Operator inequalities obtained from M. Uchiyama's recent results

東京理科大・理 柳田 昌宏 (Masahiro Yanagida)
Department of Mathematical Information Science,
Tokyo University of Science

1 Remarks on Furuta inequality

In what follows, an operator means a bounded linear operator on a Hilbert space H. An operator T is positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$, and strictly positive (denoted by T > 0) if T is positive and invertible.

Theorem F (Furuta inequality [2]). If $A \geq B \geq 0$, then for each $r \geq 0$,

(i)
$$(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1}{q}} \ge (B^{\frac{r}{2}}B^pB^{\frac{r}{2}})^{\frac{1}{q}}$$

and

(ii)
$$(A^{\frac{r}{2}}A^{p}A^{\frac{r}{2}})^{\frac{1}{q}} \ge (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}}$$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

Löwner-Heinz theorem " $A \ge B \ge 0 \Longrightarrow A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0,1]$ " is the case r=0 of Theorem F. Other proofs are given in [1][5] and also an elementary one-page proof in [3]. It is shown in [6] that the domain of p, q and r in Theorem F is the best possible for the inequalities (i) and (ii) to hold under the assumption $A \ge B$.

Remark 1. It was shown in [5] that $A \geq B \geq 0$ implies

$$B^{\frac{-r}{2}} (B^{\frac{r}{2}} A^p B^{\frac{r}{2}})^{\frac{1}{q}} B^{\frac{-r}{2}} \ge A^{\frac{p+r}{q}-r} \ge B^{\frac{p+r}{q}-r} \tag{1}$$

holds for $r \ge 0$, $p \ge 1$ and $q \ge 1$ with $(1+r)q \ge p+r$. The essential part of (1) is the first inequality, while the important condition $(1+r)q \ge p+r$ comes from the second.

Remark 2. Theorem F is based on the fact that

$$(B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{\delta}{\alpha}} \ge B^{\delta} \Longrightarrow (B^{\frac{t+u}{2}}XB^{\frac{t+u}{2}})^{\frac{\delta+u}{\alpha+u}} \ge B^{\delta+u}$$
 (2)

holds for $B, X \ge 0$, $t \in \mathbb{R}$ and $0 \le u \le \delta \le \alpha$. Theorem F can be proved by applying (2) repeatedly as follows: for $A, B \ge 0$ and $p \ge 1$,

$$A \geq B \iff (B^{\frac{0}{2}}A^{p}B^{\frac{0}{2}})^{\frac{1+0}{p+0}} \geq B^{1+0}$$

$$\implies (B^{\frac{0+u_{1}}{2}}A^{p}B^{\frac{0+u_{1}}{2}})^{\frac{1+0+u_{1}}{p+0+u_{1}}} \geq B^{1+0+u_{1}} \quad \text{for } u_{1} \in [0,1] \text{ by (2)}$$

$$\implies (B^{\frac{1}{2}}A^{p}B^{\frac{1}{2}})^{\frac{1+1}{p+1}} \geq B^{1+1}$$

$$\implies (B^{\frac{1+u_{2}}{2}}A^{p}B^{\frac{1+u_{2}}{2}})^{\frac{1+1+u_{2}}{p+1+u_{2}}} \geq B^{1+1+u_{2}} \quad \text{for } u_{2} \in [0,2] \text{ by (2)}$$

$$\implies (B^{\frac{3}{2}}A^{p}B^{\frac{3}{2}})^{\frac{1+3}{p+3}} \geq B^{1+3}$$

$$\implies (B^{\frac{3+u_{3}}{2}}A^{p}B^{\frac{3+u_{3}}{2}})^{\frac{1+3+u_{3}}{p+3+u_{3}}} \geq B^{1+3+u_{3}} \quad \text{for } u_{3} \in [0,4] \text{ by (2)}$$

$$\implies \cdots$$

Proof of (2). The assumptions imply $(B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{u}{\alpha}} \geq B^{u}$ by Löwner-Heinz theorem, and there exists a contraction C such that $C^{*}(B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{u}{2\alpha}} = (B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{u}{2\alpha}}C = B^{\frac{u}{2}}$. Hence,

$$(B^{\frac{t+u}{2}}XB^{\frac{t+u}{2}})^{\frac{\delta+u}{\alpha+u}} = (C^*(B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{\alpha+u}{\alpha}}C)^{\frac{\delta+u}{\alpha+u}}$$

