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Remarks on Scattering on Scattering Manifolds

HROAY - S #K A (Shu NAKAMURA)!
PURKRE - ¥R FE  f— (Kenichi ITO)?

Abstract

In this talk, we discuss scattering theory for a class of manifolds. We
consider the asymptotic completeness and the microlocal properties of the
scattering matrix. The space we consider is called scattering manifolds fol-
lowing R. Melrose, and we construct a time-dependent scattering theory for
Schrédinger operators on such manifolds. In particular, we discuss an alterna-
tive approach to a theorem by R. Melrose and M. Zworski on the microlocal
properties of the absolute scattering matriz. This work is partly in progress,
and several theorems are preliminary.

Model: We consider an n-dimensional noncompact manifold (without boundary):
M = My U My

where M, is relative compact, and M is diffeomorphic to (1, c0) x M, where OM
is a closed manifold without boundary. We consider M as a boundary of M at
infinity. We fix an identification map:

I: My, =(1,00)x0M € (r,0), re(l,oo),decdM.
Let ¢° be a Riemannian metric on 8M, and we denote

¢® =" g%(6)do'de’, 6 e oM.
2%]

Definition: A Riemannian metric ¢ on M is called conic if it has the following
form:

g™ =dr? +1r%¢° on M,
where we identify M, with (1,00) x OM as above.
Example 0: (Euclidean space) M = R®, OM = S" !, g% = db? is the surface

metric on S™~ 1. Then ¢* = dr? + r?df? is the standard flat metric on R” in the
polar coordinate on My, = {z | || > 1}. The identification map is

I:70 € My — (r,6) € (1,00) x S*7 1.
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This is a typical example and we should keep this in mind in the following argument.

Example 1: (Conic metric on R™) Let M and 0M as in Example 0, but we introduce
a different metric on $"~!. Then we have a different conic metric structure on R™.

For example, we can set ¢ = adf? with a > 0, and we have a different geometric
structure.

Definition: A Riemannian metric g on M is called scattering metric if
g=4g"+m,

where g is the conic metric, and m is a symmetric 2-form such that

n-1 n—1
m =m(r,0)dr’ + 1Y _mj(r,6)(drdf + dédr) +r* > m;(r,0)ds'dt”

j=1 ij=1
on M., and the coefficients satisfy

|0k OgmE(r,8)| < Crar™7%,  (r,0) € My
for any k,a,¢ =10,1,2 with u, > 0.

Scattering metric was defined originally by R. Melrose [2], but here we use an
equivalent, but different definition. (This formulation was introduced in [1]). We
will assume the metric perturbation m is short-range type in the following sense:

Definition: A metric g on M is called short-range type if

po>1, pm>1/2, upy>0.

Let A4 be the Laplace-Beltrami operator on M corresponding to the Riemannian
metric, i.e.,

1« .
A, = 0z, 9% () /G (x) Oy,
= o X O VO

where G(z) = det(g;x(z)) and (g7%) = (g;x) 7 .

Definition: A potential function V' € C*°(M;R) is called short-range type if there
is 3 > 1 such that for any o and k,

|0FOgV (r,0)| < Ckar™37%,  (r,0) € M.

In the following, we assume g and V are short-range type. We set
H=-0,+V(z) on¥=L*M,VGdz).

Proposition 1. H is essentially self-adjoint on C{°(M). Moreover, o¢ss(H) =
[0,00); 0,(H) is discrete with possible accumulation points only at 0; o..(H) = 0;
and o..(H) = [0, 00).
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Idea of Proof. Let j(r) € C*°(R) be a smooth cut-off function such that

1 =3,
7(7")_{0 (r<1).

We use the Mourre theory with the conjugate operator:

A= -21—2 (j(r)r% 4 —g;j(r)r + %j(r)r&-(log G(ﬂ?)))

on M. Then the rest of the argument is similar to the Euclidean case. O

Scattering Theory: We first construct a free system. We might use —Dgen as
the free system, but this operator itself is not very easy to handle. So, instead, we
set
(92
Hfr:a-({;’r—z- on ]\/ffr=R><aM,
Hyr = L*(Myr, dr - \/g°dh)
0 on M¢

:9{,, :}C, [ y =
J: Hgr — H, where Jo(r, ) {jm (det g°(6)/G(r,6))"/*0(r,6)  on M.

J is defined so that J is isometry on L%([3/2,00) x OM). Note, asymptotically,
Jp ~r~(=1/2p ag r — 0o. In fact, for Examples 0 and 1, we have

Jo(r,0) = j(r)r~""Y2p(r, 0) for p € L*(R x S™71).

