization via the boundary element method and expansion of the
surface integrands

Equation (31) is a Ftedholm integral equation of first kind. To solve it with respect to the
pressure difference $\tilde{P}$, a boundary element method is applied. The surface of the end plate is
divided into quadrilateral elements. A simple approach, where $\tilde{P}$ is aesumed constant over each
element, is applied. This significantly simplifies the evaluation of the normal derivatives, as will
be evident in the following.

The last term in equation (29) is thus approximated as follows:

$\int\int\tilde{P}(y_{\beta})\frac{\partial G(x,y_{\beta})}{\partial n_{\beta}}d^{2}y_{\beta}\approx\sum_{\epsilon}\tilde{P}_{\beta e}\int\int\frac{\partial G(x,y_{\beta\epsilon})}{\partial n_{\beta}}d^{2}y_{\beta e}$ , (32)

and the first term in equation (31) as follows:

$\int\int\tilde{P}(y_{\beta})\frac{\partial^{2}G(x_{\alpha},y_{\beta})}{\partial n_{\alpha}n_{\beta}}d^{2}y_{\beta}\approx\sum_{e}\tilde{P}_{\beta\epsilon}\int\int\frac{\partial^{2}G(x_{\alpha},y_{\beta e})}{\partial n_{\alpha}n_{\beta}}d^{2}y_{\beta\epsilon}$ . (33)

In (32) we always have $x\neq y_{\beta}$ and get accordingly

$\int\int\frac{\partial G(x,y_{\beta\epsilon})}{\partial n_{\beta}}d^{2}y_{\beta\epsilon}=\int\int\frac{e^{ikr_{x\beta}}}{4\pi r_{x\beta}}(\frac{1}{r_{x\beta}}-ik)coe(r_{x\beta}, n_{\beta})d^{2}y_{\beta\epsilon}$ , (34)

where
$r_{x\beta}=x-y_{\beta e}$ , $r_{x\beta}=|r_{x\beta}|$ , $\cos(r_{x\beta},n_{\beta})=\frac{r_{x}\rho\cdot n_{\beta}}{r_{x\beta}}$ . (35)

In (33) we start with evaluation of the derivation with respect to $n_{\alpha}$ , which gives

$\frac{\partial^{2}G}{\partial n_{\alpha}\partial n_{\beta}}$ $=$ $\frac{\partial^{2}}{\partial n_{\alpha}\partial n_{\beta}}(\frac{e^{ikr_{\alpha\beta}}}{4\pi r_{\alpha\beta}})$ (36)

$=$ $- \frac{e^{ikr_{\alpha\beta}}}{4\pi r_{\alpha\beta}}\cos(r_{\alpha\beta},n_{\alpha})\cos(r_{\alpha\beta},n_{\beta})\{\frac{3}{r_{\alpha\beta}^{2}}(1-ikr_{\alpha\beta})+(ik)^{2}\}$

$+ \frac{e^{ikr_{\alpha\beta}}}{4\pi r_{\alpha\beta}^{3}}(1-ikr_{\alpha\beta})coe(n_{\alpha}, n_{\beta})$ .
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Two different cases have to be considered: $x_{\alpha}\neq y_{\beta e}$ and $x_{\alpha}=y_{\beta e}$ . The first case is straight-
forward, as $\cos(r_{\alpha\beta}, n_{\alpha})=\cos(r_{\alpha\beta}, n_{\beta})=0$ and $\cos(n_{\alpha)}n_{\beta})=1$ ; we then obtain

$\int\int\frac{\partial^{2}G(x_{\alpha},y_{\beta e})}{\partial n_{\alpha}n_{\beta}}d^{2}y_{\beta e}=\int\int\frac{e^{ikr_{\alpha\beta}}}{4\pi r_{\alpha\beta}^{3}}(1-ikr_{\alpha\beta})d^{2}y_{\beta e}$ . (37)

For the second case we follow the approach of Terai [19] and consider the limit $x_{\alpha}arrow y_{\beta e}$ .
Let $n=n_{\alpha}=n_{\beta}$ and $r=r_{\alpha\beta}$ . We have then $r\cdot n\approx\epsilon$ , where $\epsilon$ is a small number. Thus
$\cos(n, n)=1,$ $\cos(r, n)=\epsilon/r$ , and

