A SHORT PROOF OF NUBLING'S RESULT

IKUO YONEDA

ABSTRACT. Nubling shows that CM-triviality (=non-2-amplenss) is preserved under reducts in finite U-rank theories. We give a short proof.

1. REDUCTION AND INDEPENDENCE

Let T^- be a reduct of T. Let $\mathcal{M} \models T$, $\mathcal{M}^- \models T^-$ be big models. $a, b, c, \ldots \bar{a}, \bar{b}, \bar{c}, \ldots$ denote finite tuples, and A, B, C, \ldots denote small sets. Let $A \subset \mathcal{M}^{eq}$. ACL^{eq}(A) denotes the algebraically closure of A in T, and $\operatorname{acl}^{eq}(A)$ denotes the algebraically closure of $A \cap (\mathcal{M}^-)^{eq}$. Let $\bar{a} \in (\mathcal{M}^-)^{eq}$. TP (\bar{a}/A) denotes the type of \bar{a} over A in T, and tp (\bar{a}/A) denotes the type of \bar{a} over A in T^- . SU denotes Lascar rank in T, and su denotes Lascar rank in T^- . We show the following fact in the last section.

Fact 1.1. Let T be a simple theory having EHI such that T^- also has EHI, where T^- be a reduct of T. Let $a, C \subset (\mathcal{M}^-)^{eq}$ and $B \subset \mathcal{M}^{eq}$. If $a \downarrow_B C$, then $a \downarrow_{B^-}^- C$, where $B^- = \mathrm{ACL}^{eq}(B) \cap (\mathcal{M}^-)^{eq}$ and $\downarrow_{B^-}^-$ is the non-forking relation in T^- .

Proposition 1.2. If $SU(T) < \omega$, then $su(T^{-}) < \omega$.

Proof. Let $a \in (\mathcal{M}^-)^{eq}$, $A \subset \mathcal{M}^{eq}$. Put $A^- = \mathrm{ACL}^{eq}(A) \cap \mathcal{M}^{eq}$. We will show that there exists $\bar{a}' \models \mathrm{tp}(a/A^-)$ such that $\mathrm{SU}(a'/A) \geq \mathrm{su}(a'/A^-)$ by induction on $n = \mathrm{su}(a/A^-)$.

If n=0, it is clear. Let $\operatorname{su}(a/A^-)=n+1$. So, there exists $A^- \subset B \subset (\mathcal{M}^-)^{\operatorname{eq}}$ such that $\operatorname{su}(a/B)=n$. So, $a \not\downarrow_{A^-} B$. Put $B^-=\operatorname{ACL^{\operatorname{eq}}}(B) \cap (\mathcal{M}^-)^{\operatorname{eq}}$. So, we have $A^- \subset B \subseteq B^-$. Take $a_1 \models \operatorname{tp}(a/B)$ such that $\bar{a}_1 \downarrow_{B}^- B^-$. As $\operatorname{su}(a_1/B)=\operatorname{su}(a_1/B^-)=n$, by induction hypothesis, there exists $a_1'\models \operatorname{tp}(a_1/B^-)$ such that $\operatorname{SU}(a_1'/B) \geq \operatorname{su}(a_1'/B^-)=n$. As $\operatorname{tp}(a_1'/A^-)=\operatorname{tp}(a/A^-)$, we see $a_1' \not\downarrow_{A^-} B^-$. As $B^- \subseteq B$ and $a \not\downarrow_{A^-} B$, by Fact 1.1, we see $\bar{a}_1' \not\downarrow_A B$. Therefore we have

 $SU(a'_1/A) \ge SU(a'_1/B) + 1 \ge su(a'_1/B^-) + 1 = n + 1 = su(a/A^-) = su(a'_1/A^-),$ as desired.

Date: January 31, 2008.

¹⁹⁹¹ Mathematics Subject Classification. 03C45.

Key words and phrases. CM-triviality.

Lemma 1.3. Suppose that $U(T) < \omega$. Let T^- be a reduct of T. u denotes the Lascar rank in T^- . (Then $u(T^-) < \omega$.) Let $a, b, c \in (\mathcal{M}^-)^{eq}$ be algebraically independent in T^- such that u(a/b) = 1 (So, $a \downarrow_b^- c$, because $a \notin acl^{eq}(bc)$.) Then there exist $a', b', c' \in \mathcal{M}^{eq}$ such that a', b, c' are algebraically independent in T, a realization of tp(abc) with $a' \downarrow_{b'} c'$.

