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A note on Schmitt—Vogel lemma
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INTRODUCTION

Let S be a polynomial ring over an infinite field k, and / a squarefree mono-
mial ideal of S. The arithmetical rank of I is defined by

ara ] := min {r . there exist a;,...,a, € I such that \/(a1,...,a,) = \/7}

For ideals J ¢ I C S, J is said to be a reduction of I if there exists some
s € N such that
Is+1 — JIS '

Note that when this is the case, vJ = /I holds. The analytic spread of I is
defined by

I(I) := min{u(J) : Jis a reduction of I},
where u(J) denotes the minimal number of generators of J. The existence of
the minimal reduction shows aral < [(I). On the other hand, it is known
by Lyubeznik [3] that pdg S/I < aral, where pdg S/I denotes the projective
dimension of S/I. Therefore we have the following inequalities:

pdg S/I < aral <I(1).

In the study of the arithmetical rank, Schmitt—Vogel lemma [5, Lemma, pp.
249] is an important and useful tool, because it gives a sufficient condition for
ideals J C I to hold v/J = v/I. In this report, we give a sufficient condition
for an ideal J with J C I to be a reduction of I by refining Schmitt—Vogel
lemma. As an application of our theorem, we prove [(I) = pdgS/I for the
ideal

I= (51011,---,331:'1) n---N (qul,- ~-,$qiq),
where Z11, ..., %4, are variables in S pairwise distinct. Schmitt and Vogel 5]
proved ara I = pdg S/I for this ideal I using their lemma.
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1. MAIN THEOREM

In this section, we consider an arbitrary commutative ring R with unitary.
Our main result of this report is the following:

Theorem 1.1. Let R be a commutative ring with unitary. Let Py, P1,..., P. C
R be finite subsets, and we set

Assume that
(C2) For all£ >0 and a,a” €-P; (a # a"), there ezist some £ (0 < ¢ < £),
a' € Py, and b € (P) such that aa” = a’b.

Then we have (go, g1,---,9r) is a reduction of (P).
On the other hand, Schmitt—Vogel lemma is the following:

Proposition 1.2 (Schmitt—Vogel [5, Lemma, pp. 249]). Let R be a commuta-
twe ring with unitary. Let Py, Py, ..., P, C R be finite subsets, and we set

P=O&

£=0

Assume that
(C1) 4P, = 1.
(C2)’ For all £ > 0 and a,a” € P, (a # a"), there exist some ' (0 < ¢ < #)
and a' € Py such that aa” € (a').
Then we have \/(go, 91,---,9-) = \/(P).

Second condition of Theorem 1.1-is stronger than that of Schmitt—Vogel
lemma, but Theorem 1.1 has a stronger conclusion than Schmitt—Vogel lemma.

Remark 1.3. Schmitt-Vogel lemma allows us to add some exponent e(a) for
each a € P, in the sum gy, i.e., we may put

ge = Z ae(a).
a€EP,

In particular, we can take g, as homogeneous if R is graded. But a similar
statement does not hold for our theorem.

Instead of proving Theorem 1.1, we will give a detailed explanation of an
example in Section 3, which illustrates the outline of the proof of the theorem.
See also [2].
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2. AN APPLICATION

In this section, we apply Theorem 1.1 to some ideals and calculate the
analytic spread of them:.
Consider the ideal

(21) I=(xu,...,:ch-l)ﬂ---ﬂ(a:ql,...,xqiq),
where z11,. .., T4, are variables in S pairwise distinct.

Lemma 2.1. For the above ideal I,
q

pdSS/I:Zz's——q+l.

s=1
Proof. For an integer q > 1, we set

[q = (xn, ... ,.:zlil) n---N (qu, e ,.Tq,'q),

q
rg= Y ds—q+1.
s=1

We prove the lemma by induction on ¢. The case ¢ = 1 is clear. Suppose
that ¢ > 2. If we put P = (zg,...,%4,), then I, = I, N P and 7, =
Tq—1 + height P — 1 = r,_; + pdg S/P — 1. Consider Mayer—Vietoris sequence

0—-S8/I, - S/I,_,&S/P—S/(I,_1+ P)—0.
Since pdg S/T = max{i : Tor{ (k, S/I) # 0}, the long exact sequence
+ = 0= Tor; 1y (k, §/I-1) © Torf, 4 (k, S/P) — Tor?, 1 (k, S/(Io-1 + P))
— Tox;, (k, S/I;) — Tory (k,S/I;-1) & Tors (k,S/P) =0 — - --
implies r, = pdg S/1,. O

Schmitt—Vogel [5] prdved aral = pdgS/I (see also Schenzel-Vogel [4]).
They proved it by applying Schmitt—Vogel lemma to

P€={$1€1$2€2"'$q8q : ‘€1++£q:£+Q}, ¢=0,1,...,7

where 7 = > 7 _ i, — ¢q. These Py, P,..., P, also satisfy the assumption of
Theorem 1.1. Thus J = (g0, 41,-.-,9) is a reduction of I. Since

r+1=pdgS/I=aral <II)<r+1,
we have [(/) = pdg S/I. Therefore we have the following corollary:
Corollary 2.2. Let I = (z11,...,21;,) N - N (Zg, - - - y Zgi,)- Then we have
I(I)=pdgS/I.
In particular, (9o, g1,--.,9-) iS a minimal reduction of I.