$$\geq C^*((B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{\alpha+u}{\alpha}}C) \text{ by Hansen's inequality [4]}$$

$$= B^{\frac{u}{2}}(B^{\frac{t}{2}}XB^{\frac{t}{2}})^{\frac{\delta}{\alpha}}B^{\frac{u}{2}}$$

$$\geq B^{\delta+u} \text{ by the assumption.}$$

In the one-page proof ([3]), the fact

$$A \ge B \ge 0 \Longrightarrow (B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1+r}{p+r}} \ge B^{1+r} \text{ for } p \ge 1 \text{ and } r \in [0,1]$$
 (3)

is shown at first, and then (3) is used doubly and nestedly as

$$A \ge B \ge 0 \Longrightarrow A_1 \ge B_1 \Longrightarrow (B_1^{\frac{r_1}{2}} A_1^{p_1} B_1^{\frac{r_1}{2}})^{\frac{1+r_1}{p_1+r_1}} \ge B_1^{1+r_1}$$

where $A_1 = (B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1+r}{p+r}}$, $B_1 = B^{1+r}$, $p_1 = \frac{p+r}{1+r}$ and $r_1 = 1$. We note that the value of p_1 is chosen in order that $h(t) = t^{p_1}$ becomes the inverse function of $\varphi(t) = t^{\frac{1+r}{p+r}}$. It might be remarkable that in the proof of (2), we use neither such an implication proposition with the hypothesis $A \geq B$ as (3) nor such an inverse function as h(t).

2 Uchiyama's results and their generalizations

Let $\mathbb{P}_{+}[a,b)$ be the set of all non-negative operator monotone functions defined on [a,b), and $\mathbb{P}_{+}^{-1}[a,b)$ the set of increasing functions h defined on [a,b) such that $h([a,b)) = [0,\infty)$ and its inverse h^{-1} is operator monotone on $[0,\infty)$. Uchiyama [7] introduces a new concept of majorization, and shows a quite interesting result named "Product theorem."

Definition ([7]). Let h be a non-decreasing function on I and k an increasing function on J. Then h is said to be majorized by k, in symbols $h \leq k$, if $J \subseteq I$ and the composite $h \circ k^{-1}$ is operator monotone on k(J).

Product theorem ([7]). Suppose $-\infty < a < b \le \infty$. Then

$$\mathbb{P}_{+}[a,b) \cdot \mathbb{P}_{+}^{-1}[a,b) \subseteq \mathbb{P}_{+}^{-1}[a,b), \quad \mathbb{P}_{+}^{-1}[a,b) \cdot \mathbb{P}_{+}^{-1}[a,b) \subseteq \mathbb{P}_{+}^{-1}[a,b).$$

Further, let $h_i \in \mathbb{P}_+^{-1}[a,b)$ for $1 \leq i \leq m$, and let g_j be a finite product of functions in $\mathbb{P}_+[a,b)$ for $1 \leq j \leq n$. Then for $\psi_i, \phi_j \in \mathbb{P}_+[0,\infty)$

$$\prod_{i=1}^{m} h_i(t) \prod_{j=1}^{n} g_j(t) \in \mathbb{P}_{+}^{-1}[a,b), \quad \prod_{i=1}^{m} \psi_i(h_i(t)) \prod_{j=1}^{n} \phi_j(g_j(t)) \preceq \prod_{i=1}^{m} h_i(t) \prod_{j=1}^{n} g_j(t).$$

Furthermore, he applies Product theorem to obtain generalizations of Theorem F.

Proposition A ([7]). Let $h \in \mathbb{P}_+^{-1}[0,\infty)$, and let \tilde{h} be a non-negative non-decreasing function on $[0,\infty)$ such that $\tilde{h} \leq h$. Let g be a finite product of functions in $\mathbb{P}_+[0,\infty)$. Then for the function φ defined by $\varphi(h(t)g(t)) = \tilde{h}(t)g(t)$

$$A \geq B \geq 0 \Longrightarrow \begin{cases} \varphi(g(B)^{\frac{1}{2}}h(A)g(B)^{\frac{1}{2}}) \geq g(B)^{\frac{1}{2}}\tilde{h}(A)g(B)^{\frac{1}{2}}, \\ \varphi(g(A)^{\frac{1}{2}}h(B)g(A)^{\frac{1}{2}}) \leq g(A)^{\frac{1}{2}}\tilde{h}(B)g(A)^{\frac{1}{2}}. \end{cases}$$

