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Eigenvalues of Dirac operators at the thresholds
YOSHIMI SAITO
Department of mathematics,

University of Alabama at Birmingham, USA

This article is based on the talk given by the author at the meeting “Spectral and
Scattering Theory and Related Topics” held at Research Institute for mathematical
Sciences Kyoto University (2008.1.15 ~ 1.17).

The talk consisted of the following seven sections:

§1. Dirac operators.

§2. Limiting absorption principle for the free Dirac operator Hj.
§3. Singular integral operator A.

§4. Asymptotic boundedness of zero modes of H = Hp + Q.

§5. Asymptotic limit of zero modes of H = Hy + Q.

§6. Eigenfunctions at the thresholds of Dirac operator with mass
m > 0.

§7. Dirac-Sobolev inequality and zero modes.

e §1 ~ §6 are based on the joint work with Tomio Umeda (The University of
Hyogo, Japan):

[SU1] Y. Saitd and T. Umeda, The zero modes and zero resonances of massless
Dirac operators, to appear in Hokkaido Mathematical Journal.

[SU2] Y. Saitd and T. Umeda, The asymptotic limits of zero modes of massless
Dirac operators, Letters in Mathematical Physics, 83 (2008), 97-106.

[SU3] Y. Saitd and T. Umeda, Eigenfunctions at the threshold energies of
Dirac operators with positive mass, Preprint. 2008.

e §7 are based on the joint work A. A. Balinsky and W. D. Evans (Cardiff
University, Wales, U.K.):

[BES] A. Balinsky, W. D. Evans and Y. Sait5, Dirac-Sobolev inequalities and
estimates for the zero modes of massless Dirac operators, to appear in J.
Mathematical Physics.

e You can find information of this and related topics in the references of the
above papers.
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1 Dirac operators

1.1. Massless Dirac operators H.

e Massless Dirac operators. The massless Dirac operator H is (formally) defined
by

H=a-D+Q), D=-§—V1, z € R,

where a = (a3, ag, «3) is the triple of 4 x 4 Dirac matrices

_ (0 o C_
aj— (O.j 0) (]_la 27 3)

with the 2 X 2 zero matrix 0 and the triple of 2 x 2 Pauli matrices

o = 01 oo — 0 —1 S 1 0
1= l O ) 2 — 2 0 ? 3 = 0 __1 ’
and Q(z) is a 4 x 4 Hermitian matrix-valued function decaying at infinity.
The free Dirac operator Hy is given by
Ho =a-D.
Thus we have (formally) H = Hy + Q(x).

e Weyl-Dirac operators. Define the operator H4 by

HA = - (D—A(:U)),

where A(z) = (A;(x), A2(z), A3(x)) is an magnetic potential. The operator
H 4 has the form

0 o-(D— A(z))
a'.(D——A(:c))=<U_(D_A(x)) ( 0 )

The component H,, = o - (D — A(z)) is called the Weyl-Dirac operator.

1.2. Dirac operators H,, with mass m > 0. The Dirac operators with mass
m > 0 are (formally) defined by

Hy,s=a-(D - A(x)) +mp,

Hpaq =a-(D—Az) + mB+ Q(z),

where 3 is a 4 x 4 matrix given by

I 0
5= (& %)
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with 2 x 2 identity matrix Is.

1.3. Some background.

1) The zero resonances and zero modes play dominant roles in the asymptotic:
behavior of the resolvent (H —z)~! as z — 0, cf. Jensen-Kato [17] for the Schrédinger
operator.

2) As is shown in the works by Frohlich-Lieb-Loss [16] and Loss-Yau [19], the
existence of a pair of a vector potential A(z) € [L®]® and the zero modes of the
corresponding Weyl-Dirac operator is equivalent to the stability of the Coulomb
system with magnetic field described by the Pauli operator.

3) It has been known that the study of the zero modes of the Dirac operator
has important implication to quantum electrodynamics as has been mentioned in
the recent works by Adam-Muratori-Nash [1], [2] and [3].