$\int\int\frac{\partial^{2}}{\partial^{2}n}(\frac{e^{ikr}}{4\pi r})d^{2}y_{\beta\epsilon}$ (38)

$=- \iint\frac{e^{ikr}}{4\pi}[\{\frac{3}{r^{3}}(1-ikr)+\frac{(ik)^{2}}{r}\}(\begin{array}{l}\epsilon-r\end{array})-\frac{1}{r^{3}}(1-ikr)]d^{2}y_{\beta\epsilon}$

$=- \int_{0}^{2\pi}\int_{\epsilon}^{R_{C}(\theta)}\frac{e^{ikr}}{4\pi}[\{\frac{3}{r^{3}}(1-ikr)+\frac{(ik)^{2}}{r}\}(\frac{\epsilon}{r})^{2}-\frac{1}{r^{l}}(1-ikr)]rdrd\theta$

$=- \frac{1}{4\pi}\int_{0}^{2\pi}[\frac{e^{ikr}}{r}\{(3-ikr)(\frac{\epsilon}{r})^{2}-1\}]_{\epsilon}^{R_{\epsilon}(\theta)}d\theta$

$arrow\frac{1}{4\pi}\int_{0}^{2\pi}\frac{e^{1kR_{\epsilon}(\theta)}}{R_{\epsilon}(\theta)}$ d\mbox{\boldmath $\theta$}--1ik for $\epsilonarrow 0$ .

3.3 Expansion of the source integrals

Expansion of the derivatives appearing in the source term of (29) gives

$\rho\int_{=\rho}\int\int_{\int\int\int}\frac{\partial G(x,y)}{\frac{\partial y_{j}e^{1kr}}{4\pi r^{3}}(}\mathfrak{L}_{j}(y,\nu)d^{3}y1-ikr)(x_{j}-y_{j})\mathfrak{L}_{j}(y, \nu)d^{3}y$

,

(39)

where $r=|x-y|$ . The derivative of this integral in the direction of the normal $n_{\alpha}$ takes the
form

$\rho\int\int\int\frac{\partial^{2}G(x_{\alpha},y)}{\partial x_{j}\partial y_{j}}n_{\alpha i}\mathfrak{L}_{j}(y, \nu)d^{3}y=\rho\int\int\int\frac{e^{ikr}}{4\pi r^{3}}x$ (40)

$x[\delta_{ij}(1-ikr)-((ik)^{2}-\frac{3ik}{r}+\frac{3}{r^{2}})(x_{1}\cdot-y_{i})(x_{j}-y_{j})]n_{\alpha}\iota \mathfrak{L}_{j}(y, \nu)d^{3}y$,

where $\delta_{*j}$ is Kronecker’s delta.

3.4 Time-domain expressions

Applying the inverse Fourier transform (22) to (29), we obtain

$p( x,t)=p_{vtx}(x, t)+\sum_{e}\int\int\frac{1}{4\pi r_{x\beta}}(\frac{1}{r_{x\beta}}[\tilde{p}_{\beta e}]_{t}$. $+ \frac{1}{c0}[\frac{\partial\tilde{p}_{\beta e}}{\partial t}]_{t}.)\cos(r_{x\beta}, n_{\beta})d^{2}y_{\beta\epsilon}$ , (41)

where

$p_{nx}(x,t)=-\int\int\int\frac{\rho}{4\pi r}(\frac{1}{r}[L_{j}]_{t}$. $+ \frac{1}{\infty}[\frac{\partial L_{j}}{\partial t}]_{t_{*}})\frac{x_{j}-y_{j}}{r}d^{3}y$ . (42)
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In similar fashion, (31) takes, for $x_{\alpha}\neq y_{\beta}$ , the form

$\frac{\partial p_{Jtx}\backslash (x_{\alpha},t)}{\partial n_{\alpha}}+\sum_{e}\int\int\frac{1}{4\pi r_{\alpha\beta}^{2}}$ ( $\frac{1}{r_{\alpha\beta}}1^{\tilde{p}_{\beta e}]_{t}}$. 十 $\frac{1}{c_{0}}[\frac{\partial\tilde{p}_{\beta e}}{\partial t}]_{t}.$ ) $d^{2}y_{\beta e}=0$ . (43)

