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1 Remarks on Furuta inequality

In what follows, an operator means a bounded linear operator on a Hilbert space H. An
operator T is positive (denoted by T > 0) if (T'z,z) > 0 for all x € H, and strictly
positive (denoted by T > 0) if T is positive and invertible.

Theorem F (Furuta inequality [2]). » (A+rjg=p+r
If A> B >0, then for each r > 0,

(i) (BiAPB%)< > (B5BPB%)s

and

(i)  (ATAPAR)T > (AFBPAR):

hold forp >0 and g >1 with (1+r)g>p+r. ©,-) FIGURE

Léwner-Heinz theorem “A > B > 0 = A® > B* for any a € [0,1]” is the case r =0
of Theorem F. Other proofs are given in [1][5] and also an elementary one-page proof in
[3]. It is shown in [6] that the domain of p, ¢ and r in Theorem F is the best possible for
the inequalities (i) and (ii) to hold under the assumption A > B.

Remark 1. It was shown in (5] that A > B > 0 implies
BF(BiAPBi)iB¥ > A" > B¢ (1)

holds for r > 0, p > 1 and ¢ > 1 with (1 + r)g > p + r. The essential part of (1) is the
first inequality, while the important condition (1 + r)gq > p + r comes from the second.

Remark 2. Theorem F is based on the fact that
(BiXB#)% > B® — (B*F XBH)& > pi+v )

holds for B,X >0,t€ Rand 0 < u < 6§ < a. Theorem F can be proved by applying (2)
repeatedly as follows: for A,B > 0 and p > 1,



70

1

A > B <> (B3APB)5 > pit0
— (BT APBY 5 )pont > B for 4, € [0,1] by (2)
= (BiAPBi)7i > B+
— (B2 4B > B4 for u, € [0,2] by (2)
= (BY4rB})3i > pi#3
= (B APBY)5RE > BT for uy € [0,4] by (2)
Proof of (2). The assumptions imply (B¥X B§)§ > B* by Léwner-Heinz theorem, and
there exists a contraction C such that C*(BiXB#)% = (BiXB%)%C = B¥. Hence,
(B XBH)E = (0" (Bix B 0)H
>C*((Bix B%)sf”) e by Hansen’s inequality [4]
= B¥(BiXB%) B}
> Bt by the assumption. 0
In the one-page proof ([3]), the fact

ltr
ra

A>B>0=> (BiAPB%)»* > B"™* forp>1andr€[0,1] (3)

is shown at first, and then (3) is used doubly and nestedly as
A>B>0=>A; > B, = (B AVB} s+ > Bi+n

where A; = (B%APBi)i'E, B, =B p = 11’{{- and r; = 1. We note that the value of p;
is chosen in order that h(t) = t** becomes the inverse function of ¢(t) = trer . It might be
remarkable that in the proof of (2), we use neither such an implication proposition with

the hypothesis A > B as (3) nor such an inverse function as h(t).

2 Uchiyama’s results and their generalizations

Let P, [a, ) be the set of all non-negative operator monotone functions defined on [a, b),
and P;![a, b) the set of increasing functions h defined on [a, b) such that h([a, b)) = [0, c0)
and its inverse h~! is operator monotone on [0, 00). Uchiyama [7] introduces a new concept
of majorization, and shows a quite interesting result named “Product theorem.”

Definition ([7]). Let h be a non-decreasing function on I and k an increasing function
on J. Then h is said to be majorized by k, in symbols A < k, if J C I and the composite
ho k™! is operator monotone on k(J).
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Product theorem ([7]). Suppose —0 < a < b < co. Then
P,[a,b) - P '[a,b) C P;'[a,b), P;'[a,b) P 'la,b) C P7[a,b).

Further, let h; € P1'[a,d) for 1 < i < m, and let g; be a finite product of functions in
P,la,b) for 1 < j < n. Then for ¢4, ¢; € P.[0,00)

th Hga(t)ew"llab Hw.(h(t H¢,<g,t))<1'[h(t)Hg,(t)

i=1 j=1 i=1 Jj=1

Furthermore, he applies Product theorem to obtain generalizations of Theorem F.