Theorem B ([7]). Let $h \in \mathbb{P}_+^{-1}[0,\infty)$, and let \tilde{h} be a non-negative non-decreasing function on $[0,\infty)$ such that $\tilde{h} \leq h$. Let g_n be a finite product of functions in $\mathbb{P}_+[0,\infty)$ for each n, and let the sequence $\{g_n\}$ converge pointwise to g. Suppose $g \neq 0$ and g(0+) = g(0). Then for the function φ defined by $\varphi(h(t)g(t)) = \tilde{h}(t)g(t)$

$$A \geq B \geq 0 \Longrightarrow \begin{cases} \varphi(g(B)^{\frac{1}{2}}h(A)g(B)^{\frac{1}{2}}) \geq g(B)^{\frac{1}{2}}\tilde{h}(A)g(B)^{\frac{1}{2}}, \\ \varphi(g(A)^{\frac{1}{2}}h(B)g(A)^{\frac{1}{2}}) \leq g(A)^{\frac{1}{2}}\tilde{h}(B)g(A)^{\frac{1}{2}}. \end{cases}$$

We obtain extensions of Proposition A and Theorem B by weakening their hypotheses from $A \ge B$ to inequalities implied by it. We note that these results are slightly improved versions of those in [8] from the viewpoint of the remarks in the previous section.

Proposition 1. Let f_i be non-negative non-decreasing functions on $[0, \infty)$ and $g_j(t) = \prod_{i=1}^j f_i(t)$. Let h, \hat{h} and \tilde{h} be non-negative non-decreasing functions on $[0, \infty)$ such that $f_n(t) \leq \hat{h}(t)g_{n-1}(t)$, $\tilde{h} \leq h$ and $h(0)g_{n-1}(0) = 0$. Then for the functions ψ_j and φ_j defined by $\psi_j(h(t)g_j(t)) = \hat{h}(t)g_j(t)$ and $\varphi_j(h(t)g_j(t)) = \tilde{h}(t)g_j(t)$, if $A, B \geq 0$ satisfy

$$\psi_{n-1}(g_{n-1}(B)^{\frac{1}{2}}h(A)g_{n-1}(B)^{\frac{1}{2}}) \ge \hat{h}(B)g_{n-1}(B),$$

then

$$\varphi_n(g_n(B)^{\frac{1}{2}}h(A)g_n(B)^{\frac{1}{2}}) \geq f_n(B)^{\frac{1}{2}}\varphi_{n-1}(g_{n-1}(B)^{\frac{1}{2}}h(A)g_{n-1}(B)^{\frac{1}{2}})f_n(B)^{\frac{1}{2}}$$

holds. Furthermore,

$$\psi_n(g_n(B)^{\frac{1}{2}}h(A)g_n(B)^{\frac{1}{2}}) \ge \hat{h}(B)g_n(B)$$

holds if $\hat{h} \prec h$.

Theorem 2. Let $\hat{h} \in \mathbb{P}_{+}^{-1}[0,\infty)$, and let h and \tilde{h} be non-negative non-decreasing functions on $[0,\infty)$ such that $\tilde{h} \leq h$ and $\hat{h} \leq h$. Let g be a finite product of functions in $\mathbb{P}_{+}[0,\infty) \cup \mathbb{P}_{+}^{-1}[0,\infty)$ and γ_n a finite product of functions in $\mathbb{P}_{+}[0,\infty)$ for each n, and let the sequence $\{g(t)\gamma_n(t)\}$ converge pointwise to $\bar{g}(t)$. Suppose $\bar{g} \neq 0$ and $\bar{g}(0+) = \bar{g}(0)$. Then for the functions ψ , $\bar{\psi}$, φ and $\bar{\varphi}$ defined by $\psi(h(t)g(t)) = \hat{h}(t)g(t)$, $\bar{\psi}(h(t)\bar{g}(t)) = \hat{h}(t)\bar{g}(t)$, $\varphi(h(t)g(t)) = \tilde{h}(t)g(t)$ and $\bar{\varphi}(h(t)\bar{g}(t)) = \tilde{h}(t)\bar{g}(t)$, if $A, B \geq 0$ satisfy

$$\psi(g(B)^{\frac{1}{2}}h(A)g(B)^{\frac{1}{2}}) \ge \hat{h}(B)g(B),$$

then

$$g(B)^{\frac{1}{2}}\bar{\varphi}(\bar{g}(B)^{\frac{1}{2}}h(A)\bar{g}(B)^{\frac{1}{2}})g(B)^{\frac{1}{2}} \geq \bar{g}(B)^{\frac{1}{2}}\varphi(g(B)^{\frac{1}{2}}h(A)g(B)^{\frac{1}{2}})\bar{g}(B)^{\frac{1}{2}}$$

and

$$\bar{\psi}(\bar{g}(B)^{\frac{1}{2}}h(A)\bar{g}(B)^{\frac{1}{2}}) \ge \hat{h}(B)\bar{g}(B)$$

hold.