Note that we have a minimal reduction of I explicitly.

Remark 2.3. In general, I(I) # pdg S/I for a squarefree monomial ideal I. For
example, if yu(I) —height(I) = 1 and S/I is Cohen—-Macaulay, then height(I) =
pdg S/I = aral < I(I) = u(l); see [1].
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3. AN EXAMPLE

In this sectfon, we give one example to illustrate the outline of the proof of
Theorem 1.1.
Let us consider the ideal
I : (xlu X2, .’.l?3) N (yl>y2: 93)

This is a special form of the ideal (2.1). The minimal graded resolution of S/I
18

0 — S(—6) — S(—=5)® —» S(—4)"" - §(-3)*®* - §5(-2)° - S — S/I -0
and pdg S/I(=3+3—-2+1) =5. Then
Py = {z1yn},
Py = {z1y2, T2y },
Py ={z1y3, T292, T3t },
Py = {z2y3, 3y2},
Py = {$3y3}-

Let us see conditions of Theorem 1.1. Since §FP = 1, (C1) is satisfied. For the
assumption (C2), we have the following equations:

(3.1) P zys - oy = 2y - 2292 € (Fo)(F2),
T1Y3 - TaY2 = T1Ys - Tays € (P1)(Ps),
(3.2) Py : ¢ T1ys - T3y = Tayr - Tays € (Fo)(Fa),
Tay2 - T3y = T2y - T3yz € (P)(Fs),
(3.3) Ps:  Zoys - T3ya = To2y2 - Tays € (P2)(Py).

Thus (C2) is also satisfied.
Now we shall see J = (go.91, 92,93, 94) is a reduction of I, where

do = T1Y1,
g1 = T1Yy2 + T2,
g2 = T1y3 + Tay2 + T3y,
g3 = TaYys + T3y,
94 = T3Y3.

We put

4
[€=(UIDJ>a ‘62071)27374'

j=0
Note that I, = I. It is enough to show

I cJr¥-l, £=0,1,2,3,4

in order to see that J is a reduction of 7. We show this by induction on £. In
fact, we show

2£-1

oY L gt 1=0,1,2,3,4.
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Step 1: The case £ = 0. In this case, Iy = (P) = (z1y1) = (90) C J.

Step 2: The case £ = 1. We want to show IZ C Iyl + JI. To see this, it
is enough to show that ajay € Iy + JI for all a1,a; € P; (we do not assume
a; # az). When a; # ay, (3.1) shows aja; € Ip]. When a; = ay = a, we use
g1. For example,

(3313/2)2 = (gl—xzyl)xlyz = Q1Z1Y2 —T2Y1 - T1Y2 = Q1T1Y2 —T1Y1-Tay2 € JI+Ipl.
Therefore I? C IyI + JI holds.
Step 3: The case £ = 2. We want to show I} C I}I? + JI3. To see this, we

only check ajazazaq € I21%+ JI® for all a4, as, a3, a4 € PyU P, U P,. There are
two cases:

(1) ai,az,as3,a4 € P2)
(ii) for some ¢, a; € By U P,.

In case (i), there are two cases dividing large. The first one is that a; # as
and a3 # a4 by renumbering a;,as,as,a4. In this case, it is easy to check
aiazazas € 1212 because of (3.2). For example,

(z1y3)°T2y2 - T3y = (2193 - 22y2) (T1ys - Tay1) = (T1y2 - T1y1) (T2ys - T3ys) € T212

The second one is that there are no such a renumbering on ay, as, as, as. In
this case, we use g, as in the case £ = 1. For example,

(z1y3)*72y2 = (2193)*(92 — Tav2 — T3y1) T2y
= g2{z1¥3)°z2y2 — (2193)* (2292)® — (T1¥3)*T391 - T2y
= 92(21Y3)*T2y2 — (T1y3 - T2y2)® — (T1Ys - T3y1) (T1Y3 - Taya)
€ JI® + I?12,
In case (11) if there are two indices ¢ (say, 41,%2) such that a; € Py U P,, then
Qi1 Qi € I? and ajazazas € I2I? hold. Next, we consider the case that there
is only one i such that a; € Py U P,. We may assume a;, € Fy U P, and
az,03,a4 € P,. Then we need to make only one pair of distinct elements from
az, a3, a4. It is weaker requirement than that of case (i). In fact, to make one
pair of distinct elements, we only need two of as, as, as. For example,
(-"3193)2 = 71Y3(92 — Tay2 — T3y1)
= 92T1Y3 — T1Y3 - T2Y2 — T1Y3 * T3y
e JI+ I1.

Step 4: The case £ = 3. We want to show I§ C 2[4+ JI7. In thls case, the
same argument as in Step 3 is also usable. We omit here.

Step 5: The case £ = 4. 1t is clear that I} C I8I8 + JI' since {P, =
Therefore we obtain that J is a reduction of I

Remark 3.1. The reduction number r J(I) is defined by
ry(I) ;== min{s : I**? = JI*}.
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Above argument gives an upper bound of 7;(7). But this is very big in general.
In fact, in the above argument, we only see I?* = JI*'~1 that is, r;(I) <
24 —1=15. But r;(I) =3, ie., I* = JI? holds.
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