goooboooogn 69
0 1604 0 2008 O 69-79

Regularity Preservation by
String-Rewriting Systems Based
on Periods

Peter Leupold*

Department of Mathematics, Faculty of Science
Kyoto Sangyo University
Kyoto 603-8555, Japan
eMail:leupold@cc.kyoto-su.ac.jp

When using string-rewriting systems in the context of formal
languages, one of the most common questions is whether they
preserve regularity. A class of string-rewriting systems that has
received attention lately are idempotency relations. They were
mainly used to generate languages starting from a single word.

Here we apply these relations to entire languages and investi-
gate whether they preserve regularity. For this, it turns out to be
convenient to define two more general classes of string-rewriting
systems, the k-period expanding and the k-period reducing ones.
We show that both preserve regularity. This implies regularity
preservation for many classes of idempotency relations.

O Introduction

The root of our investigations lies in the operation called duplication and
introduced by Dassow et al. [3], who rediscovered a result shown earlier
by Bovet and Varricchio [2] for so-called copy systems introduced by Ehren-
feucht and Rozenberg [4]. Mainly, a string-rewriting system that duplicates
factors via rules u — u? is applied iteratively to a word; then the question is
whether the resulting language is regular or context-free. Later, this oper-
ation was also applied to entire languages rather than single words [7]. On

*This work was done, while the author was funded by the Japanese Society for the Promo-
tion of Science under the postdoctoral grant P07810.




70

the other hand, the duplication of words was also generalized to so-called
idempotency languages [8]. These are generated by rules u™ — u” for any
fixed m and n rather than only by rules u! — u2.

Another line of research has dealt with classes of string-rewriting system
like monadic or prefix rewriting ones. It was investigated whether the result
is regular/ context-free if they are iteratively applied to regular/context-free
languages. An example is the work of Hofbauer and Waldmann on deleting
string-rewriting systems [5] which provides many references to earlier work.
Also the book by Book and Otto contains a few results in this direction [1].

So far, investigations on idempotency relations have been focused on
whether they produce regular or context-free languages when applied to
singleton languages. In the context of the work on regularity preservation of
string-rewriting systems it seems even more interesting to look at their be-
haviour when applied to entire languages. This is the object of this article,
which therefore in some sense brings the two lines of research described
above together. We consider only the length-bounded variants of idempo-
tency relations; only here the underlying rewriting-systems are finite and
therefore they are more tractable in this context.

In the section about uniformly length-bounded systems we actually treat a
more general class of systems. Namely, we abandon the restriction that all
rules must be of the form u™ — u” for fixed m and n. First we define k-period-
expanding string-rewriting systems, where only m < n is required. Then
we also consider the somewhat inverse class of k-period-reducing string-
rewriting systems, which are characterized by the condition m > n. Both of
these classes are shown to preserve regularity. Finally, we show that also
finite unions of k-expanding and k-reducing systems, so-called k-periodic
systems preserve regularity. It is a direct consequence of these results that
all relations ="><;'n preserve regularity except for k > 2, m =0, and n >
2. For the latter cases it is aiready known that they generate non-regular
languages from single words [8].

There are less results about idempotency relations with just an upper
bound on the left side of rules. Mainly a result on k-period reducing sys-
tems can be adapted and yields that length-decreasing bounded idempo-
tency relations preserve regularity. The proof also shows that their inverses
preserve context-freeness. We also solve a problem left open in earlier work
[71: duplications with length three preserve regularity.

1 String-Rewriting Systems

Terms and notation from general formal language theory, logic and set the-
ory are assumed to be known by the reader. Let w[i] denote the i-th letter
of a word w for 1 < i < |wj, where |w| is w's length. By w[i...j] we denote
the factor of a word w, which begins in position i and ends in j. A word w
has a positive integer k as a period, iff for all {,j such that { = j(mod k) we




71

have wli] = w[j], if both w[i] and w[j] are defined. u Coer V Means that u
is a prefix of v, c,« is our symbol for suffix. Two words u and v are conju-
gates iff there exists a factorization u = rs such that v = sr. If not specified
otherwise, the alphabet we use will be denoted by . :

