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A SHORT PROOF OF NUBLING’S RESULT
IKUO YONEDA

ABSTRACT. Nubling shows that CM-triviality (=non-2-amplenss) is pre-
served under reducts in finite U-rank theories. We give a short proof.

1. REDUCTION AND INDEPENDENCE

Let T- be a reduct of T. Let M |k T, M~ = T~ be big models.
a,b,c,...a,b,¢,...denote finite tuples, and A, B, C, ... denote small sets. Let
A C M. ACL®(A) denotes the algebraically closure of A in T, and acl®(A)
denotes the algebraically closure of AN (M™)%. Let a € (M™)*. TP(a/A)
denotes the type of @ over A in T, and tp(a@/A) denotes the type of a over A
in T—. SU denotes Lascar rank in 7', and su denotes Lascar rank in T~. We
show the following fact in the last section.

Fact 1.1. Let T be a simple theory having EHI such that T~ also has EHI,
where T~ be a reduct of T. Let a,C C (M~)® and B C¢ M*. Ifa | ,C,
then a | _ C, where B~ = ACL*(B) N (M™)* and | ~ is the non-forking

relation in T~ .
Proposition 1.2. If SU(T) < w, then su(T™) < w.

Proof. Let a € (M™)%9, A C M®. Put A~ = ACL*(A4) N M*3. We will show
that there exists @ = tp(a/A~) such that SU(a’/A) > su(a’/A™) by induction
on n =su(a/A7).

If n = 0, it is clear. Let su(a/A~) = n+1. So, there exists A~ € B C (M™)™
such that su(a/B) = n. So, a {, B. Put B~ = ACL*(B) N (MT)ea,
So, we have A~ ¢ B C B~. Take a; | tp(a/B) such that a, | ,B™.
As su(a;/B) = su(a;/B~) = n, by induction hypothesis, there exists a; |=
tp(a;/B~) such that SU(a}/B) > su(a}/B~) = n. As tp(a}/A”) = tp(a/A7),
we see a; f.,  B™. As B~ C B and a . B, byFact 1.1, weseeay { , B.
Therefore we have

SU(a}/A) > SU(a}/B)+1 > su(a}/B~)+1=n+1=su(a/A™) = su(a} /A7),
as desired. O
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Lemma 1.3. Suppose that U(T) < w. Let T~ be a reduct of T. u denotes the
Lascar rank in T~ .(Then u(T~) < w.) Let a,b,c € (M™)% be algebraically
independent in T~ such that u(a/b) =1 (So, a |, c, because a ¢ acl®(bc).)
Then there exist a’,b',c € M*®2 such that a’,b, ' are algebraically independent
in T, a realization of tp(abc) with a' |, .

Proof. Let a'b'c’ |= tp(abc) be such that U(a’d'c’) is maximal.
Claim. d/,b’,c are algebraically independent in T.

As o’ € acl*¥(V'), we can find a” |= tp(a’/¥¢) such that a” & ACL®(¥/(¢).
So, if a’ € ACL*(¥'¢’), then SU(a"b'¢’) > SU(a'b'¢), a contradiction. Similarly,
we see b’ € ACL®Y(a'c’) and ¢ ¢ ACL®(a'V).

Claim. o’ | , .

By way of contradiction, suppose that a’ [, ¢. Let ay = TP(a’/ACL*(b'))
such that ay |, ¢. Asl =u(a'/¥), stp(a'/b’) = stp(ap/b’) and ay & ACL*(V'C) D
acl®d(b'c’), we see 1 = u(ap/b') > u(ap/b'c’) > 1. So we see ay | ,, ¢’. By STA-
TIONARITY of strong types, we see stp(ay/b'c’) = stp(a’/b'c’). In particular,
apb'c’ |= tp(a’t'c’). Now, we have

U(agt'd) = U(ap/b'd) + U )
= U(ag/b) +U(')
= U(d/t)+U@(')
> U(d'/t'c) + U d) = U(d'b' )

2. A SHORT PROOF
We begin with basics of supersimple theories.

Fact 2.1. Let T be a supersimple theory.

(1) Let a € M®?, A C M®. Then there exists finite tuple b C M such
that acl®?(Cb(a/A)) = acl®d(b) = acl®d(Cb(a/b)).

(2) Let A C M be finitely generated algebraically closed set, and B =
acl(B) C A. Then B is finitely generated algebraically closed.

(3) Let SU(T) < w and p be a non-algebraic type. Then there ezists a
minimal type, non-orthogonal to p. (Coordinatization Theorem)

Proof. (1): Let B = Cb(a/A). Take a finite tuple b C B C M® such that
a | ; B. Then B = Cb(a/A) = Cb(a/b) and acl®!(b) = acl®?(B).