Proof. Let $a'b'c' \models \operatorname{tp}(abc)$ be such that $\operatorname{U}(a'b'c')$ is maximal.

Claim. a', b', c' are algebraically independent in T.

As $a' \notin \operatorname{acl^{eq}}(b'c')$, we can find $a'' \models \operatorname{tp}(a'/b'c')$ such that $a'' \notin \operatorname{ACL^{eq}}(b'c')$. So, if $a' \in \operatorname{ACL^{eq}}(b'c')$, then $\operatorname{SU}(a''b'c') > \operatorname{SU}(a'b'c')$, a contradiction. Similarly, we see $b' \notin \operatorname{ACL^{eq}}(a'c')$ and $c' \notin \operatorname{ACL^{eq}}(a'b')$.

Claim. $a' \downarrow_{b'} c'$.

By way of contradiction, suppose that a'
otin c'. Let $a'_0 \models \operatorname{TP}(a'/\operatorname{ACL^{eq}}(b'))$ such that $a'_0
otin b'_0$, c'. As $1 = \operatorname{u}(a'/b')$, $\operatorname{stp}(a'/b') = \operatorname{stp}(a'_0/b')$ and $a'_0 \notin \operatorname{ACL^{eq}}(b'c') \supseteq \operatorname{acl^{eq}}(b'c')$, we see $1 = \operatorname{u}(a'_0/b') \ge \operatorname{u}(a'_0/b'c') \ge 1$. So we see $a'_0
otin b'_0$. By STATIONARITY of strong types, we see $\operatorname{stp}(a'_0/b'c') = \operatorname{stp}(a'/b'c')$. In particular, $a'_0b'c' \models \operatorname{tp}(a'b'c')$. Now, we have

$$U(a'_{0}b'c') = U(a'_{0}/b'c') + U(b'c')$$

$$= U(a'_{0}/b') + U(b'c')$$

$$= U(a'/b') + U(b'c')$$

$$> U(a'/b'c') + U(b'c') = U(a'b'c')$$

2. A SHORT PROOF

We begin with basics of supersimple theories.

Fact 2.1. Let T be a supersimple theory.

- (1) Let $a \in \mathcal{M}^{eq}$, $A \subseteq \mathcal{M}^{eq}$. Then there exists finite tuple $\bar{b} \subset \mathcal{M}^{eq}$ such that $\operatorname{acl}^{eq}(\operatorname{Cb}(a/A)) = \operatorname{acl}^{eq}(\bar{b}) = \operatorname{acl}^{eq}(\operatorname{Cb}(a/\bar{b}))$.
- (2) Let $A \subset \mathcal{M}$ be finitely generated algebraically closed set, and $B = \operatorname{acl}(B) \subset A$. Then B is finitely generated algebraically closed.
- (3) Let $SU(T) < \omega$ and p be a non-algebraic type. Then there exists a minimal type, non-orthogonal to p. (Coordinatization Theorem)

Proof. (1): Let $B = \operatorname{Cb}(a/A)$. Take a finite tuple $\bar{b} \subset B \subset \mathcal{M}^{eq}$ such that $a \downarrow_{\bar{b}} B$. Then $B = \operatorname{Cb}(a/A) = \operatorname{Cb}(a/\bar{b})$ and $\operatorname{acl}^{eq}(\bar{b}) = \operatorname{acl}^{eq}(B)$.

(2): By way of contradiction, suppose that there exist $C_0 \subset C_1 \subset \cdots \subset C_n \subset C_1 \subset C_1 \subset \cdots \subset C_n \subset C_1 \subset C_1 \subset \cdots \subset C_n \subset C_1 \subset C_1$

 $A = \operatorname{acl}(\bar{a})$, where C_i are f.g. algebraically closed. Let \bar{a}_n be such that $\bar{a}_n \equiv_{C_n} \bar{a}$ and $\bar{a}_n \downarrow_{C_n} \bar{a}$. As $C_n \subset \operatorname{acl}(\bar{a})$, we see that $C_n = \operatorname{acl}(\bar{a}_n) \cap \operatorname{acl}(\bar{a})$.

