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1 Introduction

This is a summary of the paper [10]. The goal is to give a unified theory for inte-
grable surfaces using real forms of the complez ertended framings of complex CMC-
immersions and the generalized Weierstral type representation for complex CMC-
immersions.

It is well known that a surface in R? has nonzero constant mean curvature (CMC for
short) if and only if there exists a moving frame with spectral parameter, an element
in SU(2) loop group, which satisfies the certain condition (see [5]). Such moving
frame is called the extended framing of a CMC-immersion.

The extended framing of a CMC-immersion in R? has a natural complexification,
which is called the complexr extended framing ([3]). Moreover in [4], we considered
a holomorphic immersion in C* associated with the complex extended framing. It
turned out that the holomorphic immersion had nonzero complex constant mean
curvature, which was called a compler CMC-immersion. Then a CMC-immersion in
R® can be obtained from a real form of the complex extended framing of a complex
CMC-immersion.

It is known that a CMC-immersion in R*® has the parallel immersion with constant
GauB curvature (CGC for short) K > 0 in R®. Similar to the real case, a holomorphic
immersion with complex constant GauB curvature K € C* (CGC for short) will be
obtained as the parallel immersion of a complex CMC-immersion. Thus a CGC-
immersion with K > 0 in R? also can be obtained from a real form of the complex
extended framing. Then it is natural to ask whether other classes of real surfaces
exist from real forms of the complex extended framing of a complex CM C-immersion
or a complex CGC-immersion.

In this summary, we show that there are seven classes of surfaces as real forms of
the complex extended framing, which are called integrable surfaces. These are CGC-
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immersions with K > 0 (or K < 0) in R® and their parallel CMC-immersions,
spacelike (or timelike) CGC-immersions with K > 0 (or X < 0) in R?! and their
parallel CMC-immersions, and CMC-immersions with mean curvature H < 1 in H3
(see Theorem 3.1 and Corollary 3.2). Some of these classes of surfaces were considered
from harmonic maps and integrable systems points of views (see [9], [6], [12], [8] and
[1]).

The generalized WeierstraB type representation for complex CMC-immersions is a
procedure to construct complex CMC-immersions in C* (see Section 4.1 for more
details): 1. Define pairs of holomorphic potentials, which are pairs of holomorphic
- lforms 7j = (n,7) with n = 3% _ ;X and 7 = 3’51 ;). Here A is the complex
parameter, the so-called “spectral parameter”, n; and 7; are diagonal (resp. off-
diagonal) holomorphic 1-forms depending only on one complex variable if J is even
(resp. j is odd). 2. Solve the pair of ODE’s d(C, L) = (C, L)# with some initial con-
dition (C(z), L(w.)), and perform the generalized Iwasawa decomposition (Theorem
A.1) for (C, L), giving (C,L) = (F, F)(V4,V_). It is known that F -/ is the complex
extended framing of some complex CMC-immersion (Theorem 4.1), where { is some
A-independent diagonal matrix. 3. Form a complex CMC-immersion by the Sym
formula ¥ via the complex extended framing F .| (Theorem 2.4).

Since each class of integrable surfaces is defined by the real form of a complex extended
framing, there exists a unique semi-linear involution p corresponding to each class of
integrable surfaces. Then these semi-linear involutions naturally define the pairs of
semi-linear involutions on pairs of holomorphic potentials 7 = (n, 7). It follows that
the generalized Weierstra$8 type representation for each class of integrable surfaces
can be formulated by the above construction via a pair of holomorphic potentials
which is invariant under a pair of semi-linear involutions (Theorem 4.2). In this way
we will give a unified theory for all integrable surfaces.

2 Preliminaries

In this preliminary section, we give a brief review of the basic results for holomorphic
null immersions, complex CM C-immersions and complex CGC-immersions.

Throughout this paper, C? is identified with sl(2,C) as follows:
(a,b,¢)f € C* = —32‘3a1 - %O’g - ’2—"'03 e sl(2,C) , (2.0.1)

where o; (j = 1,2, 3) are Pauli matrices as follows:

01 : 0 —2 1 0
0'1=(1 0), 0'2_—‘(2. 0) and O3 = (0 _1> . (202)
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2.1 Holomorphic null immersions in C3

In this subsection, we show the basic results for holomorphic immersions in C3. We
give natural definitions of complex mean curvature (Definition 1) and complex Gau8
curvature (Definition 2) for a holomorphic immersion analogous to the mean curvature
and the Gaufl curvature of a surface in R%. We refer to [4] for more details.

