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Abstract In this paper we deal with prefix codes, called CPN languages, defined on Petri nets. And
the family CPN of all CPN languages is included in the family of all context-sensitive languages.
The subclass mCPN and NmCPN of CPN are a family of prefix codes which are maximal prefix
codes and a family of prefix codes defined on input-ordinal Petri nets. NmCPN is obviously included
in mCPN. But its converse inclusion is still a open problem. We have already proved under some
restricted Petri nets, for example, Petri nets have at most two places or at most one transition. We

consider this problem in the case that Petri nets have more than two places.

1 Preliminaries

In this section, we state the definitions and the notations of formal languages and codes in this
paper. And we introduce Petri net codes and thier related codes.

Let X be a nonempty finite set called an alphabet, X* be the free monoid generated by X under
the concatenation. An element of X* is called a word. The identity of X* is called the empty word,
denoted by 1. We denote X* \ {1} by X*, the concatenation of two words z and y by zy, and the
length of a word w € X* by |w|(especially |1| = 0).

If for two words w, u € X* there exists some word v € X* (resp. v € X*) with w = uv,
then u is called a prefix (resp. a proper prefix) of w, we represent u <, w(resp. u <p w). A
language over X is a subsct of X*. The concatenation of two languages L, and L, is defined by
LiL; = {unwz|wy € L1, w2 € Ly}. A nonempty language L is a code if for any two integersn, m > 1

and 1y, Uz, -, Up, V1, Vg, -0, Uy € L,

iU - -~ Upy = V1V2 - Uy,

implies

n=m and u,=v;fori=1,---, n.

A code L is a prefix code if u, uv € L implies v = 1. A code C ¢ X+ is maximal (resp. maximal
prefix) in X if C is not included by any other code (resp. prefix code) over X.

Remark A maximal and prefix code is clearly a maximal prefix code because it is not included in
any other codes by the maximality. But a maximal prefix code is a prefix code, but is not nccessarily
a maximal code.

DEFINITION 1.1 (Petri net) A Petri net PN is a quadruple (P, X, W, uo) satisfying the fol-
lowing conditions.
(1) P and X are finite sets with PN X =0 and PU X # 0.
(2) W s a weighting function from (P x X)U(X x P) to the set N of all the nonnegative integers.
(3) mo is a function from P to N, called an initial marking. O

“This is an abstract and the paper will appear elsewhere.
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A marking is called positive (or zero) if it is a mapping from P to N\{0} (or a mapping from P
to {0}, respectively).

And PN is input-ordinal if W(p, ¢) < 1 for any (p, a) € P x X. In the above Petri net PN, we
may call (p, a) € P x X an arc when W(p,a) > 0 holds, and then W (p, a) is called the weight of the
arc (p, a). The similar definition is stated about (a,p) € X x P.

The transition a € X is called enable under the Petri net PN if W (p, a) < u(p) holds for each
place p € P. Then the new marking u’' is defined as follows:

# (p) = u(p) ~ W(p, a) + W(a, p) for Vp € P.

The transition function dpy of PN is defined by Spn (i, a) = p'. Spn (s, a) is undefined if @ € X
is not enable under PN. This function is extended from P x X — Nto P x X* ~ Nas follows:
dpn(p, 1) = p and Spn(u, ua) = dpn(Spn (1, u),a). We may denote dpn by § if no confusion is
possible.

w € X7 is called a firing sequence in PN if dpn(y, w) is defined. w € X* is called a positive
firing sequence in PN if §pn(p, w) is defined and dpn (i, u) is positive for any prefix u of w. We
denote the sets of all firing sequences in PN and all positive firing sequences in PN by FSeq(PN) and
FSeq* (PN) respectively. We denote {0(po, w)lw € FSeq(PN)} (or {d(uo, w)|w € FSeq™{PN)})
by Re(PN) (or Re*(PN) resp.).

DEFINITION 1.2 Let PN = (P, X, W, Ho) be a Peiri net, po be a positive marking. Then we
define the languages C(P, X, W, ug) and Co(P, X, W, to) as follows:

C(P, X, W, po) = {w € FSeq(PN)| 5(u, w) is not positive, w = uv,v € X+t u € FSeqt(PN)},
Co(P, X, W, o) = {w € FSeq(PN)|§(u, w) is zero,w = uv,v € X+, u € FSeq*(PN)}.