A SHORT PROOF OF NUBLING'S RESULT

As $C_n \subset C_{n+1}$, so $\bar{a}_{n+1} \not \!\!\! \perp_{C_n} \bar{a}$. So, $\bar{a} \not \!\!\! \perp_{C_n} C_{n+1}$, because $\bar{a} \not \!\!\! \perp_{C_n} C_{n+1}$ and $\bar{a} \not \!\!\! \perp_{C_{n+1}} \bar{a}_{n+1}$ imply $\bar{a} \not \!\!\! \perp_{C_n} \bar{a}_{n+1}$. This contradicts supersimplicity. (3): We may assume that $p = \operatorname{tp}(a)$. Let $n = \operatorname{SU}(p)$. Take B such that $\operatorname{SU}(a/B) = n-1$. Let $b \in \mathcal{M}^{eq}$ be such that $\operatorname{acl}^{eq}(\operatorname{Cb}(a/B)) = \operatorname{acl}^{eq}(b) = \operatorname{acl}^{eq}(\operatorname{Cb}(a/b))$ by (1). As $a \not \perp b$, $b \not \in \operatorname{acl}^{eq}(\emptyset)$. Take C be such that $\operatorname{SU}(b/C) = 1$. We may assume $C \not \perp_b a$. Then we have $a \not \perp_C b$, otherwise $\operatorname{Cb}(a/bC) = \operatorname{Cb}(a/b) \subseteq \operatorname{acl}(C)$, so $b \in \operatorname{acl}(C)$ would follow. On the other hand, as $n = \operatorname{SU}(a) \ge \operatorname{SU}(a/C) > \operatorname{SU}(a/Cb) = \operatorname{SU}(a/b) = n-1$, we see $\bar{a} \not \perp C$.

Notation 2.2. $A \wedge B$ denotes $\operatorname{acl}^{\operatorname{eq}}(A) \cap \operatorname{acl}^{\operatorname{eq}}(B)$. $a \leftarrow A$ denotes $a \in \operatorname{acl}^{\operatorname{eq}}(A)$.

Definition 2.3. (1) We say that a sequence (a_0, a_1, a_2) is 2-ample over A, if $a_0A \wedge a_1A = A$, $a_0a_1A \wedge a_0a_1A = A$, $a_2 \downarrow_{a_1A} a_0$ and $a_2 \not\downarrow_A a_0$.

- (2) We say that a sequence (a_0, a_1, a_2) is weakly 2-ample over A, if $a_2
 otin_{a_1, A} a_0$ and $a_2
 otin_{a_1 \land a_0 a_2, A} a_0$.
- (3) A complete simple theory T with EHI is (weakly) 2-ample, if there exist (weakly) 2-ample sequence over some parameters.

Remark 2.4. (1) T is 2-ample if and only if T is weak 2-ample.

- (2) If (a_0, a_1, a_2) is weakly 2-ample, then so is (a_2, a_1, a_0) .
- (3) If (a_0, a_1, a_2) is weakly 2-ample, then (a_0, a_1, a_2) are algebraically independent.

Proof. (1): Clearly, any 2-ample sequence is weakly 2-ample. Let (a_0, a_1, a_2) be weakly 2-ample and let a'_0 be such that $\operatorname{acl^{eq}}(a'_0) = a_0a_1 \wedge a_0a_2$. Then we have $a'_0a_1 \wedge a'_0a_2 = \operatorname{acl^{eq}}(a'_0)$ and $a'_0 \wedge a_1 = a_1 \wedge a_0a_2$. Then we see that (a'_0, a_1, a_2) is 2-ample over $a_1 \wedge a_0a_2$. (2):Clear. (3): If a_0 or a_2 were algebraic over a_1 , then it would be algebraic over $a_1 \wedge a_0a_2$. If a_1 were algebraic over a_0a_2 , then $\operatorname{acl^{eq}}(a_1) = a_1 \wedge a_0a_2$ would follow. As $a_2 \downarrow_{a_1} a_0$, we see a_0, a_1, a_2 are algebraically independent.

From now on, we work in a finite SU-rank theory.