Proof of Proposition 1 \Longrightarrow Proposition A. Put $\hat{h}(t) = t$ and $f_1(t) = g_1(t) = 1$, then

$$\psi_1(g_1(B)^{\frac{1}{2}}h(A)g_1(B)^{\frac{1}{2}}) = \psi_1(h(A)g_1(A)^{\frac{1}{2}}) = \hat{h}(A)g_1(A) = A \ge B = h(B)g_1(B).$$

By applying Proposition 1, we have

$$\psi_{1}(g_{1}(B)^{\frac{1}{2}}h(A)g_{1}(B)^{\frac{1}{2}}) \geq h(B)g_{1}(B) \Longrightarrow \psi_{2}(g_{2}(B)^{\frac{1}{2}}h(A)g_{2}(B)^{\frac{1}{2}}) \geq h(B)g_{2}(B)$$

$$\Longrightarrow \psi_{3}(g_{3}(B)^{\frac{1}{2}}h(A)g_{3}(B)^{\frac{1}{2}}) \geq h(B)g_{3}(B)$$

$$\Longrightarrow \cdots$$

$$\Longrightarrow \psi_{n-1}(g_{n-1}(B)^{\frac{1}{2}}h(A)g_{n-1}(B)^{\frac{1}{2}}) > h(B)g_{n-1}(B)$$

since $\hat{h}(t) = t \leq h(t)$, and

$$\begin{split} \psi_k(g_k(B)^{\frac{1}{2}}h(A)g_k(B)^{\frac{1}{2}}) &\geq h(B)g_k(B) \\ &\Longrightarrow \varphi_{k+1}(g_{k+1}(B)^{\frac{1}{2}}h(A)g_{k+1}(B)^{\frac{1}{2}}) \geq f_{k+1}(B)^{\frac{1}{2}}\varphi_k(g_k(B)^{\frac{1}{2}}h(A)g_k(B)^{\frac{1}{2}})f_{k+1}(B)^{\frac{1}{2}} \end{split}$$

for $k = 1, 2, \ldots, n - 1$. Therefore

$$\varphi_{n}(g_{n}(B)^{\frac{1}{2}}h(A)g_{n}(B)^{\frac{1}{2}}) \geq f_{n}(B)^{\frac{1}{2}}\varphi_{n-1}(g_{n-1}(B)^{\frac{1}{2}}h(A)g_{n-1}(B)^{\frac{1}{2}})f_{n}(B)^{\frac{1}{2}} \\
\geq f_{n}(B)^{\frac{1}{2}}f_{n-1}(B)^{\frac{1}{2}}\varphi_{n-2}(g_{n-2}(B)^{\frac{1}{2}}h(A)g_{n-2}(B)^{\frac{1}{2}})f_{n-1}(B)^{\frac{1}{2}}f_{n}(B)^{\frac{1}{2}} \\
\geq \cdots \\
\geq f_{n}(B)^{\frac{1}{2}}\cdots f_{2}(B)^{\frac{1}{2}}\varphi_{1}(g_{1}(B)^{\frac{1}{2}}h(A)g_{1}(B)^{\frac{1}{2}})f_{2}(B)^{\frac{1}{2}}\cdots f_{n}(B)^{\frac{1}{2}} \\
= g_{n}(B)^{\frac{1}{2}}\tilde{h}(A)g_{n}(B)^{\frac{1}{2}}. \qquad \square$$

References

- [1] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990), 67-72.
- [2] T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. 101 (1987), 85-88.
- [3] T. Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 126.
- [4] F. Hansen, An operator inequality, Math. Ann. 246 (1979/80), 249-250.
- [5] E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883-886.
- [6] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141-146.
- [7] M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Anal. 231 (2006), 221-244.
- [8] M. Yanagida, Order preserving operator inequalities with operator monotone functions, Recent Developments in Theory of Operators and Its Applications (Kyoto, 2006), Sūrikaisekikenkyūsho Kōkyūroku No. 1535 (2007), 119–124.