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1 Introduction

Time series analysis has been developed under stationarity. However, the as-
sumption of stationarity is insufficient to describe the real time series data.
Many empirical studies show that most of time series data such as financial and
biological time series exhibit nonstationary behavior.

Random walk process

(1) Y, = Zuj ({u;} ~i.4.d. (0,0%)),

is the most fundamental nonstationary process. This process will be reasonable
for economic indices in which we suppose a value at the present time ¢ is rep-

resented by the sum of random shocks over t = 1,2,...,t. We can rewrite the
equation (1) as

2) Y=Yt +u, (Yo=0),

which corresponds to AR(1) process

(3) Y: = 0Yi—1 + ue,

with b = 1. In this case we say that AR model (3) has a unit root. It is known
that the local asymptotic normality (LAN) does not hold for models including
the unit root.

We now turn to discuss nonstationary models which are regular in the sense
that they satisfy the LAN property. At the sight of actual time series data we
often find that they seem locally stationary and contain several changes of the
structure in its entirety. To meet this Dahlhaus (1996a, b, c) introduced an im-
portant class of nonstationary processes with rigorous asymptotic framework,
called locally stationary processes. Locally stationary processes include station-
ary processes as a special case g{u,\) = g(\). Here we explain the extension of
techniques in stationary models to locally stationary models.

Definition 1. A sequence of stochastic processes Xy r(t = 1,...,T;T > 1) is
called locally stationary with transfer function A° if there exists a representation

(a) Xor = / " exp (iM6) A2 7 (N dE(),

—T

where
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(1) &()) is a stochastic spectral measure on [—m, ] of uncorrelated sequence &,
1.€.,

(5) £ = / i exp(iAt)dE(N).

-

(i) 3K & 34:[0,1] x R = C with A(u,—2) = A(u, A) and

(6) sup

1]

e - (f2)| < 57

for all T. A(u, ) is assumed to be continuous in u and
(7) g9(u, ) = |Au, )|
is called the time varying spectral density of the process.

One major difficulty in developing the general nonstationary theory is the
problem of asymptotics. The asymptotic theory is needed since investigation
of e.g., the MLE for a fixed sample size is too much complicated. The classical
asymptotic theory with assumption that more and more observations of future
become available does not make sense since future observations of general non-
stationary processes do not necessarily contain any information on the structure
at present.

The Wigner-Ville spectrum for fixed T is

1 — —1iAs
(8) gr(u,A) := o > Cov (Xpur—s/o 1 Xurtssar) e ),
§=—0O0

where X, 1 is defined by (4) (with A9, (X) = A(0,)) for t < 1 and AZr(N) =

A(1,X) for t > T). If X, r is locally stationary and A(u, A) is uniform Lipschitz
continuous in both components with index a > % then we have for all u € (0,1)

(9) / " lar(u X) - glu, VP = o1).

-7

This result is important because it shows the uniqueness of the evolutionary
(time varying) spectral density g(w,). The uniqueness property of spectral
density is a major difference between locally stationary processes and other
approaches to modeling nonstationary time series, such as oscillatory processes
(Priestley, 1981). In contrast with Priestley’s definition, locally stationary time
series are doubly indexed and their time varying spectral density is rescaled on
the time interval [0,1). This is the key point that allows us to make use of
asymptotic considerations. Only the values of X; 7 in the interval

(10) —;—;E [u—%,u+g§]
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contribute to g(u, A). Since the length of this interval tends to zero and A(u, A)
is smooth, the observations become “asymptotically stationary” on this interval
which leads to the above uniqueness. When people speak of the spectrum at
a time point tp of a nonstationary process Xi,..., X7, since the process is
nonstationary, only a few points around t; may have the same spectral structure.
It is clear that the pobability structure of these few points does not specify a
spectral density uniquely. Our approach says that g(u,\) = |A(u,A)|? is the
spectral density if one had infinitely many observations of the same kind at a
fixed time point. o

2 Time Series Locally Stationary Regression
Models

When we consider problems of statistical inference on trend functions linear in
an unknown vector coefficient B, the BLUE contains the residual covariance
matrix 27 which is usually unknown. On the other hand, the LSE is feasible
regardless of the knowledge of the residuals part. It is of particular interest to
study the efficiency of the LSE relative to the BLUE.