It C(P, X, W, o) and Co(P, X, W, pg) are not empty, then they are prefix codes. Because both
u, uv are thier elements and v # 1 yield a contradiction since 6(u, u) is positive. And we call
C(P, X, W, ug) # 0 a Petri net code, Co(P, X, W, o) # @ a strict Petri net code. The families of all
the Petri net codes and all strict Petri net code are denoted by CPN and CPNO, respectively. Note
that CPNO is a subclass of CPN . Moreover a Petri net code is said to be maximal if it is maximal
as a prefix code. The families of all the maximal Petri net codes and all the strict Petri net codes are
denoted by mCPN and mCPNGQ, respectively..

A Petri net code is said to be input-ordinal if it is generated by some input-ordinal Petri net. The
family of all the input-ordinal Petri net codes is denoted by NmCPN.

Since an input-ordinal Petri net code is clearly a maximal Petri net code, we get the inclusion
relation NmCPNCmCPN. Tu this paper, we consider the following problem.

[Problem] mCPNCNmCPN?

Since it is too difficult to solve this problem in general Petri nets, in the next section we prove that

the problem is solved affirmatively in a restricted Petri net.

2 Fundamental Properties

In this section we state some fundamental properties about strict Petri net codes and the structure
of Petri nets which generate maxiinal Petri net codes.
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2.1 Some Properties of Strict Petri net codes

At first we show that a strict Petri net code is a full uniform code il it is finite and maximal.
For a Petri net (P, X, W, u), p € P and u = aja;...a, € X~, we denote (W(p,a;) — W(a;,p)) +
(W(p.az2) — W(az,p)) + -+ + (W(p,a,) — Wi(ar,p)) by p(u).

LEMMA 2.1 [2] Let C = C(P, X, W, uo) be a finite marimal Petri net code over X. For any
u,v € C, if there ezists a p € P such that po(p) = p(u) = p(v), then C is a full uniform code over X,
i.e. C= X" for somen.n>1. a

PROPOSITION 2.1 If a finite maximal Petri net code over X is strict, then it is a full uniform
code over X. 0O

LEMMA 2.2 Let C = Co(P, X, W, uo) be o mazimal strict Petri net code over X. And let p be a
place in P. Then there exists a Petri net ({p}. X, W', uy) such that C({p}, X, W', ub) = C.

Proof) Let W’ be the restriction of W on {p} x X U X x {p}, ul, be the restriction of ug on
{r}. let 0 and &’ be transition functions of (P, X, W, po) and ({p}, X, W', uf) respectively. Since
C is maximal, d(uo,u)(q) > 0, &'(u0, u)(p) > 0 and &(uo, w)(q) = &' (o, w)(p) = O for each g € P,
w=uv € C,v € X*. Thercfore C({p}, X, W', ) = C. a

PROPOSITION 2.2 If a mazimal Petri net code over X is strict, then it is input-ordinal. O

A code in this proposition is given the formula (1) in the next chapter. Note that the Petri net code

{a3, ab, ba} is strict but not maximal.

2.2 Structure of maximal Petri net codes

DEFINITION 2.1  Let PN = (P, X, W, pg) be a Petri net and uy be a positive marking. For
we X", theset )y, C P x X of PN is defined as follows:

(p,a) € Fyy <=
(i) W(p,a)>0, (vb€ X)(W(p,a) > W(p,b)),
(i) w e FSeq™(PN),pu = 8(uo,w), (Vg € P)(W(q,a) > 0= pu(p)/W(p,a) < u(q)/Wi(q,a)).

a

(p,a) € F,, means that the continuous firing of @ makes the number of tokens in p become zero
under the marking s obtained by reading a positive firing sequence w. We denote the set of all such
pairs (p,a) by F*. that is F* % Cyex-F,. F* is called the active flow of PN,

A (p.a) € F~ weans that p is a place where the number of tokens first becoines zero when a fires

continuously after reading a positive firing sequence w.

LEMMA 2.3 (Fundamental Lemma) Let F* be an active flow of a Petri net (P, X, W, o),
C = C(P,X,W, uo) be a mazimal Petri net code. Letp € P and a,b € X.

() (p.a) € F* = W(p,a) > W(p,b),
(ii) (p.a),(p.b) € F* = W(p.a) = W(p,b).




83

(Proof) (i) There exists some non-negative integer n such that a”*! € C and po,a™) = W(p,a)
because (p,a) € F*. Then by the maximality of C each transition 4 € X must be enable. Therefore
W(p,a) > Wip,b).