1.4. Self-adjoint realization of the Dirac operators.

e Assumption. Here and in the sequel (up to the end of §5) it is assumed
that each element g;x(z) (4, k = 1, -+, 4) of Q(z) is a measurable function
satisfying

lgin(2)] £ C{@)™" (p>1),

where C is a positive constant. In the case of the operator H4 we assume
that each element gjx(z) of —a - A(z) + Q(z) satisfies the same condition as
in gjx(x).

e Function spaces £% and H}!. We set £2 = [L?(R3)]* with inner product
(f,9)c2 =251 (Fir 95)r2mo)

(f = t(f1, f2> f3, fa), 9 ="(91, 92,93, 94) € L?).

Similarly we set H!(R?) = [H!(R3)]* with inner product
(.f7 g)?‘fl = Z?:l(fj’ gj)Hl(Ra)

(f = t(fl, fa, f3, fs), 9= t(91,92,93,94) € Hl(Rs))-

e Proposition. The operators Hy, H, H,, 4 and Hp, 4. defined on H! are self-
adjoint operators in L2.
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2 Limiting absorption principle for the free Dirac
operator Hjy

2.1. vector-valued weighted L? spaces and weighted Sobolev spaces.

e Weighted spaces £23. For s € R a vector-valued weighted L? space £2° is
given by
{ L”Z,s — [L2’S(R3)]4,

L2#(R?) := {u | (z)*u € L*(R%) },

where (z) = /14 |z|2. The inner products (u, v)r2sgs) of L**(R3) and
(f, g)czs of L** are defined by

([ (u, V) 12em) = Jga(@)*u(z) v(z) da,

N

(fs @z =521 (Fis 95)12e®e)

\ (f = t(flaf?af37f4)7 g= t(91,92,93,g4) S £2,s,

respectively.

e Weighted Sobolev paces H*S. For u, s € R a vector-valued weighted Sobolev
space H** is given by

Hee = [HP (RO,
H(R%) := {u € §'(R%) | (z)*(D)*u € L*(R%) },

where (D) = /I — A. The inner products (u, v)gnsrs) of H**(R%) and
(f, g)wn.e of H** are defined by

(u, V) gusgs) = (Y (D) u(z), (z)°(D)*v(z))r2(R?);
(fy Prme = 2521 (F5s Gi)mmoma)

(f = t(fl’fé’f37f4)’ g= t(gl,g2ag3’g4) € Hu,s’

respectively. We have H®® = L2,

2.2. Limiting absorption principle for the free Laplacian.
e The resolvent (—A — z)~! of the free Laplacian —A can be expressed as

——u(y) dy, € L*(R®
34W|x_y|u(y) Y u (R%)

(A - 2)~"u(x) = To(2)ulz) = /R

for z € C\ [0, +00), where Imy/z > 0.
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Proposition (limiting absorption principle for —A). Let

(o, +00) = (C\ (0, +00)) U{2=A+i0 | A>0}U{z=X—-i0]| A >0},
and let s, s’ > 1/2 with s + s’ > 2. Define Io(2) for z € (o, +00) Y

([h(2) if 2€ C\ [0, +o0),

Io(z) =< I (\) if 2= A+10, A >0,

(N if e=A=i0, A>0,
where
IE) = liglfo()\ + i€)
Then To(z) is well-defined and continous on (o, +00) in B(H V3 HL=S),

Lemma. Let s, s’ > 1/2 and s + s > 2. Then

/ 1
) S — 25 dody < +o00.
/R ) T ) dedy

2.3. Limiting absorption principle for the free Dirac operator Hy
Operator Q5 (2). Let
C,.:={zeC|Imz>0}, C.:={zeC|Imz<0}.

Let s, s' > 1/2 with s+ s’ > 2. Then define a B(H™"*; HY~*")-valued contin-
uous functions Q7 (z) on C, and Qj(z) on C_ by

Q5 (2) = Io(#*)  (2€Cy),

respectively, where fo(zz) should be interpreted as a copy acting on vector-
valued function f =*(fi1, f2, fs, fa) as

To(22) f = Y(To(22) f1, To(22) fa, To(2) f3, To(22) fa).-

In other words

fFo(ZQ) if z € Ci,

QF(z) = TFEN?) if 2=X2>0,

FO?) if =<0,
Note that 23 (0) = £25 (0) = I(0).
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e Proposition. Let s, u be in R. Then, Hy € B(H**; HALS).

e Proposition (limiting absorption principle for Hp). Let Ry(z), z € Cy, be the
resolvent of the free Dirac operator. Let s, s > 1/2, and s + s’ > 2. Then
Ro(z) € B(HV*; H®=%') is continuous in z € Cx. Moreover, they can possess
continuous extensions Ry (z) to Cx, respectively, as B(—1,s; 0, —s')-valued
functions, and

R5(z) = (Hy + 2)25(2), =z € C..