Let yT = (Ya,T,...,Yr,r)' have mean vector and covariance matrix
(11) E (yT) = 2p,
(12) E(y"-12B) (v -28)" = =r,

where Z = (z;:)' is a T x g known matrix and has (¢, j)-th component (Z2),; =
zje = z;(t). Let

T—h
(13) al(h) = D zj(t + h)ze(t) h=0,1,....

t=1

We make the following assumption (which we shall call Grenander’s conditions):

(19) Jim_aj;(0) = oo,
71 P
(15) 7!'11;%0 a;I;(O) “01 —-.7—1))Qa

T (h
(16) hm ——t ), k=10
T—co T T J
\VAST] (0)ak,(0)

Let R(h) = [pjx(h)] and R(0) be nonsingular. It follows that there is a Hermi-
tian matrix function M ()\) with positive semidefinite increments such that

(17) R(h) = / i e dM()).

-7
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Define
{"”(0)} 0. - ... 0 \

. 1/2
(18) Dr= - { O}
. N N .

K 0 0 {aqq>(0)}

Then
(19) Jim DZ7'Z*ZD;' = R(0).

Here B is a g-component vector of coefficients to be estimated from an observa-
tion on yT. The BLUE and LSE of 3 are given by

(20) beLuE = (Z*EEIZ) z*s1ly,

(21) bise = (Z*Z)"' Z*y

and the covariance matrices are

(22) E (bsrug — B) (bsLue — B)* = (Z*2712) 7,

(23) E (brsg — B) (buse — B)" = (2°Z) ™' Z*2rZ (2*Z) ™.

We discuss under what conditions the two covariance matrices are asymp-
totically equivalent in the sense that

(24) Am DrE (brse - B) (buse — B)* Dt
= lim D7E (bsrus — B) (bsLue — 8)" Dr.
T—oo
Lemma 1. A necessary and sufficient condition that the LSE be asymptotically
efficient for all stationary processes with continuous, positive spectral densities

is that M () increases at not more than q values of A, 0 < XA < 7, and the sum
of the ranks of the increases in M ()) is gq.

Now we turn to discuss locally stationary disturbance case. To simplify we
restrict ourselves to the trend functions of the form

rj
(25) (2); = 2 (t) = td Z agl)eiogl)t’
- =1
7 is the covariance matrix of locally stationary process xT = (X1,1,...,X1,1)’
given by |
(26) Y= {/ A:,T()‘)AZT(-)\)ei(s—t))‘d)\}
—_T ' s,t:l,_”’T
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Theorem 1.
(27) Th_Igo D7 E (bise — B) (bLse — B)" Dr
= 27rR(O)'1LR(O)_1,

where
1/2
(25 + 1)(2k + 1)

™5 l 2 T 1 2
( 121 ‘O‘g) )( =1 O‘Ql)

N O T ()5 (1) _ g0 [ ot £ (1)
ZZOA] oy, (5(9k 8; ) U f(u,HJ )du.

(28) Ljx =

I1=1 la=1 0
Theorem 2.
(29) Jim DrE (beLue — B) (beLue — B)" Dr
=27B!,
where
1/2
(30) By = (27 +1)(2k+ 1)

(s o) (2 ]o])

TZj Tzk wa(lz)é (9(12) _ 9(11)) /1 uItEf-l (’u, 9(]1)) du.
7 k k J o )

1121 12-—"1

Theorem 3.
(31) Jim DrE (bsLus — B) (bpLug — B)* Dr
< 7}1_1)1100 D7 E (brsg — 8) (bLse — B)* Dr,

where the equality holds if and only if there exists (p + 1) x (p + 1) matriz V
which does not depend on u and A and satisfies

(32) x(u,A) + Vo(u,A) =0, a.e.,
where

1 ™
33 L= s A ,A) " dAd
(33) | ] e ety a
and

(34) B= /1 /ﬂ x (u, A) x (u, A)" dAdu.
0 -7
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J
j =0,...p. In such case, the results coincide with those of the stationary case,

since the asymptotic variances of LSE and BLUEFE are independent of u. Indeed,
if we take vj; = ft (Hgl‘)) = ... = fl (95-”)), j=0,...,p and v = 0 if

j # k, then the equation (82) holds. In the case r;j is at most 2 and —9§-1) = 91(-2),
we can obtain such a matriz V for arbitrary f(A).