In our notation on string-rewriting systems we mostly follow Book and Otto
[1] and define a string-rewriting system (SRS) R on X to be a subset of
E* x Z*. Its single-step reduction relation is defined as u —R Vv iff there
exists (£, r) € R such that for some uy, u; we have u = uilu; and v =ujrus.
We also write simpler just —, if it is clear which is the underlying rewriting

system. By = we denote the relation’s reflexive and transitive closure, which
is called the reduction relation or rewrite relation. The inverse of a single-
step reduction relation — is == 1= {(r,£): (L, ") € —}. Note that we also use
the notation u — v for rewrite rules, mainly when speaking about rules in a
natural language sentence to make it graphically clear that we are speaking
about a rewrite rule and not some other ordered pair. All the SRSs in this
article will be finite. . .

An SRS is said to be confluent, iff for all w, w1, wo € * always wi — w —

w3 implies the existence of some w’ such that w1 Sw s w2. Here we use
W1 «— W as a sometimes convenient way of writing w — wj.

By imposing restrictions on the format of the rewriting rules, many spe-
cial classes of rewriting systems can be defined. Following Hofbauer and
Waldmann [5], we will call a rule (£, r) context-free (inverse context-free), if
Il <=1 (Ir] < 1). A system is monadic, if it is inverse context-free and for all
its rewrite rules (£, r) we have || > |r]|. Finally, we define deleting SRSs again
following Hofbauer and Waldmann [5]. For these, we need a precedence, i.e.
a irreflexive partial ordering < on the alphabet. This is extended to words by
defining that u < v holds iff u and v do not use the same set of letters, and
for every letter x which occurs in u there exists a letter y which occurs in v
such that x < y. Now a SRS over the alphabet I is called <-deleting, iff it is
a subset of <~1; this means every right side of a rule is smaller than the cor-
responding left side with respect to <. More general, a SRS is called deleting
iff it is deleting for some precedence. Hofbauer and Waldmann have shown
that all deleting SRSs preserve regularity.

The bounded idempotency relations, which are one of the origins of the
work here were first defined in [8]. For fixed parameters m, n, and k they
are the rewrite relations

uShod v 3z[ze St AUu=U12MUs A v=w12"us A 2] < k]

and the corresponding SRSs are {(z™, z") : |z| < k}. We will denote it by the
same symbol 5"»«;’” ; no confusion should arise. A restricted version are the
uniformly bounded idempotency relations

=k

U=l vies 3z[ze Tt Au=u12Mus AV=u12"Us A 2| = k]

and the corresponding SRSs are {(z™, zM) 1 |z| = k}. We denote the lan-
guages generated by these relations from a word w by



72

<k,qn

W= {u w(SKeal )*u} and W = {u s w( =Kee? )*u),

For a string-rewriting system R and a language L we denote the set of
all descendants of words from L modulo R by R*(L) following Hofbauer and
Waldmann [5]. In the case of idempotency relations, however, we will still
use the established notation L™ meaning the same as (N”m)*(L). A class of
languages C is said to be closed under (rewriting by) a class S of SRSs, iff
the following holds: VL,R[LeCAR€eS=R*(L) eC].

2 Uniformly Length-Bounded Systems

ldempotency relations without restrictions on their rules’ lengths often gen-
erate very complicated structures. The relations with length bound are
in general much more accessible, especially the ones with uniform length
bound. The main reasons for this are that on the one hand they are closely
related to periodicity and thus tools from that field can be used: on the other
hand, the underlying SRSs are finite and thus more tractable. Here we will
not only use periodicity as a tool, but we will define a new class of SRSs
based on periodicity in their rules. These will include almost the entire class
of uniformly length bounded idempotency relations. Thus regularity preser-
vation of the latter will be implied by our results.

But first we recall a single non-closure result that follows directly from prior
work on the idempotency closure of words [8].

Proposition 2.1. String-rewriting systems = »a” do not preserve regular-
ity fork>2, m=0, and n > 2.

