A Theory of Superstructures

法政大学 村上 雅彦 (Masahiko MURAKAMI) Hosei University

1 Axiom

We shall consider a first order theory of a language $\mathcal{L}_{\in} = \{\in\}$ on the classical logic with equality "=", where the symbol \in is a membership relation.

We adopt the following abbreviations:

$$\operatorname{Set}(x) \equiv \exists y \ y \in x,$$

$$\forall x \in y \ \varphi(x) \equiv \forall x \ [x \in y \Rightarrow \varphi(x)],$$

$$\exists x \in y \ \varphi(x) \equiv \exists x \ [x \in y \land \varphi(x)],$$

$$x \subseteq y \equiv \forall z \in x \ z \in y,$$

$$x \notin y \equiv \neg x \in y,$$

$$x \subsetneq y \equiv x \subseteq y \land \exists u \in y \ u \notin x,$$

$$\operatorname{Trans}(x) \equiv \forall y \in x \ y \subseteq x,$$

$$\forall x \subseteq y \ \varphi(x) \equiv \forall x \ [x \subseteq y \Rightarrow \varphi(x)],$$

$$\operatorname{Wo}_{\subseteq}(x) \equiv \forall y \subseteq x \ [\operatorname{Set}(y) \Rightarrow \exists u \in y \ \forall z \in y \ u \subseteq z] \land \forall z \in x \ \operatorname{Set}(z),$$

$$\operatorname{Mater}(x, y) \equiv \forall z \in x \ \exists u \in y \ z \in u,$$

$$\exists ! x \ \varphi(x) \equiv \exists x \ \varphi(x) \land \forall x_1 \ \forall x_2 \ [\varphi(x_1) \land \varphi(x_2) \Rightarrow x_1 = x_2],$$

$$\exists ! x \in y \ \varphi(x) \equiv \exists ! x \ [x \in y \land \varphi(x)].$$

We call Mater(x, y) that x is a set of materials of y. In **ZF** set theory, Mater(x, y) means that x is a subset of union of y.

A formula φ of \mathcal{L}_{\in} is restricted or bounded if all quantifiers in φ are of either form $\forall x \in y \text{ or } \exists x \in y$.

Here is an axiom system of a theory of Superstructures.

1. Extensionality of nonempty sets:

$$\forall x \ \forall y \ [\operatorname{Set}(x) \land x \subseteq y \land y \subseteq x \Rightarrow x = y].$$

2. Pair:

$$\forall x \ \forall y \ \exists u \ [x \in u \land y \in u].$$

3. Transitive superset:

$$\forall x \; \exists u \; [x \subseteq u \land \mathrm{Trans}(u)].$$

4. Power:

$$\forall x \; \exists u \; \forall y \subseteq x \; y \in u.$$

5. Infinity:

$$\exists u \ [\operatorname{Set}(u) \land \operatorname{Wo}_{\subseteq}(u) \land \forall y \in u \ \exists v \in u \ y \subsetneq v].$$

6. Strong foundation:

$$\forall x \ [\operatorname{Set}(x) \land \forall y \in x \ \exists u \in x \ \operatorname{Mater}(u, y) \Rightarrow \exists u \in x \ \neg \operatorname{Set}(u)].$$

7. Choice:

$$\forall x \ [\forall y \in x \ \exists u \in y \ \exists ! v \in x \ u \in v \Rightarrow \exists w \ \forall y \in x \ \exists ! u \in y \ u \in w].$$

8. Restricted separation: If $\varphi(y,z)$ is a restricted formula, then

$$\forall p \ \forall x \ \exists u \ \forall y \ [y \in u \Leftrightarrow y \in x \land \varphi(y,p)].$$

9. ∈-induction schema:

$$\forall x \ [\forall y \in x \ \psi(y) \Rightarrow \psi(x)] \Rightarrow \forall x \ \psi(x).$$

We denote 1–9 by SS and 1–8 by SS_0 .

2 Universe

In this section, we consider the universe of SS_0 , and comulative hierarchy of SS.

By Infinity and Restricted separation, there is an a such that $\neg \text{Set}(a)$, and by Power, there is b such that

$$\forall x \subseteq a \ x \in b$$
, or $\forall x \ [\neg \operatorname{Set}(x) \Rightarrow x \in b]$.

By Restricted separation and Extensionality, there is a unique - such that

$$\forall x \ [x \in -\Leftrightarrow \neg \operatorname{Set}(x)].$$

By Pair and Restricted separation, there is an unordered pair c for every a and b such that

$$\forall x [x \in c \Leftrightarrow [c = a \lor c = b]].$$

We denote such c by $\{a,b\}$ and $\{a,a\}$ by $\{a\}$. We define an ordered pair $\langle a,b\rangle$ by $\big\{\{a\},\{a,b\}\big\}$.

Let $\varphi(x)$ be a restricted formula and suppose $\exists x \in a \ \varphi(x)$. Then, by Restricted separation and Extensionality of nonempty sets, there is a unique b such that

$$\forall x \ [x \in b \Leftrightarrow x \in a \land \varphi(x)].$$

We denote such b by $\{x \in a \mid \varphi(x)\}.$

By Power, there is a b for each a

$$\forall x \subseteq a \ x \in b.$$

We denote $\{x \in b \mid x \subseteq a\}$ by $\mathfrak{P}(a)$. Note that $-\subseteq \mathfrak{P}(a)$ for every a.