Let M be a simply connected 2-dimensional Stein manifold, and let ¥ : M — sl(2,C)
be a holomorphic immersion, i.e. the complex rank of d¥ is two. We consider the
following bilinear form on sl(2, C) = C3:

(a,b) = —2Tr ab , (2.1.1)

where a,b € sl(2,C). We note that the bilinear form (2.1.1) is a C-bilinear form on
C? by the identification (2.0.1). Then it is known that, for a neighborhood Mp M
around each point p € M, the bilinear form (2.1.1) induces a holomorphic Riemannian
metric on ﬂp, ie. a holomorphic covariant symmetric 2-tensor g (see [11] and [4]).
From [4], it is also known that there exist special coordinates (z, w) € D2 C C? such
that a holomorphic Riemannian metric g can be written as follows:

g = e*dzdwy (2.1.2)

where u(z,w) : ©*> — C is some holomorphic function. The special coordinates de-
fined above are called null coordinates. From now on, we always assume a, holomorphic
immersion ¥ : M — 5l(2,C) has null coordinates. A holomorphic immersion with
null coordinates is also called the holomorphic null immersion.

From (4], we quote the following theorem:

Theorem 2.1 ([4]). Let ¥ : M — C*(= sl(2,C)) be a holomorphic null immersion.
Then there exists a SL(2,C) matriz F such that the following equations hold:

F, = FU,
F, = FV (2.1.3)

U— 1Us —%He“/2
- Qe—u/Z _i_uz )

V= ( ~gUw —Re™/ 2)

17rou/2 1
gHe TUw

where

(2.1.4)

with @ := (¥,,,N), R:= (¥, N) and H := 2e7“ (¥, N).

We call F: M — SL(2,C) the moving frame of ¥. Then the compatibility condition
for the equations in (2.1.3) is

Uw—V.+[V,U] =0. (2.1.5)
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A direct computation shows that the equation (2.1.5) can be rephrased as follows:
U — 2RQe™ + 1 H2%e¥ = 0,
Qu — iH,e* =0, (2.1.6)
Rz - l we = 0

The first equation in (2.1.6) will be called the complez Gauf equation, and the second
and third equations in (2.1.6) will be called the complez Codazzi equations.

We now define a vector N € sl(2, C) as follows:
N = 2ie YT, U] . (2.1.7)

It is easy to verify that (¥, N) = (¥, N) = 0 and the (N, N) = 1. Thus N is a
transversal vector to d¥. Therefore it is natural to call N the complex Gauff map of
v, '

Using the functions u, @, R and H defined in (2.1.2) and (2.1.4) respectively, the
symmetric quadratic form II := —(d¥, dN) can be represented as follows:

II ;.= —(d¥,dN) = Qdz* + e*Hdzdw + Rdw?® . (2.1.8)

The symmetric quadratic form II is called the second fundamental form for a holo-
morphic null immersion ¥. Then the complex mean curvature and the complex Gaufl
curvature for a holomorphic null immersion ¥ are defined as follows.

Definition 1. Let ¥ : M — C3 be a holomorphic null immersion. Then the function
H = 2e™ (W, N) will be called the complex mean curvature of V.

Definition 2. Let I (resp. II ) be the coefficient matriz of the holomorphzc metric g

(resp. the second fundamental form II). Then the functzon K=det(I-1.- 1T ) will be
called the complex GauB curvature of ¥.

2.2 Complex CMC and CGC immersions in C3

In this subsection, we give characterizations of complex constant mean curvature im-
mersions via loop groups (see Appendix A for the definitions of loop groups). There is
a useful formula representing complex CM C-immersions, which is a generalization of
the Sym formula for CMC-immersions in R? (see also [3]). There is also a formula for
complex CGC-immersions given by the parallel holomorphic immersions of complex
CMC-immersions with H € C*.

The notions of a complex CMC-immersion and a CGC-immersion are defined anal-
ogous to the notions of a CMC-immersion and a CGC-immersion in R? (see also

[4]).
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Definition 3. Let ¥ : M — C® be a holomorphic null immersion, and let H (resp.
K) be its complex mean curvature (resp. Gauf curvature). Then ¥ is called a complex
constant mean curvature (CMC for short) immersion (resp. a complex constant Gouf
curvature (CGC for short) immersion) if H (resp. K) is a complex constant.