In the course of this section, we will see that these are actually the only
combinations of parameters, for which regularity is not preserved. Now we
define a class of SRSs all of whose rules increase the length of factors with
period k.

Definition 2.2. An SRS is called k-period-expanding, if for all of its rules
£, n

(i) £ is non-empty,
(ii) £,r e w* for a word w of length k, and
(iii) £ Cpper I

Thus the left sides of all rules of a k-period-expanding SRS have period k
and the corresponding right sides add repetitions of that period — therefore
the name. Now we establish an interesting property of this type of SRS.

Lemma 2.3. k-period-expanding SRS are confluent.




73

Proof. It is known that the diamond property implies confluence [1]. There-
fore it suffices to show for k-period-expanding SRS that for every pair of
derivation steps wi « u — w; there exists a word v such that W1 — V «— W,
So let two words wj and w; be direct successors of another word u via such
a k-period-expanding SRS R.

If the factors in u, where the rules are applied, do not overlap, then ob-
viously in both cases the respectively other rule can be applied afterwards
and one arrives at a common descendant v. So let two application sites r™
and s’ in u for rules r'™ — r" and st — &/ overlap. Without loss of generality,
let r'™ occur first from the left. If s is completely inside of r™, then s and
r are conjugates as both have length k. The result of applying the rules in
either order will be r"+i—i,

If st is not completely inside of r™, then let us call u’ the factor from the
start of ' till the end of s! such that u = uju’u> for some uj, u, € £*. Now
we can interpret the application of r™ — r” as the insertion of r"=™ just in

front of u’; equally s' — s/ amounts to the insertion of s/~! just after u’. Since
- application of these rules leaves u’ unchanged, the two derivations

url’uz = ur" My uy; — ur" My’ si=iys

and . . » .

uiu’uz = urd’s’"tupy — uyr"mu’ s/,
are possible, and the fact that they result in the same word with only two
steps each concludes our proof. O

The proof shows even more than the lemma states: all rules can be ap-
plied from left to right, that is in an order such that the prefix left of an
application site will never be altered by another rule. Thus in some sense
the different rule applications are independent from each other. This will
help us in showing that they preserve regularity.

Proposition 2.4, k-period-expanding SRSs preserve regularity.

Proof. Let R be a k-period-expanding SRS. Let the longest left side of a rule
from R have length km. We will insert additional symbols from the alphabet
Fi={[w]:|wl=kAi<m}u{V} into the words of a given language L.
The [w'] will mark positions that are preceded by a factor w! in the original
word. V is an auxiliary symbol, which is used to construct a deleting SRS S
that essentially simulates R. Since it is deleting it preserves regularity and
thus R*(L) is regular if L is.

First we describe informally the gsm mapping g, which introduces the sym-
bols of I". Reading an input word from left to right, the gsm needs to remem-
ber at any given point the last km letters of the input. If they have a suffix
w!, which is the left side of a rule from R, then the letter [w!] must be out-
put; notice that there can be several such letters to output. After each [w{]
an arbitrary number of V is written. Then the gsm advances and writes also
the letter from Z, which it reads, on the output.



74

Now we define the SRS that will work on the words produced by g. It simu-
lates the rules from R by inserting the newly produced symbols to the left of
the corresponding symbols from I, and deleting, in some sense consuming
one V in every step.

S = {([W]V, W[w]): (W, w*) e R}

This is a deleting SRS as for a precedence where V¥ s greater than all the
other symbols, since all the rules delete V. Finally, to obtain R*(L) we need
to delete all the symbols from I". This is done by the morphism

5.=1X fxeZXZ
T 1A ifxerl.

Now we try to prove the inclusion R*(L) ¢ 5((S)*(g(L))). Obviously L =
6(g(L)). Further it should be clear that the rules from S can simulate the
rules from R in the sense that if for some w € £* we have w —g w’, then
there is also g(w) —s w” such that w’ = 5(w’). So the first crucial fact
here is that also further applications of rules to w’ can be simulated starting
from w’/; this is not obvious, because g(w’) # w”. The difference is that
the second word contains less symbols from I" since the rules from S do not
create these. Thus these are missing in the newly created factor. This factor
and a preceding factor (to which the rule was applied) have period k.