Lemma 2.5. Let (a_0, a_1, a_2) be weakly 2-ample.

- (1) There exist a_0' and B such that $a_0' \leftarrow a_0 B$, $SU(a_0'/B) = 1$ and (a_0, a_1, a_2) is weakly 2-ample over B.
- (2) Fixing a_1 , after adding some parameters, we can retake a_0, a_2 such that $SU(a_0/a_1) = SU(a_2/a_1) = 1$.

(2): By remark 2.4 (2), we have only to retake a_0 such that $SU(a_0/a_1) = 1$.

Proposition 2.6. Let (a_0, a_1, a_2) be weakly 2-ample. Then, after adding some parameters, we can retake a_0, a_1, a_2 such that

$$SU(a_0/a_1) = SU(a_2/a_1) = SU(a_1/a_0a_2) = 1.$$

Proof. By Lemma 2.5, take a_1 be minimal of SU-rank such that (a_0, a_1, a_2) is weakly 2-ample and $SU(a_0/a_1) = SU(a_2/a_1) = 1$. Suppose that $SU(a_1/a_0a_2) > 1$. Take $a'_1 \leftarrow a_1$ be such that $SU(a'_1) = 1$ after possibly adding parameters. Let a, b be such that $acl^{eq}(a) = a_0a_1 \wedge a_0a'_1a_2$ and $acl^{eq}(b) = a \wedge a_1$. Then $SU(a_1) > SU(b)$, $SU(a_1/b)$. (If $a_1 \leftarrow a_0a'_1a_2$, then a_1, a'_1 would be interalgebraic over a_0a_2 . So we see $SU(a_1/b) \geq 1$. Clearly $SU(b) \geq 1$. The above follows from $SU(a_1) = SU(a_1/b) + SU(b)$.)

If $a
\downarrow b a_2$, then (a, a_1, a_2) is weakly 2-ample over b, because $b \subseteq (a_1 \wedge aa_2)b \subseteq a_1 \wedge a_0a_1'a_2 = b$. As $a \leftarrow a_0a_1$ and $b \leftarrow a_1$, we have $SU(a/a_1b) = SU(a_2/a_1b) = 1$. This contradicts the minimality of $SU(a_1)$.

If $a
otin_b a_2$, then $a_0
otin_b a_2$. Then (a_0, b, a_2) is weakly 2-ample over $a_1 \wedge a_0 a_2$. By Lemma 2.5, we may assume $SU(a_0/b) = SU(a_2/b) = 1$. This also contradicts the minimality of $SU(a_1)$.

Now, we prove the Nubling's theorem.

Theorem 2.7. Suppose that $U(T) < \omega$. If a reduct T^- of T is 2-ample, then so is T.

Proof. By Proposition 2.6, let (a_0, a_1, a_2) be weakly 2-ample such that $u(a_0/a_1) = u(a_2/a_1) = u(a_1/a_0a_2) = 1$. As a_0, a_1, a_2 are algebraically independent in T^- , by Lemma 1.3, there exist $abc \models tp(a_0a_2a_3)$ such that a, b, c are algebraically independent in T and $a \downarrow_b c$.

Claim. $a \not\perp_{ACL^{eq}(b)\cap ACL^{eq}(ac)} c$. So, (a, b, c) is weakly 2-ample.

Put $A = ACL^{eq}(b) \cap ACL^{eq}(ac)$, and $A^- = A \cap (\mathcal{M}^-)^{eq}$. By way of contradiction, suppose that $a \downarrow_A c$. Then we have $a \downarrow_{A^-} c$ by Fact 1.1. As $a \notin ACL^{eq}(b) = ACL^{eq}(bA) \supseteq acl^{eq}(bA^-)$, we see $1 = u(a/b) \ge u(a/bA^-)$, so $a \downarrow_b^- A^-$ follows. Moreover, as $c \notin ACL^{eq}(ab) = ACL^{eq}(abA) \supseteq acl^{eq}(abA^-)$,