For $x_{\alpha}=y_{\beta},$ (31) takes the form

$\frac{\partial p_{vtx}(x_{\alpha},t)}{\partial n_{\alpha}}+\sum_{e}([\tilde{p}_{\beta\epsilon}]_{t}$ . $\int_{0}^{2\pi}\frac{d\theta}{4\pi R(\theta)}+\frac{1}{2\infty}[\frac{\partial\tilde{p}_{\beta e}}{\partial t}]_{t_{*}})=0$. (44)

In both cases, the first term is

$\frac{\partial p_{vtx}(x_{\alpha},t)}{\partial n_{\alpha}}=\int\int\int\frac{m}{4\pi}[$ $-$ $t^{\frac{\delta_{\dot{|}j}}{r^{3}}-\frac{3}{r^{5}}(x-y:}:$ ) $(x_{j}-y_{j})\}[L_{j}]_{t_{*}}$ (45)

$+$ $\{\frac{\delta_{ij}}{c_{0}r^{2}}-\frac{3}{c_{0}r^{4}}(x_{i}-y_{i})(x_{j}-y_{j})\}[\frac{\partial L_{j}}{\partial t}]_{t}$ .
$+$ $\frac{1}{0^{r^{3}}}(x_{i}-y:)(x_{j}-y_{j})[\frac{\partial^{2}L_{j}}{\partial t^{2}}]_{t}.]d^{3}y$ .

3.5 Acoustic feedback model

The velocity at any point $x$ can be thought of as consisting of two parts: one part from the
incompressible ‘background flow’ (which is modelled by discrete vortices), and one part gen-
erated by $acou8tlc$ pressure fluctuations, that is, by comproesibility effects. Clearly the latter
contribution is much smaller than the former.

Let $v(x, t)$ denote the acoustic velocity component. It is related to the acoustic pressure
$p(x,t)$ via the linearized Euler equation

$\rho\frac{\theta v(x,t)}{\partial t}=-\nabla p(x,t)$ . (46)

Applying the Fourier transform (22) to this equation gives

$\rho i\nu V(x, \nu)=-\nabla P(x, \nu)$ . (47)

Equation (29) can be used in evaluating the velocity V from (47). The theory of vortex sound,
represented by the first term on the right hand side of (29), is however only correct if the
observation point $x$ is located in the ‘far field’, well away from the sound-generating vortex-
dominated flow. The sound scattered by the end plate, described by the second term on the
right hand side in (29) is of course generated by the preceding vortex sound term, that is, by the
nearby vortices. But no far field approximations have been introduced into (29); it is ‘exact’.
Henoe we choose to base the evaluation of acoustic velocity on the scattered pressure field and
use the approximation

$\rho i\nu V(x, \nu)\approx-\nabla P_{\epsilon cat}(x, \nu)$ , (48)

where
$P_{scat}=( x, \nu)=\int\int\tilde{P}(y_{\beta})\frac{\partial G(x,y_{\beta})}{\partial n_{\beta}}d^{2}y_{\beta}$. (49)

Inserting (34) into (49), followed by differentiation with respect to $x_{j}(j=1,2,3)$ , we obtain

$V(x, \nu)$ $=$ $\frac{1}{\rho c_{0}}\sum_{e}\tilde{P}_{\beta e}\int\int\frac{e^{1kr_{\alpha\beta}}}{4\pi}[(-\frac{1}{ikr_{x\beta}^{3}}+\frac{1}{r_{x\beta}^{2}})x$ (50)

$x$ $(3 \cos(r_{x\beta}, n_{\beta})\frac{x-y_{\beta}}{r_{x\beta}}-n_{\beta})$

$-$ $ik\cos(r_{x\beta}, n_{\beta})\frac{x-y_{\beta}}{r_{x\beta}^{2}}]d^{2}y_{\beta e}$
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Taking the inverse Fourier transform (22) of (50), we obtain