By Transitive superset, for every x, there is t such that Trans $(t) \land x \subseteq t$, define a transitive closure of x by:

$$\mathrm{TC}(x) = \begin{cases} x & \text{if } x \in \mathbf{-} \\ \{y \in t \mid \forall z \in \mathcal{P}(t) \; [\mathrm{Trans}(z) \land x \subseteq z \Rightarrow y \in z] \} & \text{if } x \notin \mathbf{-} \end{cases}$$

When $a \not\subseteq -$, we denote the union $\{x \in TC(a) \mid \exists y \in a \ x \in y\}$ by $\bigcup a$. When $\{a, b\} \not\subseteq -$, we denote $\bigcup \{a, b\}$ by $a \cup b$.

As in **ZF**, we define maps, injections, surjections, bijections.

By Infinity, fixing α such that

$$\alpha \notin \neg \land Wo_{\subseteq}(\alpha) \land \forall y \in \alpha \exists v \in \alpha \ y \subsetneq v,$$

there is a unique \subseteq -least element 0_{α} in α : $\forall x \in \alpha \ 0_{\alpha} \subseteq x$. For every $x \in a$, there is unique x' such that

$$\forall y \in \alpha \ [x' \subseteq y \Leftrightarrow x \subsetneq y].$$

We denote such x' by $x +_{\alpha} 1$. We can define a minimal unbounded well-ordered set \mathbb{N}_{α} with order relation \subseteq by

$$\mathbb{N}_{\alpha} = \Big\{ x \in \alpha \ \Big| \ \forall y \in \alpha \ \big[0 \subsetneq y \land \forall z \in \alpha [z \subsetneq y \Rightarrow z +_{\alpha} 1 \subsetneq y] \Rightarrow x \subsetneq y \big] \Big\}.$$

Then we have Restricted induction principle:

$$\varphi(0) \land \forall n \in \mathbb{N}_{\alpha} \left[\varphi(n) \Rightarrow \varphi(n +_{\alpha} 1) \right] \Rightarrow \forall n \in \mathbb{N}_{\alpha} \varphi(n),$$

where $\varphi(n)$ is restricted. Then we have that \mathbb{N}_{α} is unique up to isomorphism, so we denote a structure of natural numbers by $(\mathbb{N}, \leq, +1, 0)$.

Since $u \in y$ implies Mater(y, u), we have, by Strong foundation, foundation principle:

$$\forall x [Set(x) \Rightarrow \exists y \in x \ \forall u \in x \ u \notin y].$$

We shall show dual foundation principle:

$$\forall x \left[\mathrm{Set}(x) \Rightarrow \exists y \in x \ \forall u \in x \ y \notin u \right].$$

Suppose, on contrary, there is x such that Set(x) and $\forall y \in x \exists u \in x \ y \in u$. Since Mater(TC(x), TC(x)), we have, by Strong foundation, there is $a \in -$ such that $a \in \{TC(x)\}$, which is contradiction.

Let \mathbb{N} be a structure of natural numbers. we define the predicate "x has rank n" by

$$\begin{split} \rho(n,x) &\equiv \bar{\rho}\big(n,\mathrm{TC}(x) \cup \{x\},x\big), \\ \bar{\rho}(n,t,x) &\equiv \exists f \colon t \to \mathbb{N} \ \Big[\forall y \in t \ f(y) = \bigcup \big\{ k \in \mathbb{N} \ \big| \ k = 0 \lor \exists z \in y \ k = f(z) + 1 \big\} \\ &\wedge n = f(x) \Big]. \end{split}$$

Then every x has a unique rank.

In **SS**, applying the following $\psi(x)$ to \in -induction schema, we have obtained comulative hierarchy W_n . We cannot prove that there is W_n for every $n \in \mathbb{N}$.

$$\psi(x) \equiv \forall n \in \mathbb{N} \left[\rho(n, x) \Rightarrow \exists W_n \ \forall y \ [y \in W_n \Leftrightarrow \exists k \le n \ \rho(k, y)] \right].$$

3 Models

We construct models for **SS** in **ZFC**. We say a model W is **ZF**-standard if the membership relation \in of W is that of **ZFC**.

Given a set X, we define the iterated power set $V_n(X)$ over X recursively by

$$V_0(X) = X$$
, and $V_{n+1}(X) = V_n(X) \cup \mathcal{P}(V_n(X))$.

The superstructure V(X) is the union $\bigcup_{n<\omega} V_n(X)$. The set X is said to be a base set if $\emptyset \notin X$ and each element of X is disjoint from V(X).

If X is a base set then V(X) is a **ZF**-standard model for **SS**. In V(X), we see $X \cup \{\emptyset\} = -$ and $\mathcal{P}(a) = \mathcal{P}(a) \cup -$.

Let X and Y are infinite base sets, and let $j: V(X) \to V(Y)$ be a nontrivial bounded elementary embedding $-\langle V(X), V(Y), j \rangle$ is a nonstandard universe. Then the transitive closure W of ran j within V(Y) is a model for **SS**. In W, we see $j(\mathbb{N})$ is a structure of natural numbers if \mathbb{N} is a structure of natural numbers in V(X), and there is no W_{ν} for nonstandard $\nu \in j(\mathbb{N}) \setminus j$ " \mathbb{N} .