A SHORT PROOF OF NUBLING'S RESULT

we see $1 = u(c/b) \ge u(c/abA^-) \ge 1$, so $c \downarrow_b^- aA^-$ holds. So, we have $A^- \downarrow_b^- ac$. On the other hand, $b \notin ACL^{eq}(ac) = ACL^{eq}(acA) \supseteq acl^{eq}(acA^-)$, we see $1 = u(b/ac) \ge u(b/acA^-) \ge 1$, we have $b \downarrow_{ac}^- A^-$. So, we have $Cb(tp(A^-/abc)) \subseteq b \land^- ac := acl^{eq}(b) \cap acl^{eq}(ac)$, $A^- \downarrow_{b \land -ac}^- abc$ holds. Since $a \downarrow_{A^-}^- c$ and $a \downarrow_{b \land -ac}^- A^-$, so $a \downarrow_{b \land -ac}^- c$, (a,b,c) is not weakly 2-ample in T^- , a contradiction.

Remark 2.8. There is a modular O-minimal theory which has a non-CM-trivial reduct [Y]. Nubling theorem can not be extended to finite U*-rank theories.

3. Indiscernible sequences and the proof of Fact 1.1

We work in a complete theory and consider imaginary elements. Let $(a_i : i \in I)$ be a sequence and $I_0 \subseteq I$. a_{I_0} denotes $(a_i : i \in I_0)$. When I is an partially ordered set, $a_{< i}$ denotes $(a_j : j < i)$. Similarly for $a_{> i}$. We write $I_0 < I_1$, if $I_0, I_1 \subseteq I$ and $i_1 < i_2$ holds for any $i_1 \in I_1, i_2 \in I_2$.

Definition 3.1. Let $X = (a_i : i \in I)$ be a *B*-indiscernible sequence and $A \subseteq B$.

- (1) Put $\ker_A(X) := \bigcup_{|I_0|=|J_0|=k<\omega,I_0< J_0} (\operatorname{acl}^{\operatorname{eq}}(a_{I_0}A) \cap \operatorname{acl}^{\operatorname{eq}}(a_{J_0}A))$. We call it the kernel of X over A.
- (2) We say that X is algebraically independent over A, if $\operatorname{acl}^{eq}(Aa_{I_0}) \cap \operatorname{acl}^{eq}(A_{I_1}) = \operatorname{acl}^{eq}(A)$ for any $I_0 < I_1 \subseteq I$.

Lemma 3.2. Let $X = (a_i : i \in I)$ be a B-indiscernible sequence.

- (1) For infinite subsets $I_1 < I_2$, $\ker_B(X) = \operatorname{acl}^{eq}(a_{I_1}B) \cap \operatorname{acl}^{eq}(a_{I_2}B)$.
- (2) $\ker_B(X)$ is the smallest algebraically closed set (containing B) over which X is algebraically independent.
- (3) X is indiscernible over $\ker_{\mathcal{B}}(X)$.
- (4) $\ker_B(X)$ is the biggest subset (containing B) of $\operatorname{acl}^{\operatorname{eq}}(XB)$ over which X is indiscernible.

Proof. For ease of notation, we assume $B = \emptyset$.

(1): Suppose that I_0, I_1, J are finite with the same size and $I_0, I_1 < J$. As $a_{I_0} \equiv_{\operatorname{acl}^{\operatorname{eq}}(a_J)} a_{I_1}$, we see

$$\operatorname{acl}^{\operatorname{eq}}(a_{I_0}) \cap \operatorname{acl}^{\operatorname{eq}}(a_J) = \operatorname{acl}^{\operatorname{eq}}(a_{I_1}) \cap \operatorname{acl}^{\operatorname{eq}}(a_J).$$

By the same argument, we see that

$$\operatorname{acl}^{\operatorname{eq}}(a_{I_0}) \cap \operatorname{acl}^{\operatorname{eq}}(a_{J_0}) = \operatorname{acl}^{\operatorname{eq}}(a_{I_1}) \cap \operatorname{acl}^{\operatorname{eq}}(a_{J_1}).$$

for any $I_0 < J_0, I_1 < J_1, |I_0| = |I_1| = |J_0| = |J_1|$. Therefore, we see $\ker(X) \subseteq \operatorname{acl}^{\operatorname{eq}}(a_{I_1}) \cap \operatorname{acl}^{\operatorname{eq}}(a_{I_2})$ for any infinite $I_1 < I_2$. We show the converse inclusion. Let $a \in \operatorname{acl}^{\operatorname{eq}}(a_{I_1}) \cap \operatorname{acl}^{\operatorname{eq}}(a_{I_2})$. Then there exist $J_1 \subset I_1, J_2 \subset I_2$ such that