$v(x,t)$ $=$ $\frac{1}{4\pi\rho}\sum_{e}\int\int[$

ノ

$\frac{1}{r_{x\beta}^{3}}\int_{-\infty}^{t}[\tilde{p}_{\beta e}]_{t}$. $dt+ \frac{1}{c_{0}r_{x\beta}^{2}}[\tilde{p}_{\beta c}]_{t}.)x$ (51)

$x$ $(3 \cos(r_{x\beta}, n_{\beta})\frac{x-y_{\beta}}{r_{x\beta}}-n_{\beta})$

十 $\frac{1}{d}[\frac{\partial\tilde{p}_{\beta e}}{\partial t}]_{t}.\cos(r_{l\beta}, n_{\beta})\frac{x-y_{\beta}}{r_{x\beta}^{2}}]d^{2}y_{\beta\epsilon}$ .

This velocity field is added to the hae vortex rings near the nozzle exit. In this way a coupling
between the ‘vortex field’ and the acoustic field (acoustic feedback) is established. It is noted
that this approach is in full agreement with Rayleigh’s explanation of the ‘manner of action’, as
cited in Section 1.

3.6 Numerical evaluation of the boundary integrals

To evaluate numerically the integrals (37) and (38) over the boundary elements, an isoparametric
coordinate transformation is applied, such that the quadrilateral elements are mapped into
rectangles [3]. In the global (physical) coordinate system the coordinates $y_{\beta c}$ withih an element
can be expressed in terms of the element corner coordinates $(y_{\beta e})_{j},$ $(j=1, \ldots,4)$ and the
isoparametric coordinates $\xi_{k},$ $(-1\leq\xi_{k}\leq 1, k=1,2)$ , as

$y_{\beta}=\sum_{j}N_{j}(\xi_{1},\xi_{2})(y_{\beta\epsilon})_{j}$
, (52)

where

$N_{1}=^{1}2(1+\xi_{1})(1-\xi_{2})$ , $N_{2}=_{5}^{1}(1+\xi_{1})(1+\xi_{2})$ , (53)
$N_{3}= \frac{1}{2}(1-\xi_{1})(1-\xi_{2})$ , $N_{4}=_{f}^{1}(1-\xi_{1})(1-\xi_{2})$ .

The surface integral (37) can then be written as

$\int\int\frac{\partial^{2}G(x_{\alpha},y_{\beta\epsilon})}{\partial n_{\alpha}n_{\beta}}d^{2}y_{\beta e}$ (54).

$= \int_{-1}^{1}\int_{-1}^{1}\frac{e^{ikr_{\alpha}\rho(\xi_{1},\xi_{2})}}{4\pi r_{\alpha\beta}^{3}(\xi_{1},\xi_{2})}\{1-ikr_{a\beta}(\xi_{1},\xi_{2})\}J(\xi_{1},\xi_{2})d\xi_{1}d\xi_{2}$,

where $J(\xi_{1},\xi_{2})$ is the Jacobian of the mapping. Similarly, the final line integral of (38) can be
written as

$\frac{1}{4\pi}\int_{0}^{2\pi}\frac{e^{ikR_{\epsilon}(\theta)}}{R_{e}(\theta)}d\theta$ (55)

$= \frac{1}{4\pi}\int-1\frac{\exp(ik\sqrt{1+\xi_{1}^{2}})}{(1+\xi_{1}^{2})^{\theta}a}\{J(\xi_{1}, -1)+J(\xi_{1},1)\}d\xi_{1}1$

$+ \frac{1}{4\pi}\int_{-1}^{1}\frac{\exp(ik\sqrt{1+\xi_{2}})}{(1+\xi_{2}^{2})^{3}\pi}\{J(-1,\xi_{2})+J(1,\xi_{2})\}d\xi_{2}$ .

These integrals, on the right hand sides of (54) and (55), are ideally suited for numerical evalu-
ation via Gaussian quadrature [7].