Proposition A ([7]). Let h € P7![0,00), and let h be a non-negative non-decreasing
Junction on [0,00) such that h < h. Let g be a finite product of functions in P[0, 00).
Then for the function ¢ defined by p(h(t)g(t)) = h(t)g(t)

A>B>0m {so(g(B)jhm)g(B)f) > g(B)jﬁ(A)g(B)f,

¢(9(A)2h(B)g(A)?) < g(A)3h

Theorem B ([7)). Let h € P;}[0,00), and let b be a non-negative non-decreasing function
on [0,00) such that h < h. Let g, be a finite product of functions in P, [0,00) for each
n, and let the sequence {g,} converge pointwise to g. Suppose g # 0 and g(0+) = g(0).
Then for the function ¢ defined by o(h(t)g(t)) = h(t)g(t)

¢(9(B)h(A)g(B)}) > g(B)tR(4)9(B)E,
©(g(A)Th(B)g(A)*) < g(A) h(B)g(A)3.
We obtain extensions of Proposition A and Theorem B by weakening their hypotheses

from A > B to inequalities implied by it. We note that these results are slightly improved
versions of those in [8] from the viewpoint of the remarks in the previous section.

A2B20=>{

Proposition 1. Let f; be non-negative non-decreasing functions on [0,00) and g;(t) =
[T, fi(t). Leth, fzv and h be non-negative non-decreasing functions on [0,00) such that
Fa(t) X R(t)gn-1(t), A < h and h(0)ga_1(0) = 0. Then for the functions ¥; and @; defined
by ¥;(h(t)9;(t)) = h(t)g;(t) and v;(h(t)g;(t) = A(t)g;(t), if A, B > 0 satisfy
Yn-1(gn-1(B) h(A)gn-1(B)?) > h(B)gn-1(B),
then
¢n(92(B)1h(A)gn(B)?) 2 fa(B)} n-1(90-1(B)}h(4)gn-1(B)*) fu(B)?
holds. Furthermore,
Yn(9n(B)2h(A)gn(B)¥) > h(B)gn(B)
holds if h < h.
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Theorem 2. Leth € P7'[0, 00), and let h and h be non-negative non-decreasing functions
on [0,00) such that h < h and h < h. Let g be a finite product of functions in P, [0,00) U
P;'[0,00) and vy, a finite product of functions in P[0, 00) for each n, and let the sequence
{9(t)n(t)} converge pointwise to g(t). Suppose § # 0 and g(0+) = §(0). Then for
the functions v, ¥, ¢ and ¢ defined by (h(t)g(t)) = h(t)g(t), P(A(I() = A(t)3(2),
o(h(t)g()) = h(t)g(t) and B(()F(H) = R(BF(), if A B > 0 satisfy

¥(9(B)ih(4)g(B)?) > h(B)g(B),

then
9(B)}(5(B)h(A)5(B)?)g(B)} > 5(B)}o(g(B) r(A)g(B)})g(B)}
and
%(3(B)th(A)g(B)Y) > h(B)3(B)
hold.

Proof of Proposition 1 => Proposition A. Put iz(t) =t and fi1(¢t) = g1(t) = 1, then
¥1(a1(B)E(A)01(B)?) = %1 (M(A)0: (DY) = h(A)g1(4) = A 2 B = h(B)u(B).

By applying Proposition 1, we have

¥1(91(B)$h(A)g1(B)?) = h(B)g1(B) = 12(g2(B)3h(A)g2(B)*) > h(B)ga(B)
= 93(93(B)¥h(4)gs(B)}) > h(B)gs(B)

= Yn-1(gn-1(B) 1 h(A)gn-1(B)}) > h(B)gn-1(B)

since h(t) =t < h(t), and

Ye(9x(B)th(A)gi(B)?) > h(B)gk(B)
= 0er1(Gk+1(B) h(A)gks1(B)}) > frsr(B)or(gx(B) h(A)gi(B) 1) firr (B)

fork=1,2,...,n— 1. Therefore

0n(n(B)ih(A)ga(B)}) > fa(B)}0n_1(9n-1(B)3h(A)gn_1(B)3) fa(B)?
> fu(B) fro1(B) ¥ pn-2(gn-2(B) h(A)gn—2(B)?) fa_1(B) fu(B)?
> ..
> fu(B

)t f2(B) o1 (91(B)2h(A) g1 (B)?) fo B)E -+ fu(B)E
= gn(B)*F

h(A)ga(B)*. O
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