In particular,

RS.(O) = RO—(O) = HOf(O) in B(H—l,s; HD,-—-s’)'

3 Singular integral operator A

3.1. Singular integral operator A

e The operator A. Define the Singular integral operator A by

s 4wl —y|3

Af(z) = /R TV oy gy

for f(z) = t(fi(x), fo(z), f3(x), fa(z).

e Proposition. For f € L2, Af(z) is well-defined for a.e. z € R®. The operator
A satisfies A € B(L?, L) and A € B(L%*, L?) for s < 1. Further, we have

[Afllc= < Cog([ifller + 1fllea)  (f € L7N LY,

where 1 < p< 3 <q< 0.

e Remark. By noting that the resolvent Ry(z) of the free Dirac operator has an
integral expressed

Ro(2)f(x)

B z.a~(:v—y) Za-(:v—-y) AR
“/Rs( EEr el e ) by

+izlz—y| .

fy)dy

for z € C1 and f € S = [S(R?)]*, the operator A can be (formally) seen as
A = Ry(0).
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3.2. Identity AHef =f.

e Lemma. Lets, s’ > 1/2, and s+ " > 2. Then A can be continuously extended
to an operator in B(H™b*; H®>™*'), and we have, for f € H™1°,

R§(0)f =R;(0)f =Af inH>

e Proposition. Let s > 1/2. Then,

HoAg =g
for all g € L?®.
e Lemma (Jensen-Kato). Let s > 1/2. Then
(i) (=A)o(0)g =g for all g H e
(i) To(0)(=A)f = f i f €L and (-A)f € H™V.

e Lemma. Let s > 1/2. Then fo(O)Hog = Ag for all g € L£>*.

e Theorem. If f € £L>73/2 and Hof € L** for some s > 1/2, then AHyf = f.

e Remark. Note that we have Hyf(z) = —Q(z)f(x) when f is a resonance or
zero mode of a massless Dirac operator H. Thus the above theorem will used
to give an integral expression

ﬂw=—Aiﬁﬁ:ﬂQ@ﬂw@

s 4wz —y|3

for f (see §4 and §5).

Asymptotic boundedness of zero modes of

H=Hy,+Q

e Theorem. Suppose that Q(x) = O(|z|™®) (p > 1) is satisfied. Let f be a zero
mode of the operator the massless Dirac operator H. Then

(i) the inequality
|f(z)] < Clz)~

holds for all z € R3, where the constant C(= Cj) depends only on the zero
mode f;

(ii) the zero mode f is a continuous function on R®.
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e Lemma. We have

((z)=r+! i 1<y <3,
/ 1 dy < Cy § (z)2log(l + (z)) if 3
= Xz (0] T 1 = 3,
w Ty gy 0= & v
| (z)~? if v > 3.

e Sketch of the proof of the theorem: We have

f is a zero mode
= f e L*NL% (Proposition in 3.1)
= ||fllec < 00 (Proposition in 3.1)
= f=0((z)""*) (the above lemma).

Then we can repeat this argument.

e Theorem. Suppose that Q(zx) = O(|x|™P) with with p > 3/2. If f belongs to
L% ~5 for some s with 0 < s < min{3/2, p — 1} and satisfies Hf = 0 in the
distributional sense, then f € M.

5 Asymptotic limit of zero modes of H = Hy + Q.

e Theorem. Suppose that |Q(z)| < C(x)™? with p > 1. Let f be a zero mode of
the massless Dirac operator H. Then for any w € S?

lim r?f(rw) = _Z%F (a- w)/Ra Q) f(y) dy,

r—+00
where the convergence being uniform with respect to w € S2.

e Sketch of the proof. It follows from the integral equation f = —AQf that

_ 4 a-(z—1y)
flz) = —— /ms P Qy)f(y) dy,

which implies that

i) = g [ TR QI dy

C4m |w —r-1y3
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Thus we have only to show that
)
i)+ = [ (@ @) QW)W dy
T JR3

i w
s Raa'{“’_ﬂa}Q y)f{y)dy — 0

as r — oQ.

Corollary. For any w € S?