The expressions given here are for the &equency domain; they are however directly applicable
to the time domain solution with $k=0$.
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3.7 Numerical integration of the acoustic equations

The acoustic equations are integrated in time using the trapezoidal method, where the relation
between the pressure $p$ and its time derivative $\dot{p}$ is given by

$p_{n+1}=p_{n}+\frac{\Delta t}{2}(\dot{p}_{n}+\dot{p}_{n+1})$ . (56)

This may be rewritten as
$\dot{p}_{n+1}=\frac{2}{\Delta t}(p_{n+1}-p_{n})-\dot{p}_{n}$. (57)

Rewriting (43)-(45) into matrix form we obtain

$C\beta_{\mathfrak{n}}+Kp_{n}=r_{n}$ , (58)

where
$C_{ij}=\{\begin{array}{ll}-\Sigma^{C_{0}}1-1 for i=j,0 fo i\neq j,\end{array}$ (59)

(60)$K_{1j}=\{-\int_{\frac{d}{4}-\int\int_{\pi}}o_{fort\neq j}^{2\pi}\frac{d\theta}{4\pi R(\theta),\prec 2yr_{j}}fori=j$

and
$\partial p_{vtx}(x_{j},t)$

$r_{j}=\overline{\partial n_{j}}$
. (61)

Inserting (57) into (58), the latter equation may be rewritten into the form of a standard
linear equation,

$K^{eff}p_{n+1}=r_{n+1}^{eff}$ , (62)

with
$K^{eff}=\frac{2}{\Delta t}C+K$, (63)

and
$r_{n+1}^{eff}=r_{n+1}+C(\frac{2}{\Delta t}p_{n}+\dot{p}_{n})$ . (64)

Equation (62) is solved with respect to $p_{\mathfrak{n}+1}$ at each time step. Following this, $\beta_{\mathfrak{n}+1}i8$ updated
using (57). But, as ‘numerical noise’ in the velocities is unavoidable by the discrete vortex
method, the use of (57) may $ampli\Psi$ this ‘noise’ to an unacceptable level. A smoother and more
useful pressure time series can be obtained by differentiating a least-square fit of a number of
consecutive points on the ‘pressure curve‘, as suggested by Lanczos [7]. The formula for the
general case of smoothing by use of $K$ neighbors on both sides of the point where the derivative
is wanted is given by

$\frac{\partial p(t)}{\theta t}=(\sum_{k=-K}^{K}kp(t+k\Delta t))/(2\sum_{k=1}^{K}k^{2}\Delta t).\cdot$ (65)

As values ahead are needed, the pressure evaluation must lag $K$ time steps after the actual state.
If $K=2$, for example, the formula is

$\frac{\partial p(t-2\Delta t)}{\partial t}=\frac{1}{10\Delta t}\{-2p(t-4\Delta t)-p(t-3\Delta t)+p(t-\Delta t)+2p(t)\}$, (66)

or, with the notation used in this section,

$\beta_{n-2}=\frac{1}{10\Delta t}(-2p_{n-4}-p_{n-3}+p_{n-1}+2p_{n})$ . (67)
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3.8 Test of the boundary element method

The scattering of a plane, harmonic wave by a thin rigid disk, of radius $a$ , is considered as a test
case for the boundary element method. An analytical solution has been derived by Noble [12].
The incoming pressure wave, incident normally on the disk, is given by $P_{i}=\exp(-ikz)$ . The
scattered pressure wave can be expressed as

$P_{\epsilon}(r, \theta, \lambda)=\frac{2}{\pi}k^{2}a^{3}\sum_{n=0}^{\infty}\frac{(-1)^{n}(\lambda a)^{2n}}{1\cdot 3\cdots(4n+1)}X_{2\mathfrak{n}+\frac{a}{2}}(\lambda a)P_{2n+1}(\cos\theta)(\frac{2\lambda}{\pi r})^{1}zK_{2n+\frac{3}{2}}(\lambda r)$ , (68)

where $\lambda=-ik$ . The functions $X_{2n+\frac{3}{2}}(\lambda a)$ are defined in Ref. [12] in terms of a recursive formula.
The terms necessary to evaluate the pressure to order $(\lambda a)^{4}$ are

$X_{\frac{s}{2}}(\lambda a)$
$=$ $\frac{1}{3}-\frac{4}{75}(\lambda a)^{2}+\frac{2}{27\pi}(\lambda a)^{3}+\frac{1}{5\cdot 7^{2}}(\lambda a)^{4}+\cdots$ (69)