Remark 2.2. Since we are interested in complezifications of CMC (resp. CGC)
surfaces with nonzero mean curvature H € R* (resp. Gauf curvature K € R*), from
now on, we always assume that the complex mean curvature H (resp. the complex
Gauf curvature K) is a nonzero constant.

From [4], we quote the following characterizations of a complex CMC-immersion:

Lemma 2.3. Let M be a connected 2-dimensional Stein manifold, and let ¥ : M —
C3(= sl(2,C)) be a holomorphic null immersion. Further, let Q, R, H and N be the
complex functions defined in (2.1.4) and the Gauf map defined in (2.1.7), respectively.
Then the following statements are equivalent:

1. H is a nonzero constant;
Q depends only on z and R depends only on w;

N, = pN, for some holomorphic function p: M — C.

L

There exists F(z,w,\) € ASL(2,C), such that
F(z,w,\)"YdF(z,w,\) = Udz + Vduw,

G lu  —IxiHew
= A_lQe—u/2 _%Uz ’

V —-uw —)\Re‘”/z
DHe? 1y, )

where

and F(z,w,\ = 1) = F(z,w) is the moving frame of ¥ in (2.1.3).

The F(z,w, A) defined in (4) of Lemma 2.3 is called the complex extended framing of
a complex CMC-immersion ¥. From now on, for simplicity, the symbol F(z,w, \)
(resp. U(z,w,A) or V(z,w,])) is used instead of F(z,w,)\) (resp. U(z,w,\) or
Viz,w,\)).

There is an immersion formula for a complex CM C-immersion using the complex ex-
tended framing F'(z, w, A) for a complex CMC-immersion ¥, the so-called “Sym for-
mula” (see [4]). We show a similar immersion formula for a complex CGC-immersion
using the same complex extended framing F(z,w, \) of a complex CM C-immersion
v.
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Theorem 2.4. Let F(z,w, A) be the complez extended framing of some complex CMC-
immersion defined as in Lemma 2.3, and let H be its nonzero complex constant mean
curvature. We set

vV = —— (z’A@,\F(z,w, A - Fz,w, )7 + %F(z,w, )\)agF(z,w,/\)‘l) ,

= 55 (iXOF(z,w,A) - F(z,w,A)71),

(2.2.1)
where o3 has been defined in (2.0.2). Then ¥ (resp. D) is, for every A € C*, a com-
plex constant mean curvature immersion (resp. complex constant Gaufian curvature
immersion, possibly degenerate) in C* with complex mean curvature H € C* (resp.
complex Gauf} curvature K = 4H? € C*), and the Gaufl map of ¥ (resp. D) can be
described by :F(z,w,\)osF(z,w,\)"*.,

3 Real forms of complex CGC-immersions

In this section, we show that “integrable surfaces” obtained from the real forms of
the twisted sl(2, C) loop algebra Asl(2, C),.

3.1 Integrable surfaces as real forms of complex CGC-immersions

Let F(z,w,\) € ASL(2,C), be the complex extended framing of some complex CGC-
immersion #. And let a(z,w,\) = F(z,w,\)"'dF(z,w,\) be the Maurer-Cartan
form of F(z,w, ). From the forms of U and V defined as in Lemma 2.3, we set
a; (1 € {—1,0,1}) as follows:

a(z,w,\) = F7}dF = Udz + Vdw = A la_; + ag + Ay , (3.1.1)

where
( 0 —%He“/zdz,
fo% =
-t Qe *%dz 0 ’
2udz — tu,dw 0
—_ 4 2 4 w
| %= ( 0 —3u.dz + jupdw )’ (3.1.2)
_ 0 —Re~%?dw
{ x = 1He*2dw 0 :

We denote the space of Asl(2,C), valued 1-forms by Q(Asl(2,C),). It is clear that
a(z,w, \) defined in (3.1.1) is an element in Q(Asl(2,C),). Then it is also clear that
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the following automorphisms define involutions on Q(Asl(2, C),):

(

& g(\) — —g(—1/X),
&g\ — g (-1/X),
—_—
g\ — —g (1/2)
2 g0 > ~Ad (Y 0 ) 96/,

81:9(\) = —g(=X),
5;:9(N) — g (-A), (3.1.3)
83:g(A\) — —g (5\) .