Example 1. We now assume that A (u, 9(-lj)) =A (9?”) ,foralll; =1,...,r;,

Example 2. Nezt, we assume that A (u,\) = A () e with-A(=X) = A(X).
-2 —2

If we take vj; = ]A (eg.”)} == [A (agﬂ‘))’ ,i=0,...,p and vjk =0 if

j # k, then the equation (82) holds. In the case r; is at most 2 and —-65.1) = 95-2),

we can obtain such a matriz V.

3 Model selection for locally stationary
processes

In the actual statistical analysis the order of proposed parametric models ¢ =
dim ® must be inferred. The best known rule for determining the true value of
q is probably Akaike’s information criterion (AIC). In the ii.d. case Takeuchi
(1976) and Konishi and Kitagawa (1996) gave derivation of a generalized AIC,
which includes the original AIC as a special case.

To evaluate models, we usually assume structures of stochastic processes
are specified by some functions. As examples of such function we can take the
probability distribution function G(z) for i.i.d. case, the trend function pu(u)
for regression model, the spectral density function g(X) for stationary process
and the dynamic system function F(X;_1,..., Xt—p) for nonlinear models. The
structure of locally stationary processes is specified by the smooth function,
namely time varying spectral density function g(u, ). Dahlhaus (1996a) and
Bellegem and Dahlhaus (2006) proposed model selection criterion for locally
stationary processes based on Gaussian Kullback-Leibler information measure.
We introduce model selection criteria for locally stationary processes based on
functionals of a time varying spectral density.

Many important quantities in time series are often expressed as functionals
of spectra. For a linear functional, a natural idea of constructing an estimator is
to replace an unknown time varying spectral density by the local periodogram
based on the data. The functional of interest is, however, not always linear with
respect to time varying spectral density (Dahlhasu and Weffelmeyer (1996) and
Taniguchi and Kakizawa (2000)). In these cases we use nonparametric kernel
type time varying spectral density estimator instead of local periodogram to
avoid the inconsistency. Let {X;r} (¢ =1,...,T;T > 1) be locally stationary
processes with mean zero and time varying spectral density g(u,A). Suppose a
stretch X7 = {Xao-n/2,75---» X1,7-- - X1, - - -, X1y Ny2,7} 18 available from
this locally stationary processes. We want to fit a class of time varying spec-
tral models P = {fo(u, ) : @ € ® C R?} without assuming that the true time
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varying spectral density g(u, A) belongs to P.
Here we consider the local distance function at time u of the form

(35) D®O.g,u) = [ K{B,g(u,N),u A}dr

-

associated with function K(-,-,-,-) defined below. We set a functional S by the
requirement that

(36) D{S,(u),g,u} = min D(8,9,).
We now give two specific forms of the function K(-,-,",-).
Contrast type:

Let H(x) on (0,00) be an appropriate smooth function which has a unique
minimum zero at £ = 1, such as

(37) Hi(z) = —log(z) +z —1

(38) Ha(z) = mli—a{log(ax +1—a) — alog(@)},
O0<axl

(39) Hs(z) = %(x - 1)%.

Then, we define the contrast type function

(40) K(0, z(u,\),u, \) = H{z(u, ) fo(u, \) "'}
or

(41) K (0, z(u, A),u, ) = H{fo(u, \)z(u, )"}
or

(42) K (O, z(u, \),u, A)

= SUH {2 ) folu X7} + H{Jo(u, Na(w, )Y,
Weighted squared function:

Let (u,\) be a given weighted function which satisfies ¥(u, —A) = ¥(u,A).
Then, we define weighted squared function

(43) K(0, 2(u,\),u,\) = %[z,b(u,)\){ folu, ) — 2(u, VY2
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The estimator is naturally defined by S;,. (u), where gr is a nonparametric kernel
type time varying spectral density estimator

ki

(44) gr(usd) = [ War(A — wIn(u, p)dp
and

R i s ’
(45) In(u,A) = o~ T ; h (-ﬁ) X{uT]-N/2+s+1,T €XP(2A8)

is the data tapered local periodogram at time wu.