$X_{\text{フ}}(\lambda a)$
$=$ $\frac{1}{5}-\frac{2}{3^{2}\cdot 7}(\lambda a)^{2}+\cdots$ , $x_{\#}( \lambda a)=\frac{1}{7}+\cdots$

The functions $P_{2n+1}(\theta)$ are Legendre polynomials, given by

$P_{1}(\cos\theta)$ $=$ cos $\theta$ , (70)
$P_{2}(\cos\theta)$ $=$ \S 1 (3 cos $\theta+5$ cos 39),
$P_{3}$ (coe $\theta$) $=$ $\overline{1}T81$ ( $30$ cos $\theta+35$ cos $3\theta+63$ cos $5\theta$),

:

Finally, the functions $K_{2\mathfrak{n}+3,2}(\lambda r)$ are modified $B\propto sel$ functions of the second kind.
The intensity of the scattered sound field as function of the angle $\theta$ , computed via the

boundary element method and via the analytical expression (68), is shown in a polar plot in
Fig. $2(a).$ .The diameter of the disk is lm, the frequency is 10 Hz, and the distance from the
center of the plate to the observation point $r$ is $10m$. The agreement is very good for relatively
small values of $ka$ , i.e. for low &equencies, as considered here. [The agreement is less good for
higher frequencies; it appears that more terms in series for the X-functions of (69) are then
needed.] The plot also illustrates a pure dipole behavior of the plate for low &equencies. This
can also be seen directly $hom(68)-(70)$ . Fig. 2(b) shows the boundary element grid used; the
number of elements is 1152.

Figure 2: (a) Layout of a thin rigid disk and the incoming wave, and intensity $di_{8}tribution$ of
the scattered wave (polar diagram). (b) The boundary element grid used in the computation.
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4 Numerical example

Computations have been carried out for data corresponding to an experimental rig with nozzle
and end plate hole diameter $d_{0}=2r_{0}=50$ mm [11]. The outer diameter of the end plate is
250 mm. The gap length $\ell$ is 50 mm, e.g., equal to $d_{0}$ . The mean velocity $u_{0}$ of the air-jet
is 10 $m/s$ . At $20\circ c$ this corresponds to a Reynolds number $Re=u_{0}d_{0}/\nu\approx 3.3\cross 10^{4}$ and a
Mach number $M=u_{0}/c_{0}\approx 0.03$ , where the speed of sound $c_{0}=340$ $m/s$ and the kinematic
viscosity $\nu=1.5x10^{-5}m^{2}/s$ . The initial vortex core radii $\sigma_{j}=0.275r_{0}$ . A number of side view
‘snapshots’ of the jet during one period of the oscillations are shown in Fig. 3. The computed
fundamental frequency $f_{0}\approx 190$ Hz, which is quite close to the experimentally observed value
$ofl96Hz$ .

Figure 3: Side view of the jet during one period of oscillation.

Velocity fluctions in the shear layer are illustrated in Fig. 4(a). The data have been recorded
0.2$d_{0}$ away from the end plate. Part (b) of the figure shows the to part (a) corresponding fre-
quency spectrum (given in $dB$ , using 5 $ms^{-1}$ as reference velocity). The level at the characteristic
frequency $f_{0}$ is in good agreement with the experimentally recorded value [11]. The experimental
spectrum contains however less ‘noise’ and exhibits distinct higher harmonics $(2f_{0},3f_{0}, \ldots)$ .

Figure 4: (a) Velocity fluctuations in the shear layer at a distance 0.2$d_{0}$ from the end plate. (b)
The corresponding frequency spectrum.
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5 Proper orthogonal decomposition analysis

5.1 Description of the method

Proper orthogonal decomposition (POD) is a method for extracting coherent structures from
experimental or computational data [4]. By coherent structures is meant fundamental fluid
modes, containing a concentration of vorticity $and/or$ responsible for the major part of energy
transport.