(ii) Since W(p,a) > W(p,b) and W (p,bd) > W (p,a) hold by (1), the equality W(p,a) = W(p, b) is
true. 4

T2

a by ba

Fig. 1: (p,a) € F. = n > ny,ns.

LEMMA 2.4 (Deletion of useless places) Let PN = (P, X, W, Ho) be a Petri net and pg be a
positive marking. Let C = C(P, X, W, ug) be @ mawimal Petri net code. lLet p € P be a place such
that 6(po, w)(p) # 0 for any w € C. And the Petri net PN' = (P, X" W', pub) is defined as follows,
which is obtained by removing the place p and the arcs from p and the arcs to p.

P =P\{p}, X' =X
W'is a restriction of Won (P’ x X) U (X x P'),
/44 18 a restriction of ugon P,

Then,
C(P, X, W, uo) = C(P', X', W/, up)). O
We called such a place in the lemma a useless place in PN. Generally set Pp={¢ € P | 3w €
C, 6(uo, w)(g) = 0}. Applying the above theorem repeatedly, the theorem holds even if we replace P’
in the theorem by [%. The maximality in the theorem is needed as the following example shows.

EXAMPLE 2.1 Let P = {p,q}, X = {a,b}, W(p,a) = W(p,b) = 1,W(q,b) = 2, uelp) =
uo(q) = 1. The other arcs weigh 0. Then C = C(P,X,W,pug) = {a} is not mazimal. For
any w & C, 6(uo. w)(q) # 0, where § is the transition function of (P, X.W, ug). However, Since
P = P\ {q} = {p}, X’ = {a,b}, W/(p,a) = W'(p,b) = 1, uy(p) = 1, the other arcs weigh 0,
C'=C(P . X' \W up) = {a,b}. This means that C = C’ does not necessarily hold. O

By the next proposition 2.3, It is decidable whether a place in a given Petri net is a uscless place
or not. We need the old famous result on the reachability of a Petri net to show this decidability.
Next two definitions are old famous decision problems. In case of cousidering a Petri net code, it is
important to judge whether p € P is one of the places where tokens can be exhausted first. So we
suggest the decision problem in the third definition.

DEFINITION 2.2 (The Reachability Problem) For a given Petri net PN = (P, X, W, ug)
and a given marking p, is u € Re(PN) ¢ O

DEFINITION 2.3 (The Single-Place Zero-Reachability Problem) For a given Petri net
PN = (P. X, W, uy) and a given place p € P, does there exist u € Re{PN) with u(p) =0 ? a
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DEFINITION 2.4 (The Single-Place First Zero-Reachability Problem) For a give Petr

net PN = (P, T, W, po) and a given place p € P, let § be the transition function of PN, then does

there exist w € X™ such that 6(uo, w)(p) = 0andd(ug, w'){q) > 0 forvw' € P.(w)\ {w},Vg &€ P ?
a

Fact 2.1 (1) The reachability problem and the single-place zero-reachability problem are equivalent.
(7]
(2) The reachability problem is decidable.(8],[9] Any algorithm to solve the problem require at least

an exponential amount of space for slorage and an exponential amount of lime. [10] 0O

PROPOSITION 2.3 [11] The single-place first zero-reachability problem and the single-place zero-
reachabilily problem are equivalent, thal is, decidable. O

LEMMA 2.5 (Reduction rule of two-way arcs) Let PN = (P, X, W, uo) be a Petri net and
Ho be a positive marking. Let C = C(P, X, W, uo) be a mazximal Pelri net code. Lel p € P, a € X with
W(p,a) > 0 and W(a,p) > 0. Then the Petri net PN' = (P, X, W’ up) is defined as follows, which
is obtained by replacing the weights of the two arcs (p,a) and (a,p).

Wi(p,a) > W(a,p) = W'(p,a) = W(p,a) — W(a,p), W(a,p) =0
W(p,a) = W(a,p) = W'(p,a)=W'(a,p)=0
W(p,a) <W(a,p) = W/(a,p)=W(a,p)-W(p,a), W(p,a)=0
g#porb#a = W/(b,q) = W(b,q), W'(g,b) = W(q,b)
Then
C(P, X, W, uo) = C(P, X, W' up).

3 Maximal Petri net codes and input-ordinal Petri net code

Here we solve the problem whether mCPNCNmMCPN holds or not under some conditions.