\

Then the real forms of (Asl(2,C)5 )) are defined as follows:

Q(Asl(2,C)&) = {g(\) € Q(AsI(2,C)s) | & 0g(A) =g(N)} ,

Q(As(2,C)$) = {g()) € QAs(2,C),) | 50 9(A) =g(\)} . (3.1.4)

From now on, for simplicity, we use the symbols ¢; and s; instead of ¢; and §; respec-
tively. We now consider the following conditions on a(z,w, \):

e Almost Compact cases (C,j): a(z,w,]) is an element in one of the real
forms Q(A,s[(2,C)§c’J)) for j € {1,2,3,4}.

e Almost Split cases (S,j): a(z, w,]) is an element in one of the real forms
Q(Asl(2,C)$) for j € {1,2, 3}

We now set the following formulas () for j € {1,2, 3,4} (resp. #*7 for j € {1,2,3})
analogous to the second formula in (2.2.1):

. 1 . ;
(e) — ~31H] (IXNOAF (2,2, X) - FD (2,2, 0)7") for j € {1,2,3}, (3.1.5)
rest
1 = q = *
@(6,4) = 5 (F(CA)(Z, z, A) (eo/2 e_?,/g) (F(C,4)(z’ Z, A)) ) ,\GS" Y (316)
) 1 , ,
&9 — ~5THT (Aa,\F("’)(x,y, A) - F&I (g gy, Py for j € {1,2,3}, (3.1.7)
2|H]| ACR*

where A = exp(it) € S or A = exp(g/2 + it) € S for (3.1.5) or (3.1.6) (resp.
A = *exp(t) € R* for (3.1.7)) with t,q € R, and where * denotes X* = X? for
X € M3x2(C). Then, for each A € S or A € S" (resp. A € R*), the formula &9
(resp. #*7)) defines a map into one of the following spaces:

su(l,1) = R12 for the (C,1) and (S, 1) cases,

sl,(2,R) = R12 for the (C,2) and (S, 2) cases,

su(2) = R3 for the (C, 3) and (S, 3) cases,
SL(2,C)/SU(2) = H® for the (C,4) case,

where sL(2,R) = {g € sl(2,C) | g = (2 %) ,a € R, b,c € iR}, which is isomorphic
to s[(2,R). Here R"? and R® can be identified with su(1,1), s (2,R) and su(2)
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analogous to the identification (2.0.1). Minkowski space R*! can be identified with
Herm(2) := {X € Myx2(C) | X' = X} via the map

1

($1,.’L'2,$3,$0) == (

2

Xo+ X3 X1+ 1xo
:cl—-z'xg To— T3 ’

then H® C R*! can be identified with Herm(2) with the determinant 1/4. Then
the inner product for su(1,1) = RY? (resp. sL(2,R) = RY? or su(2) = R3) can be
defined by (a,b) = —2Tr (ab) for a,b € su(1,1) (resp. a,b € s.(2,R) or a,b € su(2)).
The inner product for Herm(2) = R*! can be defined by (a,b) = —2Tr (ac,b'os) for
a,b € Herm(2), where o, is defined in (2.0.2). From now on, we always assume that
the spectral parameter X is in S* or S” for the almost compact cases and ) is in R*
for the almost split cases, respectively. Then we have the following theorem:

Theorem 3.1. Let F(z,w,\) be the complex extended framing of some complex
CGC-immersion $. Then the following statements hold:

(C,1) If F71dF is in Q(Asl(2, C)5V), then for each X € S* the Sym formula in (3.1.5)
defines a spacelike constant negative GauBian curvature surface in R>!,

(C,2) If F~1dF is in Q(Asl(2,C)5®), then for each A € S* the Sym formula in (3.1.5)
defines o timelike constant negative GauBlian curvature surface in R>1!.

(C,3) If F~dF is in Q(Asl(2,C)$®), then for each \ € S* the Sym formula in (3.1.5)
defines a constant positive GauBian curvature surface in R3.

(C,4) If F1dF is in Q(As(2,C)5?), then for each A € S" the Sym formula in (3.1.6)
defines a constant mean curvature surface with mean curvature |H(*Y| < 1 in
H3,

(S,1) If F~1dF is in Q(As[(Z,C)c(f’l)), then for each X € R* the Sym formula in (3.1.7)
defines a spacelike constant positive Gaufiian curvature surface in R21.

(S,2) If F~1dF is in Q(Asl(2,C)$?), then for each A € R* the Sym formula in (3.1.7)
defines a timelike constant positive GauBiian curvature surface in R>1.