(2): By way of contradiction, suppose that there exist Co C C; C ---C, C
-+ B ¢ A = acl(a), where C; are f.g. algebraically closed. Let &,, be such that
an =c, @ and @n | , @. As C, C acl(a), we see that C, = acl(an) N acl(a).
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As C, € Cphy1, SO Gpy1 X/c,, a. So, (‘zj/cn Crn+1, because &\Lcn Cry1 and
a sy Ot1 imply a | c, Gnt1- This contradicts supersimplicity.

(3): We may assume that p = tp(a). Let n = SU(p). Take B such that
SU(a/B) = n — 1. Let b € M® be such that acl®(Cb(a/B)) = acl®¥(b) =
acl®(Cb(a/b)) by (1). Asa [ b, b & acl®®(0). Take C be such that SU(b/C) =
1. We may assume C |, a. Then we have a 4 o b, otherwise Cb(a/bC)

Cb(a/b) C acl(C), so b € acl(C) would follow. On the other hand, as n
SU(a) > SU(a/C) > SU(a/Cb) = SU(a/b) =n—1,weseea | C.

Ol

Notation 2.2. AAB denotes acl®d(A)Nacl®y(B). a «— A denotes a € acl®i(A).

Definition 2.3. (1) We say that a sequence (aog, a1, a2) is 2-ample over A,
if agA A a1A = A,a001A N apa1A = A, a \LalA ao and as J/,A agp.
(2) We say that a sequence (ap, a1, a2) is weakly 2-ample over A, if a, \Lal 4 @0

and as ‘X’all\aoaz,A ao-
(3) A complete simple theory T' with EHI is (weakly) 2-ample, if there
exist (weakly) 2-ample sequence over some parameters.

Remark 2.4. (1) T is 2-ample if and only if T is weak 2-ample.
(2) If (@o,ay,as) is weakly 2-ample, then so is (ag, a1, ag)-
(3) If (ag, a1, az) is weakly 2-ample, then (ao, a1, az) are algebraically inde-
pendent.

Proof. (1): Clearly, any 2-ample sequence is weakly 2-ample. Let (ag, a1, a2)
be weakly 2-ample and let a} be such that acl®d(ay) = aoa; A agaz. Then
we have apa; A agaz = acl®¥(ap) and ag A a1 = a1 A aoaz. Then we see that
(ah,ay, az) is 2-ample over a; A agaz. (2):Clear. (3): If ag or a; were algebraic
over a;, then it would be algebraic over a; A agaz. If a; were algebraic over
apay, then acl®d(a;) = a; A apaz would follow. As ag \Lal ap, We see ag, a1, a2
are algebraically independent. O

From now on, we work in a finite SU-rank theory.

Lemma 2.5. Let (ag, a1,a2) be weakly 2-ample.
(1) There ezist aly and B such that ajy — aoB,SU(ap/B) = 1 and (ao, a1, az)
is weakly 2-ample over B.

(2) Fizing ay, after adding some parameters, we can retake ao, az such that
SU(ao/al) = SU(ag/al) = 1.

Proof. (1): By coordinatization theorem, there exist ap and B such that
ag L g @0, SU(ag/B) = 1 and ao | B. We may assume aa; | . Bag. Since
acaiaz | B, (ao,a1,az) is weakly 2-ample over B, as desired.

(2): By remark 2.4 (2), we have only to retake ao such that SU(ao/a1) = 1.
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Let ap be minimal of SU-rank such that (ag, a1, az2) is weakly 2-ample. Suppose
that SU(ag/a1) > 1. By (1) take aj such that aj < ao, SU(ag) = 1. By Fact 2.1
(2), take a be such that acl®i(a) = ag Aaja;. Then SU(ag) > SU(a),SU(ae/a),
because SU(ap) = SU(agp/a) + SU(a) and SU(a),SU(ap/a) > 1. (If ag ~— a,

, . - - .
then ag,ay are interalgebraic over a;, a contradiction.) If ag La’all\aom as,

then (ag, a1, as) is weakly 2-ample over a, which contradicts the minimality of
SU(ay). If ag \La,al/\%% az, thena [ a,, so we see (a, ai,az) is weakly
2-ample over a; A agaq, a contradiction. O

Proposition 2.6. Let (ag,a1,az) be weakly 2-ample. Then, after adding some
parameters, we can retake ag, a1, as such that

SU(ao/al) = SU(ag/al) = SU(G1/aoa2) = 1.

Proof. By Lemma, 2.5, take a; be minimal of SU-rank such that (ag, a1, az) is
weakly 2-ample and SU(ap/a;) = SU(az/a;) = 1. Suppose that SU(a,/apaz) >
1. Take a} < a; be such that SU(a}) = 1 after possibly adding parameters.
Let a,b be such that acl®i(a) = apa; A apajas and acl®¥(b) = a A a;. Then
SU(a,) > SU(b),SU(a1/b). (If a; ~ apajas, then ay, a] would be interalgebraic
over apaz. So we see SU(a;/b) > 1. Clearly SU(b) > 1. The above follows
from SU(a;) = SU(a1/b) + SU(b).)