The one problem here is if some periodic factor in the original word is
not long enough to be the application side for a rule from R, but through
application of shorter rules this one can become applicable. Then the cor-
responding symbol from I is not there. See the following Example 2.5 for
an illustration. In these cases an iteration of the process is necessary. In
every iteration, k-periodic factors that allow rule applications are expanded
as far as possible, in the next iteration longer rules will be applicable, too.
Therefore the maximum number of iterations necessary is the number of
different rules in R. To see this, observe that rule applications to a k-periodic
factor can be ordered in such a way that first all applications of the rule with
the shortest left side are done, then applications of the rule with the second
shortest left-hand side etc. The first of these blocks of applications of the
same rule will be possible in the first iteration, the second one in the second
iteration and so forth. Thus we have

R*(L)  8((S)*(g(-..8((S)*(g(L)))...))).

—~

IR] times

The inverse inclusion does not need further arguments. It is clear that
rewriting the symbols of I" does not produce anything that is outside of R*(L)
after the application of 6.

In conclusion, we have shown the equality

R*(L) =8((S)*(g(---5((5)*(g(L)))...))),

&r

IR| times




75

and since all the finitely many operations on the right hand side preserve

regularity this proves the proposition.
O

We now illustrate with an example, why so many iterations of the proce-
dure can be necessary to fully simulate the original SRS.

Example 2.5. We consider the SRS R = {(a, a5), (a8, al5), (a7, a?1)} and
the regular language L = {a}. Applying the construction from the proof
of Proposition 2.4, in one iteration only a symbol for simulating the first
rule is inserted, the resulting language 6(S*(g(L))) is {a5+1 : (>0} Ina
second iteration, symbols for the other two rules are inserted, too. How-
ever, in the word a'! no symbol for the second rule is inserted, because the
word is too short. Analysis of all possible derivations shows that therefore
a22 ¢ 5(S*(g(8(5* (g(L)))))) although via R the derivation @ — g% — ql1 —
a'® — a?? js possible. Thus for this three-rule system three iterations of the
procedure are necessary.

Since a large class of uniformly bounded idempotency relations falls in the
class of k-period-expanding SRSs, we obtain an immediate corollary.

Corollary 2.6. String-rewriting systems =’<><;’n preserve regularity for k >
0,m>0, and n>m.

Looking at the SRS S from the proof, we also see that the left sides of all
rules consist of one letter of the form [w!] and one V. If we simply delete
all the V from the proof, the language generated is still the same, only S is
not deleting any more. Instead, now S is context-free and this observation
provides us with another closure property.

Corollary 2.7. String-rewriting systems =’<><I']n preserve context-freeness
fork>0, m>0,andn>m.

Let us look @ moment at the reason for the cases m = 0 not to be included
here. The proof of Proposition 2.4 does not work, because rules with empty
left side are applicable anywhere. Thus after every rule application another
iteration of the process would be necessary, and there is no bound on this
number. We now define a class of SRSs somewhat inverse to the k-period
expanding ones, namely ones that reduce the length of periodic factors.
Note that here right sides of length 0, i.e. deletions, are not excluded.

Definition 2.8. An SRS is called k-period-reducing, if for all of its rules (2, r)
(i) £,r € w* for a word w of length k and
(ii) r Cu L.

Also here, we can show that all systems of this class preserve regularity.

Proposition 2.9, k-period-reducing SRSs preserve regularity.




76

Proof. For a given regular language L and a k-period-reducing SRSs R, we
will define a context-free SRS T such that T—1 simulates R. Since the inverse
context-free SRS T—! we construct is monadic, and since monadic SRSs pre-
serve regularity, our claim follows.

First, we transform words from Z* into a redundant representation, where
every letter contains also the information about the mk — 1 following ones,
where mk is the length the longest right side of a rule in R. This way, rewrite
rules from R can be simulated by ones with a right side of length only one,
i.e. by inverse context-free ones.