(S,3) If F~1dF is in Q(Asl(2,C)$®), then for each A € R* the Sym formula in (3.1.7)
defines a constant negative Gaufiian curvature surface in R3.

Definition 4. Let F(%9)(z,z,)) for j € {1,2,3,4} (resp. F®)(z,y,)\) for j €
{1,2,3}) be the complex extended framings, which are elements in ASL(2,C), %)
(resp. ASL(2,C),®?). Then F)(z,w,)) (resp. F®)(z,y, \)) is called the ex-
tended framing for the immersion ¢ (resp. &),

It is known that for three classes of surfaces in the above seven classes, there exist
parallel constant mean curvature surfaces in R® or R?? (see also [8] and [9]).
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Surfaces class Gaufl curvature | Gaufl curvature Parallel CMC

Surfaces in R® K63 = —4/H? | K& =4|H|? HE® = |H|
Spacelike surfaces in R2! | K®&D =4/H|? | K1) = _4|H|? HGE) = |H|
Timelike surfaces in R2! | K(¢2) = _4|H? | K®2 =4|H|? H®? = |H|

Surfaces in H3 H©4Y = tanh(q)

Table 1: Integrable surfaces

Corollary 3.2. We retain the assumptions in Theorem 3.1. Then we have the fol-
lowing:

(C,1M) For the (C,1) case in Theorem 3.1, there exists a parallel spacelike constant

mean curvature surface with mean curvature H(®V = |H| in R?!.

(C,3M) For the (C,3) case in Theorem 3.1, there exists a parallel constant mean cur-

vature surface with mean curvature H(%® = |H| in R®.

(S,2M) For the (S,2) case in Theorem 3.1, there exists a parallel timelike constant mean

curvature surface with mean curvature H®? = |H| in R>1.

Definition 5. The surfaces defined in Theorem 3.1 and Corollary 3.2 are called the
integrable surfaces.

Remark 3.3. For the three classes of surfaces in Theorem 8.1, which are spacelike
constant positive Gaufian curvature surfaces in R*!, constant negative Gaufian cur-
vature surfaces in R® and timelike constant negative Gauffian curvature surfaces in
R21, there never exist parallel constant mean curvature surfaces.

4 The generalized Weierstrafl type representation
for integrable surfaces

The generalized Weierstral type representation for complex CMC-immersions (or
equivalently CGC-immersions as the parallel immersions) is the procedure of a con-
struction of complex CMC-immersions from a pair of holomorphic potentials (see [4]).
In the previous section, we obtained integrable surfaces according to the real forms of
Asl(2,C),. In this section, we show how all integrable surfaces are obtained from the
pairs of holomorphic potentials in the generalized Weierstra8l type representation.
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4.1 Integrable surfaces via the generalized Weierstra8$ type
representation

The generalized Weierstral type representation for complex CMC-immersions (or
equivalently CGC-immersions as the parallel immersions) is divided into the following
4 steps (see also [4] for more details):

Stepl Let 7j = (n(z, A),7(w, A)) be a pair of holomorphic potentials of the following
forms:

(< <]

1
1= (n(z,%), T(w,\)= (Z (2N, D rm<w)xn) , (410)
k=-—1 m=—0o0

where (z,w) € D? and where D? is some holomorphically convex domain in C2,
A€eC, |Al=r (0 <r<1),and n and 7, are s[(2, C)-valued holomorphic
differential 1-forms. Moreover 7 (z) and 7(w) are diagonal (resp. off-diagonal)
matrices if k is even (resp. odd). We also assume that the upper right entry of
n-1(z) and the lower left entry 7;(w) do not vanish for all (z,w) € D2.

Step2 Let'C and L denote the solutions to the following linear ordinary differential
equations

dC'=Cn and dL = Lt with C(z., ) = L(w., \) = id, (4.1.2)
where (z,,w.) € D? is a fixed base point.

Step3 We factorize the pair of matrices (C, L) via the generalized Iwasawa decom-
position of Theorem A.1 as follows:

(C, L)y=(F, F)(id, W)(V,, V), (4.1.3)
where V. € A*SL(2,C),.

Theorem 4.1 ([4]). Let F be a ASL(2,C),-loop defined by the generalized Iwa-
sawa decomposition in (4.1.3). Then there ezists a A-independent diagonal matriz
l(z,w) € SL(2,C) such that F -1 is a complez extended framing of some complex
CMC-immersion (or equivalently the complex CGC-immersion as the parallel im-
mersion,).