Ifa , 325 then (a,ay,a;) is weakly 2-ample over b, because b C (a1 A aag)b C
a1 N agaijas = b. As a — aga; and b — a;, we have SU(a/a;b) = SU(az/a,b) =
1. This contradicts the minimality of SU(a;).

Ifa \L ag, then ag \L as. Then (ag, b, as) is weakly 2-ample over a; Aagay. By
Lemma 2.5, we may assume SU(qa/b) = SU(az /b) = 1. This also contradicts
the rnmlmahty of SU(ay). O

Now, we prove the Nubling’s theorem.

Theorem 2.7. Suppose that U(T) < w. If a reduct T~ of T is 2-ample, then
soisT.

Proof. By Proposition 2.6, let (ag, a3, az) be weakly 2-ample such that u(ag/a1)
= u(az/a1) = u(ai/apaz) = 1. As ag,a1,az are algebraically independent in
T-, by Lemma 1.3, there exist abc = tp(agazaz) such that a,b,c are alge-
braically independent in T and a |, c.

Claim. a J, c. So, (a,b,c) is weakly 2-ample.

ACLea(b)NACLe4(ac)

Put A = ACL®(b) N ACL*4(ac), and A~ = AN (M™)*%. By way of con-
tradiction, suppose that a | ,c. Then we have a |, c by Fact 1.1. As
a & ACL®(b) = ACL®*(bA) D acl®¥(bA™), we see 1 = u(a/b) > u(a/bA™), so
a ], A” follows. Moreover, as ¢ € ACL®*3(ab) = ACL®*(abA) 2 acl®l(abA™),
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we see 1 = u(c/b) > u(c/abA™) > 1, so ¢ |, aA™ holds. So, we have
A~ L, ac. On the other hand, b ¢ ACL*(ac) = ACL®*%(acA) 2 acl*(acA™),
we see 1 = u(b/ac) > u(b/acA™) > 1, we have b | - A~. So, we have
Cb(tp(A~/abc)) C b A~ ac := acl®d(b) N acl*i(ac), A~ |, ___abc holds. Since
al , canda \L;M(w A",soa \-Ll:/\—a.c ¢, (a, b, c) is not weakly 2-ample in T,
a contradiction. O

Remark 2.8. There is a modular O-minimal theory which has a non-CM-
trivial reduct [Y]. Nubling theorem can not be extended to finite U’-rank
theories.

3. INDISCERNIBLE SEQUENCES AND THE PROOF OF Fact 1.1

We work in a complete theory and consider imaginary elements.
Let (a; : ¢ € I) be a sequence and Iy C I. a;, denotes (a; : i € Iy). When I is
an partially ordered set, a; denotes (a; : j < ¢). Similarly for a-;. We write
Ip < I, if Iy, I; C I and %) < ¢p holds for any i, € I,iy € I,.

Definition 3.1. Let X = (a; : ¢ € I) be a B-indiscernible sequence and
ACB.
(1) Put kera(X) = U\1yj=jvo|mk<w,1o< o (21 (a1, A) N acl*(a, A)). We call
it the kernel of X over A.
(2) We say that X is algebraically independent over A, if acl®(Aaz,) N
acl®d(Ar,) = acl®¥(A) for any In < I; C I.

Lemma 3.2. Let X = (a; : ¢ € I) be a B-indiscernible sequence.
(1) For infinite subsets I; < Iz, kerg(X) = acl®(a;, B) N acl®(ar, B).
(2) kerp(X) is the smallest algebraically closed set (containing B) over
which X is algebraically independent.
(3) X is indiscernible over kerg(X).

(4) kerp(X) is the biggest subset (containing B) of acl®d(X B) over which
X s indiscernible.

Proof. For ease of notation, we assume B = (.
(1): Suppose that Iy, I;,J are finite with the same size and Iy, I; < J. As
a1y Zaclea(a,) OI,, WE SEE
acl®¥(az,) Nacl®(ay) = acl®¥(ay, ) N acl®(ay).
By the same argument, we see that
acl®¥(ar,) N acl®¥(ay,) = acl*(ar,) N acl®¥(ay, ).

for any Iy < Jo,I) < Ji,|Io] = |I1| = |Jo| = |J1|- Therefore, we see ker(X) C
acl®d(ar, ) Nacl®¥(ay,) for any infinite I; < I;. We show the converse inclusion.
Let a € acl®(ar) N acl®¥(ay,). Then there exist J; C I;, J, C I, such that
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|J1| = |J2| < w such that a € acl®¥(ay) N acl®¥(ay,). By the above argument,
we see acl®(ar, ) Nacl®d(ar,) C ker(X).