In a Petri net PN = (P, X, W, o), for a transition a € X, set I(a) = {p € P|[W(p,a) > 0} and
O(a) = {p € PIW(a,p) > 0}. It I(a) # 0 and O(a) = @, then a is called a consuming transition. If
I(a) # 0 and O(a) # 0, then a is called a transporting transition. If /(a) = @ and O(a) # 0, then a is
called a supplying transition. If I(a) = O(a) = @, then «a is called an isolated transition.

Through this section, without the loss of generality we may assume that a Petri net PN =
(P, X, W, no) with a positive marking ug satisfies the following conditions. Such a Petri net is called
a slim maximal Petri net.

(i) C(P, X, W, o) is a maximal Petri net code.

(ii) By lemma 2.4, there is no useless place in PN.

(iii) By lemma 2.5, for any p € P and any a € X, both the weight of (a,p) and the weight of (p,a)
are not positive.

(iv) PN has no isolated transitions.

3.1 Caseof |P[<2o0r|X|=1

At first we consider the casc the number |P| of places equals 1 and the case the number |X| of

transitions equals 1.
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| B

(a) cousuming (b) transporting

<

(¢) supplying (d) isolated

Fig. 2: Classification of transitions

THEOREM 3.1 Let PN = (P, X, W, ug) be a Petri net and Lo be a positive marking. Assume that
[X|=1or|Pl=1 IfC=C(P X, W, pi0) is a mazimal Petri net code, then C is an input-ordinal
Petri net code. O

Assume that ']Pl =1, that is P = {p} in this theorem. Setting X; = {a € X|W(p,a) > 0,W(a,p) =
0} and X; = X — X, Then

C(P, X, W, po) = (X1" Vo ( | aXi™)°)X, (1)
a;€X>
where n; = W{(a;,p)/n, © is the shuffle product over two languages L, K C X* defined by Lo K =
Urer,yex® oy, £ oy = {m1y102y2 - - Tnyn| & = 2129 - -y, y = Y1yz - Yn, T,y € X forl <7< n}
for z,y € X* and L° is the shuffle closure of a language L, defined by L® = U;»gL°%, L°° = {1},
LoGi+1) — [oig .

Especially, in the above example setting X; = @ and Xe=X,C=X"={we X*||w = k}. x*
is called a (full) uniforin code over X. Therefore a uniform code becomes an input-ordinal Petri net
code.

In case that a Petri net has only a place or only a transition, we have proven NmCPN=mCPN.
we get the following result in the case that a Petri net has two places. The first proposition is for the
case without supplying transitions, the second is for the case with with supplying transitions.

PROPOSITION 3.1 Let PN = (P, X, W, uo) be a Petri net without supplying transitions, o be
positive and |P| = 2. If C = C(P, X, W, Ho) is a mazimal Petri net code, then C is an input-ordinal
Pelri net code. O

PROPOSITION 3.2 L¢t PN = (P, X, W, o) be a Petri net with supplying transitions, jg be posi-
tive and [P| = 2. If C = C(P, X, W, 1) is a mazrimal Petri net code, then C is an input-ordinal Petri
net code. 0

We obtain the final result of this paper from the theorems 3.1 and 3.2.

THEOREM 3.2 Let PN = (P, X, W, uo) be a Petri net, po be positive and Pl =2 IfC =
C(P, X, W, up) is a mazimal Petri net code, then C is an input-ordinal Petri net code. O
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4 Some results in case of |P| > 2

In this section, first we introduce some notation and define some dependency of places in a Petri
nct. Secondly we invastigate the maximality of a specil type of Petri net.

4.1 Place dependency

We introduce the following notations:

DEFINITION 4.1 Leta € X,w € X*. U C X ,and Q C 2X. Then, The number Ca(w) is defined

as follows:
def
lwly =) Jwle (< 1w
ael’
Ca(w) ¥ max{[w|y |U € 0},
where |w), means the number of occurences of a letter a in w. (J

Then the following propertics hold:

(1) 0< Cql(w) < ).
(2) Letk>1and Las = {we X*|Cq(w) = k} # 0.
Lq x is commutative and regular.
La is finite &= X ={JQ.
X €= Lg, = X*. The converse is not necessarily true.
(3) LaxNX'=0lorany QC2X ifk>1.
(4) Loxn Xk = Xk iff

k> |X|=XeQq

k <|X|= (Yw € X*)(lw| = k = 3U € Q(alph(w) c U)).
alph(w) means the number of the distinct letters in w. The equivalence is due to [1].