Jim ) = 5| [ Q@ )

Eigenfunctions at the thresholds of Dirac
operator with mass m > 0

Dirac operators H, and H,_ 4 For m > 0 let

{ Hpa=o0-(D=A)+mB (D(Hm,a)=H[H (R®)]),

Hy,=0-(D-A(z)) (D(Hy)=[H'(R?)]?).

Theorem. Assume that A(z) = *(Ai(x), Ax(z), As(z)) is a real measurable
vector-valued function such that

A@)| < C@) ™ (z e RY)
with constants C > 0 and p > 1. Then, H,, 4 and H, are selfadjoint and
Ker (Hm,a — ) Ker (H,) & {0},
{ Ker (Hya +m) = {0} & Ker (H,) .

In other words, let f = (4, ¥_) € D(Hpm a) such that vx € [H*(R3)]?. Then,
f is an eigenfunction of H,, 4 associated with the eigenvalue m [ —m ] if and
only if - =0 [y =0] and ¥y [Y_-] is a zero mode of Hy,.
Some extensions The above theorem can be extended in the following cases:
(1) Case that A(z) € [L3(R?)]® (cf. Balinsky-Evans {2001, 02, 03]).
(2) Case that A(z) = o(|z|™!) (cf. Elton [2002]).
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7 Dirac-Sobolev inequality and zero modes

7.1. Transformation of the Dirac operator H by the involution.
e Involution.

Inv: R\ Bz —y= € By,

112

where B is the unit ball with center the origin. We have

a(xla T2, .’L'3) — _’ny
8(?/193/27 y3)

e The map M through Involution Inv. Defined the map M by
M)~ (MOW =W =y(;m)  weB),

where 1 is a function on R3\ B;. Note that ¢ = ¢ o Inv-L.

e Map ¥(y) = —X(y)~¢. Let X(y) be a unitary matrix in C* given by

X(y) = (Xoo(y) )(()0) ,

o) = (7%, ) w=u,

Wy — Wy Wws

where

and consider the transformation
U(y) = —X(y) 7.
e Proposition. We have
M{(ec- D)o Hy) = lyPz(y){e- D) ¥(y) + Y (1) ¥ (y),

where

Y(y) = Zakxwr (GaX®)-
Consequently, for a week solutzon Y of HY = 0 on R®\ By, ¥ defined above
satisfies (weakly)
(a-Dy)¥(y)+ Z(y)¥(y) =0  (in By),

where _
Z(y) =Y(y) — ¥ X () ' QW)X (v).

e Remark. Note that Y (y) = O(Jy|™!) at y =0, and Z(y) = O(|y|~}) at y = 0 if
Qlz) = O(jal™) at z = co.
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7.2. Dirac-Sobolev inequalities.

e Space Hg%(Q), O C RS,

Hh(S2) := completion of [C§°(2)]* with respect to the norm

1Flaspn = { [ ta-pyser+ lfl”)dx}l/p‘

e Theorem. Let  be bounded, 1 < p < g < oo and r := 3(% —1) € [L,p. If
f € Hyh(SY), then we have that for any k € (0,q) and 6 = p/q

I fllse < Cll(a- D) FIS I fIE, -

e Remark 1. (i) The proof is inspired by a work by M. Ledoux, “On improved
Sobolev embedding theorems” (Mathematical Research Letters, 10 (2003)).

e Corollary. Let 1 < p < oo. Then, for k € [1,p], we have
Ifllee < Cli(e- D) fllpa  (f € Ho&(Q).

e Remark 2. For p = 2 the above inequality is the same as the usual Poincaré
inequality.

7.3. Estimate for zero modes.

e Theorem 1. Let Q(z) = O(|z|™!) in Bf. Let ¥ € L?*(BS) such that (o -
D)y € L?(B¢) and % is a solution of ((a- D) + Q(z))¥ = 0. Then, by setting
#(2) = |a*p(z), we have

|¢(x)l'“|a:|_6da: < 00
Bg

for any k € [1,10/3).
e Theorem 2. Let ¢®(y) = |z|***ep(x). Then
6 (z)[*|2|°dz < oo
By
for any k € [1,4/3) and t < 11/10.

e Remark. The result of this theorem does not look as good as the one in §4
though the method is quite different and the assumption on Q(z) allows a
Coulomb type Q(z).