(2): Let C be such that X is algebraically independent over C. Then, for any
infinite Iy < Jo, ker(X) = acl®¥(az ) Nacl®¥(ay ) C acl®d(Cay,) Nacl®¥(Cay,) =
acl®d(C), as desired.

(3): By (1), we see that if X’ is an extended indiscernible sequence of X, then
ker(X) = ker(X'). It suffices to show that, if Iy, J, are finite sets with the
same size, then aj, =yer(x) @,- Take an infinite set J C I such that Iy, Jp < J,
if necessarily, extend X. As ay, =aclea(ay) GJ,, We see the conclusion.

(4): Let C C acl(X) be such that X is indiscernible over C. Let ¢ € C. Then

there exists a finite I; such that ¢ € acl®d(ay,). For any Iy < I1,|I| = |I1],
we have ¢ € acl®*d(az,) N acl®¥(ay, ), since a;, =; ar,- Now, we see that C C
ker(X). O

From now on, we work in a simple theory T" with EHI.

Lemma 3.3. Let X = (a; : 1 € I) be a B-indiscernible sequence and A C B.

(1) If X is sufficiently long and independent over A, then X LB
(2) If X is sufficiently long, then Cb(B/(a; : i € I)A) C kerA(X)
(3) If X is a Morley sequence over B, then kers(X) C acl®(B).

Proof. (1): By simplicity, take By C a1+ such that B Ls L G<|T]+ and |By| <

IT'|. So there exists A < |T'|* such that By C ac). We have Q|+ \-La<,\ B.

By B-indiscerniblity of X, we have a>, | . B. So, asx | " B. As X is
2 ac = a

independent over A, a>, \L a< B follows. By A-independence of X again,
we see the conclusion.

(2): Let Iy C I be such that |Ij| = lTIJr Then there exists By C ay, such that
Bl B, % and |Bo| < |T'|. As there exists A\ € I such that By C a.y, we see

ar, \La<A B. By B-indscernibility and finite character, we have a>, \Laq .
Therefore we have aj \La, 4 B As we assume EHI, Cb(B/Aa;) C acl*(aj,A).

Let I; be such that Iy < I; and |I;| = |T|*. By the same argument, we see
Cb(B/Aar) C acl®(a;,A) Nacl®i(ay, A) = ker4(X).

(3): By our statement, we may assume X is sufficiently long. By 3.2 (4), we
have ker4(X)B C kerg(X). So, X is ker 4(X) B-indiscernible and independent
over B. By (1), we see X | kers(X). Since kers(X) C acl(BX), we see
ker,(X) C acl(B). O

Proposition 3.4. Let X = (a; : ¢ € I) be an A-indiscernible sequence.

(1) If X is algebracally independent over A, then X is a Morley sequence
over A.
(2) If X is a Morley sequence over A, then ker(X) = acl®d(Cb(ay/A)).
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Proof. (1): By our asumption, we may assume X is sufficiently long. Let
G be such that aj,a. is an extended A-indisernible sequence, algebraically
independent over A. As X is Aa.-indicernible and algebraically independent
over A, by Lemma 3.3 (1), Cb(Aaw/AX) C kers(X) = acl®¥(A). Therefore
oo | aa1- By A-indiscernibility of aja.,, we see X is independent over A.
(2): As X is algebraically independent over Cb(ag/A), we see ker(X) C
acl®d(Cb(ag/A)) by Lemma 3.2 (2). By Lemma 3.3 (3), ker(X) C acl®(A).
As X is ker(X)-indiscernible and algebraically independent over ker(X), X is
a Morley sequence over ker(X) by (1). Now, by Lemma 3.3 (1), we have
X \]/ker(x) A. In particular, ag \Lker(x)A holds. So, we see Cb(ag/A) C
acl®d(ker(X)). O
FACT 1.1: Let T be a simple theory having EHI such that T~ also has EHI,
where T~ be a reduct of T. Let a,C C (M™)* and B C M*. Ifa | ,C,
thena | o C, where B~ = ACL*(B) N (M™)* and | = is the non-forking
relation in T~
Proof. Let X = (a; : ¢ € Z) be a Morley sequence of TP(a/BC). Then, by
Proposition 3.4 (2) and our assumption, we have ACL®*(a.y) N ACL*(as) =
ker(X) = ACL®*(Cb(a/BC)) € ACL®*(B). So, acl®¥(a<g) Nacl®¥(aso) € B~.
As X is algebraically independent over BC, so is over B~C in T~. Since X
is B~ C-indiscernible in T~, by Proposition 3.4 (1), X is a Morley sequence of
tp(a/B~C). By ker™ (X) € B~ and Proposition 3.4 (2), weseea | , C. O
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