The velocity field $u(x,t)$ is recorded at $N$ grid points $x_{1},$ $\ldots,x_{N}$ and at $M$ times $t_{1},$
$\ldots,$

$t_{M}$ ,

$u(x,t)=(\begin{array}{llll}u(x_{l},t_{1}) u(x_{2},t_{l}) u(x_{N},t_{1})u(x_{1},t_{2}) u(x_{2},t_{2}) u(x_{N},t_{2})\vdots \vdots \ddots \vdotsu(x_{1},t_{M}) u(x_{2},t_{m}) u(x_{N},t_{M})\end{array})$ . (71)

The POD method determines a set of orthogonal vector functions $\varphi_{n}(x)homA(x, t)$ , such that
the expansion of $u(x, t)$ in terms of these functions, ‘

$u_{N}(x,t)=\sum_{\mathfrak{n}=1}^{N}a_{\mathfrak{n}}(t)\varphi_{n}(x)$ , (72)

has the smallest error, in the sense that

$(||u_{N}-u||^{2}\rangle$ $arrow\min,$ (73)

where $\Vert\cdot\Vert$ denotes the $L^{2}$-norm, and $\langle\cdot\rangle$ denotes averaging.
The determination of the POD modes $\varphi_{\mathfrak{n}}$ involves, in the so-called direct method, the solution

of an $NxN$ eigenvalue problem.
Often the number of grid points $N\gg M$ , the number of temporal points. This is taken

into advantage in the ‘method of snapshots’, where the POD modes $\varphi_{\mathfrak{n}}$ are written as a linear
combination of the $Msnap_{8}hots’$ ,

$\varphi(x)=\sum_{m=1}^{M}c_{m}u(x,t_{m})$ . (74)

Texts on POD, e.g. [4], show that the constants $q_{n}$ can be determined by solving the $MxM$
symmetric eigenvalue problem

$\sum_{m=1}^{M}\frac{1}{M}u_{n}\cdot u_{m}c_{m}=\lambda c_{n}$, $n=1,$ $\ldots,$ M. (75)

5.2 Numerical example

Velocities are recorded at 51 $x$ 101 grid points, as shown in Fig. 5. Snapshots are taken over
10 flow-oscillation periods, with 8 snapshots in each period. Thus with $N=5151$ and $M=80$,
it is clearly of advantage to use the method of snapshots. The modal functions $\varphi_{1},$

$\ldots,$
$\varphi_{4}$ are

shown in Fig. 6.. It should be noted that the mean velocity $u_{0}(x)$ was subtracted before (75)
was set up and solved. Thus, rather than (72), the expansion

$u_{N}(x,t)=u_{0}(x)+\sum_{n=1}^{N}\tilde{a}_{n}(t)\varphi_{\mathfrak{n}}(x)$ (76)

is considered. Mode 1 has a mean-flow-like appearance, while modes 2, 3, and 4 are characterized
by the appearance of one vortex, two vortices, and three vortices, respectively. It seem8 likely
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Figure 5: The 51 $x$ 101 grid used for obtaining velocity snapshots. (a) The whole computational
system. (b) Zoom-in around the grid.

that the mentioned phenomenon of mode jumps is related to the mutual balance between these
fundamental modes. This can, we believe, be verified by a low-dimensional analysis based on the
Euler equations, discretized via the Galerkin method, with the POD modes as basis functions.
Rowley et al. have applied such an approach to the problem of self-sustained oscillations in the
flow over a rectangular cavity, and found that the results of a full simulation could be captured
by the Galerkin approximation using just four modes.

Figure 6: POD modes 1 through 4 (from left to right). The figures in the upper row show
velocity vectors; those in the lower row are iso-velocity contour plots. The coordinates are as in
Fig. 5, i.e. the nozzle exit is at abscissa 2.5; the end plate at 3.5.
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This appears to apply to the present problem as well. The eigenvalues $\lambda_{m}$ of (75) are shown
in Fig. 7. These eigenvaluev represent twice the kinetic energy of the corresponding mode $\varphi_{m}$ .
It is seen that the magnitude falls off rapidly with increasing mode number. Thus only the first
four or five modes will be of significance in governing the dynamics of the system.

$m$

Figure 7: Eigenvalues related to the POD modes.
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