Step4 The Sym formula defined in (2.2.1) via F(z,w, A\){(z, w) represents a complex
CMC-immersion and a CGC-immersion in sl(2, C) = C3.

Let ¢; for j € {1,2,3,4} and s; for j € {1,2, 3} be the involutions defined in (3.1.3),

respectively. Then we define the following pairs of involutions on 7 = (n,7) €
Q(Asl(2,C)s) x Q(AsI(2,C),): '
v (77) T) — (ch: ‘ﬂ’l) and 0;: (77) T) i (‘gjrh 5J'T)‘ (414)

We now prove the following theorem.
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Theorem 4.2. Let 71 = (n(z,A), 7(w, X)) be a pair of holomorphic potentials defined
as in (4.1.1), and let v; for j € {1,2,3,4} and d; for j € {1,2,3} be the pairs of
involutions defined in (4.1.4). Then the following statements hold:

(C1)

(C,2)

(C,3)

(C4)

(5,1)

(5,2)

(5,3)

If ©1(%) = 7, then the resulting immersions given by the generalized Weierstrafd

type representation are spacelike constant negative Gaufian curvature surfaces
S R2.1
in R%*%.

If vo(f)) = 1), then the resulting immersions given by the generalized Weierstrafi

type representation are timelike constant negative Gaufian curvature surfaces
in R%1,

If v3(77) = 7, then the resulting immersions given by the generalized Weierstrafl
type representation are constant positive Gauffian curvature surfaces in R3.

If v4(77) = 1, then the resulting immersions given by the generalized Weierstraf
type representation are constant mean curvature surfaces with mean curvature
|HY| < 1 in H3.

If 9,1(n) = 7, then the resulting immersions given by the generalized Weierstrafl
type representation are spacelike constant positive Gaufian curvature surfaces
in R21

If 95(77) = 7}, then the resulting immersions given by the generalized Weierstrofl
type representation are timelike constant positive Gaufian curvature surfaces in
R2I,

If 93(1)) = 1}, then the resulting immersions given by the generalized Weierstraf
type representation are constant negative Gaufian curvature surfaces in R3.

Remark 4.3. From the forms of pairs of involutions t; for j € {1,2,3,4} defined
in (4.1.4), the pairs of holomorphic potentials 7 for (C,7) cases in Theorem 4.2 are
generated by a single potential, i.e. 1= (n,7) = (n, ¢;(n)), where ¢; for j € {1,2,3,4}
are involutions defined in (3.1.4).

A

Double loop groups and the generalized Iwa-
sawa decompositions

In this subsection, we give the basic notations and results for double loop groups (see
[7] for more details). Let D, := {A € C| |A| < r} be an open disk and denote the
closure of D, by D, :={A € C| |\ <r}. Also,let 4, ={AeC| r<|\<1/r}
be an open annulus containing S!, and denote the closure of A, by A,. Furthermore,
let E, ={AeC| r <|A}U{oo} be an exterior of the circle C,.
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We recall the definitions of the twisted plus r-loop group and the minus r-loop group
of ASL(2,C), as follows:

A}pSL(2,C)y = {W+ € A,SL(2,C),

W, () extends holomorphically
to D,and W, (0) e B. [’

A7pSL(2,C), = {W_ € A,SL(2,C),

W_(A) extends holomorphically
to E, and W_(c0) e B. |’

where B is a subgroup of SL(2,C). If B = {id} we write the subscript * instead of
B, if B = SL(2,C) we abbreviate AY5SL(2,C), and A zSL(2,C), by AFSL(2,C),
and A7 SL(2,C),, respectively. From now on we will use the subscript B as above
only if B N SU(2) = {id} holds. When r = 1, we always omit the 1.

We set the product of two loop groups:
H=ASL(2,C)s x ARSL(2,C), ,
where 0 < r < R. Moreover we set the subgroups of H as follows:

Hy = AFSL(2,C), x ARSL(2,C),,

_ = , eH
H {(91 92) l to A, and g1]a4, = 92|a,

g1 and g, extend holomorphically }

We then quote Theorem 2.6 in [7].

Theorem A.1. H_ x Hy — H_H, is an analytic diffeomorphism. The image is
open and dense in M. More precisely

H= D 'H._wn'H.,_ s

n=0

where w, = (id, (g \2.)) f n=2k and (id, (_2n7%)) ifn=2k+1.

The proof of the theorem above is almost verbatim the proof given in the basic
decomposition paper [2] (see also [3]).
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