First off we define the mapping ¢ : £+ — ((Zu {O})™)* as follows. We
delimit with (...) letters from (Zu {O})™k and with [...] factors of a word as
usual. The image of a word u is

u— (ufl...mkD@l[2...mk+1])---(u[lu] — mk + 1...0ull-
(ullul =mk+2...|ullg)--- (u[jul]aom™<-1),

Thus every letter contains also the information about the mk following ones
from the original word u. At the end of the word letters are filled up with the
space symbol 0. ¢ is a gsm mapping and as such preserves regularity.

This encoding can be reversed by a letter-to-letter morphism h defined
as h(x) := x[1] if x[1] € £, for the other case we select for the sake of
completeness some arbitrary letter a and set h(x) := a if x[1] = o; the
latter case will never occur in our context. It is clear that h(¢(u)) = u for
words from Z*. Both mappings are extended to languages in the canonical
way such that ¢(L) := {¢(u):uelL} and h(L) := {h(u): u e L}. :

Now we define the string-rewriting system T over the alphabet (Zu{m})™mk
as follows:

T = {(u'vV), ((WV)[1... |7 ]) : (W, u) € R A JuivV'] = mk A
uveZtavie{O}*}.

A letter (u‘vv’) is replaced by the image of ufy under ¢ minus the suffix of
letters that are already there in the image of u'v. In this way, application of
rules from T keeps this space symbol only in the last letters of our words.
If we have w —g W/, then clearly also ¢(w’) —7 ¢(w) and thus ¢(w) :'T—l
@(w’). This shows that R*(w) c h((T-1)*¢(w)). For the inverse inclusion,
let us take a look at what rules from T-1 do. For any such rule (4, r) we have
h(f) = ¢/~'u[1] and h(r) = u[1] for some rule &/ — ut from R. Thus exactly
the same subword is deleted. Further examination of the rules and their

u,ut . , .
contexts show that also w () w’ iff ¢(w) i ¢(w’). Thus only images

under ¢ of words in R*(w) can be reached. Example 2.10 following this
proof will further illustrate this.

As all the rules of T have left sides of length one and right sides of length
greater than one, their inverses are all monadic, i.e. the system T-1 is
monadic. Monadic string-rewriting systems are known to preserve regular-
ity, see for example the textbook by Book and Otto [1].




77

Summarizing, we can obtain R*(L) by a series of regularity-preserving op-
erations in the following way:

R*(L) =h((T™1)* (¢(L))).
O

Example 2.10. Let R be a 1-period reducing SRS which contains a rule
a3 — a? and whose longest left-hand side of a rule is of length 4. Then the
reduction ba*bc —g ba?bc is possible. The SRS T constructed in the proof of
Proposition 2.9 has a rule [a?bc] — [a3b][a?bc]. The inverse is applicable
to the word ¢(ba’bc) = [ba3]1[a3b][a?bc][abcno][bcon][conn] where it
deletes the letter [a3b]. The result is exactly ¢(ba?bc) and in this way the
original rule is simulated. Here it is clearly visible how we can know from
only looking at the letter [a?bc] that also the following two start with an a
and thus in the original word a rule with the left-hand side a3 is applicable.

Once more, the consequences for idempotency systems are immediate.

Corollary 2.11. String-rewriting systems =k ba"  preserve regularity for k >
0,m>=0,and m>n,

Further, we have stated already in the proof that T is context-free, and
thus it preserves context-freeness.

Corollary 2.12. String-rewriting systems =k >a7  preserve context-freeness
fork >0, m>0,and m<n.

Proof. Let T be the string-rewriting system and h and ¢ be the mappings
from the proof of Proposition 2.9 constructed for =’<x><:g1 . From the argumen-
tation there we can see that

L™ = h(T*(4(L))).

Since T is context-free and since this class of string-rewriting system pre-

=k . N '
serves context-freeness, also L ~ "m is context-free for the given combina-
tions of parameters. O

Now we can define a more general class of SRSs that can expand as well
as reduce factors of period kK and we can show that also these preserve
regularity and context-freeness.