Here Wy (w) = MY 02 W{M(w + 2mv)} is the weight function, A :
[0,1] — R is a data taper and Hy = Z?’z}l h2(s/N) ~ Nfol h%(z)dz. The

parameters M = M(T) and N = N(T), M « N « T depend on T in such a
way that

M N1/4 N5

(46) Nt T

Furthermore, we define

T 52
(47) Dg(u) = o WK{B,Q(U, )\)’u: AHB:Sg(u)d)‘

and assume D, (u) is nonsingular for all u. From Corollary 4.1 of Dahlhaus and
Giraitis (1998), we see that

Lemma 2.
(48) V([ 6w () — B {2 (w01
- =1,
= RO GNP
where
1,4
(49) v(h) = o Fo@)dz
-{Jy h2(z)dz}?
and £€(¢;), 7 = 1,...,q is a Gaussian vector with zero mean and covariance
matriz

(50)  {Ty(w},, = B{E(4:)E(dn)}
= 4m ¢j ('U,, A)¢k ('LL, )\)92 (ua )‘)d>‘

-

+ 27 /_ L & (1, \) i (1, 1) g (1, ) g(w, p)ka(A, =X, ) dAdp.
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Therefore, we have

Theorem 4.
(51) VN{Ssr (u) = Sy(u)}
4 N(0,v(h)Dy(u) Ty (u)Dy(u) ™).

Recall that we fit a class of parametric models P = {fg(u,A) : 8 € ® C R?}
to g by use of measure of local disparity at time u, D(@,g,u), and we esti-
mate @ by the value S, (u) which minimizes D(0, §r,u), where gr(u, ) is a
nonparametric kernel type time varying spectral density estimator at time u.

Nearness between fs, (4) and g is measured by Ex, {D(Ss7 (u),g,u)}. A
simple estimator of D(S;.(u), g,u) is given by substituting for g the nonpara-
metric time varying spectral density estimator gr, yielding D(S;, (u), g1, u).
Ordinary this provides underestimate of D (S, (u), g,u). Writing bias as

(52) bg(u) = Ex, {D(S?JT (u), g, u) — D(S.@T (u), 9, u)},
we define generalised information criterion as
(53) D(S_@T (U), gT: ’U) - béT (U) .

We define the pseudo true value of 8 in terms of the functional S,;(u) by the
requirement D(S,(u), g, ) = mingee D(8, g,u). We see that

(54) —bg(u) = Ex, {(Ssr (u) — Sg(u)) Dy (u)(Ssr (u) — Sg(u))}
~ 2 -t { D (u) T, (w)}

Here D,(u) and T’ (u) depend on g, we replace g by nonparametric time vary-
ing spectral density estimator gr. Then we estimate Ex, {D(S;,(u), g,u)} by
G (g) = D(Syr (u), r,u) + N~ 2w(R)tr { Dy (u) Ty (w) }. Multiplying G ()
by N we call

(85) GIC(g) = ND(Syr (u), d7,u) + v(R)tr { Dyr (w) ™ T, (u) }

a generalized information criterion.

In particular, for the contrast type K (-,-,-,-), if the true time varying spec-
tral density is fg¢(u,A) € P, where 9 lies in the interior of ® and the process is
Gaussian, or the parameter 0 is innovation-free, then the generalized 1nforma.—
tion criterion GIC(g) becomes Akaike’s information criterion

(56) AIC(g) = ND(S;,(u), §1,u) + 4rH® (1)v(h)q.

3.1 Numerical examples

Here we give the concrete examples of the quantity v(h)tr{Dy(u)"'T,(u)} in
(54), which is interpreted as the penalized term in GIC. Here we take the con-
trast type function (40) as K (-,-,,) with H(z) = Hy(z) = —log(z) + = — 1.
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First, we consider the misspecified case. Namely, we fit the stationary
model fg(u,A) = fg()\) to locally stationary process which has the true
time varying spectral density g(u, \). Here we assume that 0 is innovation
free (the innovation g;’s are i.i.d. and 0 satisfies 'a% ffw log fe(A)dA = 0).
Then, O satisfies

(57 s / log fo(A)dA

= [ ron L) — goy (22)) (22 o <o

Therefore, we have

[T _10%2fe(N)
Dy (u) = / {g(u,A) 1_5'0_557_}925,,(1‘) dx,

bk

ryw = [ {own (2) () }Hg(u) o

If the true time varying spectral density is of the form g(u, A) = fo(A)a(u),
then from (57) the penalized term becomes

tr {w(h) D, (u) " Ty (u)} = 47%%41,

which coincides with the penalized term of AIC when a(u) = 1.