EXAMPLE 4.1 Let X = {a,b,c} and Q = {p,¢-, 7} = {{a, b}, {a,c}, {b,c}}. Then
La,NX?% = X2 But LasN X3 # X3 because ube ¢ Lajs. ]

a b [~

Fig. 3: A Petri net generating L, .

Now we introduce some notations to prepare to describe the following lemmas.
NOTATIONS Let PN = (P, X, W, uo) be a PN and ug be a positive marking. Let p € P be a
place.




a(p) wf max{W(p,a)|a € X},

p = {ae X|W(pa) >0},

px def {ae X|{W(p,a) = a(p) > 0}(cC p),
1st(F,) L {pe Pl(p,a) € £},

#u(p) = u(p)/c(p) and = &(uo, w).

In only a slim maximal Petri net, the following fandamental lemmas are true.
LEMMA 4.1 Let (P, X, W, ug) be a slim mazimal PN. Let p€ P andae€ X. Then,

(p.a) e F* &=  W(p,a)=alp) > 0.
O

LEMMA 4.2 Let (P, X, W, uy) be a slim mazimal PN. Let p€ Pandbe X. Ifp € 1st(F,) for
some w € X* and 0 < W(p,b) < a(p) hold, there exists q € 1st(Fy,) satisfying the following (i) or
(ii):
() W(a,b) = alq) A
#uw(q) =1 forVw € X* with p € 1st(F,),
(51) W(g.b) = W(g,a) = alg) A
#uw(p) = #u(q) for Vw € X* with p € 1st(F,). ]

If (i) (or (ii)) holds, It is said that p strongly (or weakly) depends on g, we write p >s g (or
pow q).

EXAMPLE 4.2 In the Petri net in Fig. 4, p>s g, #4,(p) = #w(g) = 1-

Fig. 4: Explanation of the dependency .

LEMMA 4.3 Let (P, X, W, to) be a slim mazimal PN code. Let p,q, 7 € P.
(i) s is transitive (>w is not necessarily transitive).
(ii) p>w q and q >w p are incompatible.
(i) p>s g and g Dw r = ¢ >g 7. O

4.2 Petri net of the special type

We define a Petri net of the special type.

DEFINITION 4.2 A Petri net (P, X, W, Ko) is called to be of type D if it satisfies:
HP={p}+Qand X =Z+Y.

87
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(ii) W(p,a) = alp), 0 < W(p,b) < a(p), W(g,a) = W(g,b) = alq) forallqe Q,a € Z andbc Y.

(iil) po(p) = ka(p) and po(q) = ka(q) for allq € Q.
We denote this Petri net by (p;Q, Z; Y, W, k) and the code it generates by C(p; Q, Z; Y, W, k), where
Q={q1,92-..,qn}, Z={a1,a2,...,a,} and Y = {b1, b2, ..., b} (]

EXAMPLE 4.3 The following figure is an example of a Petri net (p; Q,Z:Y,W,k) of type D. For
each ¢; € Q = {q1,92,...,qn}. P >w g holds there. ' 0

Fig. 5: A Petri uct of type D with parameter k.

Let w = a1an...anp € X*, a; € X(1 <4 < n).
n
mp(w) 4 Z W(p, a;).

i=1
mp : (X*,) — ({0,1,2,...},+) is the monoid morphism. The next lemma is the main result of this
papcr.
LEMMA 4.4 Let (p;Q, Z;Y,W,k) be a Petri net of type D. If C(p; Q, Z; Y, W, k) is a mazimal prefiz
code, the condition:

Forallwe X*, mp(w) > (k= 1ym+1 = Cqo(w) >k

holds, where m = a(p), X =Y UZ and Q= {Z}U{-qlq € Q}. The converse is also true. O

EXAMPLE 4.4 Let Cy be the Petri net code with the number k of tokens in p in Fig.6. If k = 2,
then Cy = {a,a’, b}2 is a maximal code. But If k = 3, then Cy is not a maximal prefic code. Because
mplaa’d) =5> (3—-1)2+ 1 but Cplaad’d) = Cylaa’d) = Cy(aa’b) =2 < k=3 g

2 l [« ) a
o ' /Q‘p \/\\

Fig. 6: Pelri net of type D with parameter k.
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