- $|J_1| = |J_2| < \omega$ such that $a \in \operatorname{acl}^{\operatorname{eq}}(a_{J_1}) \cap \operatorname{acl}^{\operatorname{eq}}(a_{J_2})$. By the above argument, we see $\operatorname{acl}^{\operatorname{eq}}(a_{I_1}) \cap \operatorname{acl}^{\operatorname{eq}}(a_{I_2}) \subseteq \ker(X)$.
- (2): Let C be such that X is algebraically independent over C. Then, for any infinite $I_0 < J_0$, $\ker(X) = \operatorname{acl}^{eq}(a_{I_1}) \cap \operatorname{acl}^{eq}(a_{J_1}) \subseteq \operatorname{acl}^{eq}(Ca_{I_0}) \cap \operatorname{acl}^{eq}(Ca_{J_0}) = \operatorname{acl}^{eq}(C)$, as desired.
- (3): By (1), we see that if X' is an extended indiscernible sequence of X, then $\ker(X) = \ker(X')$. It suffices to show that, if I_0, J_0 are finite sets with the same size, then $a_{I_0} \equiv_{\ker(X)} a_{J_0}$. Take an infinite set $J \subseteq I$ such that $I_0, J_0 < J$, if necessarily, extend X. As $a_{I_0} \equiv_{\operatorname{acl}^{eq}(a_J)} a_{J_0}$, we see the conclusion.
- (4): Let $C \subset \operatorname{acl}(X)$ be such that X is indiscernible over C. Let $c \in C$. Then there exists a finite I_1 such that $c \in \operatorname{acl}^{eq}(a_{I_1})$. For any $I_0 < I_1, |I_0| = |I_1|$, we have $c \in \operatorname{acl}^{eq}(a_{I_0}) \cap \operatorname{acl}^{eq}(a_{I_1})$, since $a_{I_0} \equiv_c a_{I_1}$. Now, we see that $C \subseteq \ker(X)$.

From now on, we work in a simple theory T with EHI.

Lemma 3.3. Let $X = (a_i : i \in I)$ be a B-indiscernible sequence and $A \subseteq B$.

- (1) If X is sufficiently long and independent over A, then $X \cup_A B$.
- (2) If X is sufficiently long, then $Cb(B/(a_i : i \in I)A) \subseteq \ker_A(X)$.
- (3) If X is a Morley sequence over B, then $\ker_A(X) \subseteq \operatorname{acl}^{\operatorname{eq}}(B)$.
- *Proof.* (1): By simplicity, take $B_0 \subseteq a_{<|T|^+}$ such that $B \downarrow_{B_0} a_{<|T|^+}$ and $|B_0| \le |T|$. So there exists $\lambda < |T|^+$ such that $B_0 \subseteq a_{<\lambda}$. We have $a_{<|T|^+} \downarrow_{a_{<\lambda}} B$. By B-indiscerniblity of X, we have $a_{\ge \lambda} \downarrow_{a_{<\lambda}} B$. So, $a_{\ge \lambda} \downarrow_{a_{<\lambda}} B$. As X is independent over A, $a_{\ge \lambda} \downarrow_A a_{<\lambda} B$ follows. By A-independence of X again, we see the conclusion.
- (2): Let $I_0 \subseteq I$ be such that $|I_0| = |T|^+$. Then there exists $B_0 \subseteq a_{I_0}$ such that $B \downarrow_{B_0} a_{I_0}$ and $|B_0| \leq |T|$. As there exists $\lambda \in I_0$ such that $B_0 \subseteq a_{<\lambda}$, we see $a_{I_0} \downarrow_{a_{<\lambda}} B$. By B-indscernibility and finite character, we have $a_{\geq \lambda} \downarrow_{a_{<\lambda}} B$. Therefore we have $a_I \downarrow_{a_{I_0}A} B$. As we assume EHI, $\operatorname{Cb}(B/Aa_I) \subseteq \operatorname{acl}^{\operatorname{eq}}(a_{I_0}A)$. Let I_1 be such that $I_0 < I_1$ and $|I_1| = |T|^+$. By the same argument, we see $\operatorname{Cb}(B/Aa_I) \subseteq \operatorname{acl}^{\operatorname{eq}}(a_{I_0}A) \cap \operatorname{acl}^{\operatorname{eq}}(a_{I_1}A) = \ker_A(X)$.
- (3): By our statement, we may assume X is sufficiently long. By 3.2 (4), we have $\ker_A(X)B \subseteq \ker_B(X)$. So, X is $\ker_A(X)B$ -indiscernible and independent over B. By (1), we see $X \downarrow_B \ker_A(X)$. Since $\ker_A(X) \subseteq \operatorname{acl}(BX)$, we see $\ker_A(X) \subseteq \operatorname{acl}(B)$.