Definition 2.13. Any union of finitely many k-period-expanding and k-period-
reducing SRSs is called a k-periodic SRS.

Proposition 2.14. k-periodic SRSs preserve regularity.



78

Proof. We can combine the proofs for k-period-expanding and -reducing sys-
tems. First, observe that all factors of a word that have period k can be con-
sidered independently in the following sense: application of a rule to one of
them does not affect applicability of rules in other such factors. That is, in
doing a reduction via R we can look at the first such block of a word, apply
all the rules that are to be applied there, then go to the second block etc.

Further, observe that such a block has the form viv’ for a word v of length
k and a word Vv’ shorter than k. Application of any rule in this factor will
only change the exponent i. Thus we can look at k-period-expanding rules
as additions to the exponent, at k-period-reducing rules as subtractions.

Over integers, a series of additions and subtractions can be done in any
order, the result is always the same. Since v*v’ can only represent non-
negative integers, in our case we just have to be sure that the intermedi-
ary results are always non-negative; by doing first all the additions, then
the subtractions, this is ensured. This shows us that we can reorder the
application of rules in such a way that first all of the k-period-expanding
ones are applied, then the k-period-reducing ones. Only the original order of
the length-increasing rules must be preserved, because some long left side
might be created only by earlier application of shorter ones.

We can partition a k-periodic SRS R into two systems R and R\, the
first of which contains all the k-period-expanding rules while the second one
contains all the k-period-reducing rules. Now we construct for R, the SRS S
from the proof of Proposition 2.4 and the corresponding mappings; for R\, we
construct the SRS T from the proof of Proposition 2.9 and the corresponding
mappings. The considerations above then show us that

R*(L) =h((T™1)* (¢(8((S)* (gC... 8((5)"(g(L)N)--- 0NN

IR -] times
which proves the proposition’s claim. O

In most cases, k-periodic SRSs will also preserve context-freeness. Only
rules of the form A — u must be excluded as can be seen from the various
results in this above.

3 Outlook

When looking at the languages generated by idempotency relations without
length bounds from single words, we see that almost all cases generate non-
regular languages, Thus the questions treated here are not of great interest
in that context. However, when the size of the alphabet is limited to two
or even one letter, the picture changes [7, 9]. The reason for this is mainly
that often -as in the case of duplication- there exists a finite SRS, which is
equivalent to the infinite one. For these cases also the closure of regular
languages under the respective SRSs is an interesting question. The cases




79

of »«l and ><2, however, are regular over any alphabet size as shown in work
summarized by ito [6].

References

[1] R. Book and F. Otto: String-Rewriting Systems. Springer, Berlin, 1993,

[2] D.P. Bovet and S. Varricchio: On the Regularity of Languages on a Bi-
nary Alphabet Generated by Copying Systems. In: Information Process-
ing Letters 44, 1992, pp. 119-123.

[3] J. Dassow, V. Mitrana and Gh. Paun: On the Regularity of Duplication
Closure. In: Bull. EATCS 69, 1999, pp.133-136.

[4] A. Ehrenfeucht and G. Rozenberg: On Regularity of Languages Gener-
ated by Copying Systems. In: Discrete Applied Mathematics 8, 1984,
Pp. 313—-31‘7.

[5] D. Hofbauer and J. Waldmann: Deleting String-Rewriting Systems pre-
serve regularity. In: Theoretical Computer Science 327, 2004, pp. 301-
317.

[6] M. Ito: Algebraic Theory of Automata and Languages. World Scientific,
New Jersey, 2004,

[7] M. Ito, P. Leupold, and K. Shikishima-Tsuji: Closure of Language Classes
under Bounded Duplication. In: Lecture Notes in Computer Science
4036, DLT 2006, Springer, Berlin, pp. 238-247.

[8] P. Leupold: Languages Generated by Iterated Idempotencies. In: Theo-
retical Computer Science 370(1-3), 2007, pp. 170-185.

[9] P. Leupold: General Idempotency Languages over Small Alphabets. Ac-
cepted for publication in Journal of Automata, Languages and Combi-
natorics.