Next, we consider the overfitted case. Namely, we fit the locally stationary
model fg(u,A) = f1,g(q_1) ()\)fz,g(q) (u), 8 = (92(1_1),9(&,))/, 9(q_1) € R,
0 € R! to stationary process which has the true spectral density g(}).
Here we assume that B(q 1) is innovation free (the innovation €;’s are i.i.d.
and O,_1) satisfles ae fw 1og f1,6(,_1)(A)dXA = 0). Then, we have

W) = [ Ps@ay 0
Dol )—( 0 Dy (u)(22) )

and

_ I‘g(u)(l ) *
Ly(u) = ( " ' Ty (u)(22) >’
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where

™ | f200 (@) 8%F1,6,_y, (V) )\
g()\) 69((1_1)89Eq_l) 65, (u) )

_o [00(q) f2,8.,, () 2
Dg(u)(22) = 2m |:f2,9(q) (u)~? { (‘1)89 (2) } ,
(9) =5, (u)
I17(“)(11)
=47r/7r f2’9(")(:)2 (afl,e(q_l)()\)> (3f1,9(lq—1)(>‘)>} A,
- 9 06(g-1) 00(,_1) 6=Sy(u)
" {69(q)f2,9<q) (u) }2 fl,e(q_l)()\)2 D
90(q) I s

D, (U)(ll) = /

—n }

Pg('l.l,)(zz) = 47T/

-7

_o [ 00(q) f2,6(,, (1) 2

8=>5g(u)

and

tr {v(h)Dy(u) ' Ty(u)}
=tr {v(h)Dg (u) all)rg (u)(u)} + tr {’U(h)Dg (’U»)(—zlz)ry (“)(22)} .

If the true spectral density is of the form g(A\) = fi,6,_,,(A) and the
0

(9—
60,_1)(v) = 6(4_1) and f2,60, () (u) = 1, then the penalized term becomes

pseudo true value 8°(u) = (@ 1)(u)',9?q) (w) = Sfl'a(q_l) (u) satisfies

tr {v(h)Dg(u) 'Ty(u)} = 4mv(R){(g — 1) + 1 + mr4}.

3.2 Empirical study

Because we explained the model selection procedures and the parameter esti-
mation methods, we can now identify the statistical models from real data. We
apply our methods to the daily log returns {Xl_ N/2 Ty XoTr- -, X7 -

XT+N/2,T} of S&P 500 index from September 20, 2005 to September 14, 2007

(500 trading days).

First, we fit stationary AR(q) models to the data { Xxr1-n/2.7, - - -, X+ nN/2,T }
in terms of Yule-Walker equations for each ur = k/T, k = 0,...,T. The esti-
mated models are

-2

2
fo(ur, A) = g(g_;)_

q
1+ Z a;(ux)e*
i=1
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Then, we select the order of models in terms of §(ux), K = 0,...,T which
minimizes

GIC(q(uz)) = N/:r K (%’%‘%) d) + dmu(h)(q + 1),

where the parameters are 7 = 400, N = 100 and M = 8, and we employ the
symmetric contrast type function K = % {a: +z7t + 2}, the Bartlett-Priestley
window

W) = 23:7;{1—()\/71')2}, Al <,
1o, Al >,

and taper function

h2(z) = 6z(1—z), 0<z<1,
N 0, otherwise.

The selected §(ur) and minimal GIC values GIC(§(ux)) are plotted in Fig-
ures 1 and 2. From both figures we see that the model is not constant in time.
Therefore, we can conclude time varying spectral models are desirable rather
than stationary spectral models.
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Figure 1: The selected §(uk).
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Figure 2: The minimal GIC values GIC(g(ux)).
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