Proposition 3.4. Let $X = (a_i : i \in I)$ be an A-indiscernible sequence.

- (1) If X is algebracally independent over A, then X is a Morley sequence over A.
- (2) If X is a Morley sequence over A, then $ker(X) = acl^{eq}(Cb(a_0/A))$.

Proof. (1): By our asumption, we may assume X is sufficiently long. Let a_{∞} be such that a_I, a_{∞} is an extended A-indisernible sequence, algebraically independent over A. As X is Aa_{∞} -indicernible and algebraically independent over A, by Lemma 3.3 (1), $\operatorname{Cb}(Aa_{\infty}/AX) \subseteq \ker_A(X) = \operatorname{acl^{eq}}(A)$. Therefore $a_{\infty} \downarrow_A a_I$. By A-indiscernibility of $a_I a_{\infty}$, we see X is independent over A. (2): As X is algebraically independent over $\operatorname{Cb}(a_0/A)$, we see $\ker(X) \subseteq \operatorname{acl^{eq}}(\operatorname{Cb}(a_0/A))$ by Lemma 3.2 (2). By Lemma 3.3 (3), $\ker(X) \subseteq \operatorname{acl^{eq}}(A)$. As X is $\ker(X)$ -indiscernible and algebraically independent over $\ker(X), X$ is a Morley sequence over $\ker(X)$ by (1). Now, by Lemma 3.3 (1), we have $X \downarrow_{\ker(X)} A$. In particular, $a_0 \downarrow_{\ker(X)} A$ holds. So, we see $\operatorname{Cb}(a_0/A) \subseteq \operatorname{acl^{eq}}(\ker(X))$. □

FACT 1.1: Let T be a simple theory having EHI such that T^- also has EHI, where T^- be a reduct of T. Let $a, C \subset (\mathcal{M}^-)^{eq}$ and $B \subset \mathcal{M}^{eq}$. If $a \bigcup_B C$, then $a \bigcup_{B^-}^- C$, where $B^- = \mathrm{ACL^{eq}}(B) \cap (\mathcal{M}^-)^{eq}$ and $\bigcup_{B^-}^-$ is the non-forking relation in T^- .

Proof. Let $X = (a_i : i \in \mathbb{Z})$ be a Morley sequence of TP(a/BC). Then, by Proposition 3.4 (2) and our assumption, we have $ACL^{eq}(a_{<0}) \cap ACL^{eq}(a_{>0}) = \ker(X) = ACL^{eq}(Cb(a/BC)) \subseteq ACL^{eq}(B)$. So, $acl^{eq}(a_{<0}) \cap acl^{eq}(a_{>0}) \subseteq B^-$. As X is algebraically independent over BC, so is over B^-C in T^- . Since X is B^-C -indiscernible in T^- , by Proposition 3.4 (1), X is a Morley sequence of $tp(a/B^-C)$. By $\ker(X) \subseteq B^-$ and Proposition 3.4 (2), we see $a \downarrow_{B^-}^- C$. □

REFERENCES

- [N] Herwig Nubling, Reducts and expansions of stable and simple theories, PhD thesis, the University of East Anglia, 2004.
- [Y] Ikuo Yoneda, Some remarks on CM-triviality, submitted.

DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY, 1117 KITAKANAME, HIRATSUKA, KANAGAWA, 259-1292, JAPAN

E-mail address: ikuo.yoneda@s3.dion.ne.jp