In this case, if we set ¢ = **", a generalized eigenfunction of Hy,, then

J‘P — j(r)r—(n—l)/2eik'r’

which is a spherical wave (generalized eigenfunction of A for large r).

We then set the wave operators:

Wy = s-lim e®H Je~ s o K, — K.
t—=+o00 _
The existence of W, is easy to show by the standard Cook-Kuroda method. We
note g% has the form:

_ 1+ag r~la}
23\ __ .. 1 — 1
@) =) = (580 A,

in the (r,0) coordinate, where 8%95aq = O(r~'~#~*) and 8F¥8ga; = O(r~*=*) for
j = 1,2 with some u > 0. Here we denote g5 = (g°)71.
We then set
‘ S{f,.,i—’;{ﬁﬂej{fr lsupp@CRixa]\’f},
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where ¢ is the Fourier transform of ¢ in 7, i.e.,

(e o]

B0,0) = B o,6) = [ e plr0)dr

— 00

Then it is not difficult to see by the stationary phase method that
W:}:(D—Cfr’;) = O’
and hence it is natural to consider Wy : Hppx — H.

Theorem 2. W. are isometry from Hg, 1 to H, and they are complete, i.e., Ran Wy =
H.(H). Hence, in particular, the scattering operator defined by

S = I’V_’:_VV_ . j‘ffr,_ - g'ff,,._Jr
18 unitary.
Idea of Proof. Let

1 n—1 . .
Hy = V) > 8, (r)gd" (6)/G(=) B,

Jk=1

n—1
= — Z Op; J (r) g3 (6) Bs, + (lower order terms).
Jyk=1

This operator is, roughly speaking, the pull-back of the Laplace-Beltrami operator
on OM to M. By the Mourre theory, we can show

G (H = A2 0)71(r)ry™™ € B(H), AeRi\o,(H),a>1/2,

but these are not sufficient to show the completeness, since perturbation terms:
r=1a,0,08p, T™2a20p0y are only of O(r=*), u > 0, with respect to H. Instead, we
show

Gy~ (Ho + 1)(H — A £ i0) " (Ha + 1) (j(r)r) ™ € B(H), A€ Ry \op(H).

These estimates are proved by resolvent equations and commutator computations.
These imply that

(H—-X£i0)™' : (Ho+ D7 G(r)r)y *H — (Ho + 1) N (r)r)H

is bounded, and this is sufficient to show the completeness by using the abstract
stationary scattering theory. O

Scattering Matrix: By the intertwining property, we have

Her = SHfr : Q{f,,-ﬁ_ — D{fm_,
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and hence .
PP(FSF) = (FSF1)p* : Hprm — Hyr s,

where Hype = L2(Ry x OM ). Thus, (FSF!) commutes with multiplication by

functions of p, and then we learn that (FSF~1) is decomposed as
(FSFp(p,0) = (S(D)p(=p) (), p> 0,0 € Hr,

with S(p) : L*(OM) — L*(8M), unitary. S(p) is called the scattering matriz.

Melrose-Zworski Theorem: Let

h(6,w) = gif (@) wjwx for (6,w) € T*OM
Jik

be the classical Hamiltonian on M, and let exp tH, j be the Hamilton flow generated
by vk, which is in fact the geodesic flow. Then we can show

Theorem 3. S(p) is an FIO corresponding to the canonical transform exp mH /.
In particular,

WF(S(p)p) = expmH 5 (WF(p)), ¢ € L*(OM).

This result is a generalization of a result by R. Melrose and M. Zworksi [3],
though they used different definition of the scattering matrix, which is called the
absolute scattering matriz. The absolute scattering matrix is defined as follows: Let
Y be a generalized eigenfunction of H: Hvy = p?1. Then v has an asymptotic form:

B(r,0) ~ r D20, (6) + e (6) as T oo
with some ¢y € L?(0M). The map:

5(0) P -

is well-defined and S(p) is called the absolute scattering matrix since it is defined
without using the time-dependent scattering theory. However, we can show

8(p) = —S(p)™

in our notation. As well as the formulation, the proof of Theorem 3 is considerably
different from the one by Melrose and Zworski.

Example 0: (revisited) For the Euclidean case, exp mH, z(6,w) = (—0, —w). Hence,
the singularity of ¢ is mapped by the scattering matrix to the anti-podal points,
which is well-known.

Example 1: (revisited) Let n = 2 and we set g5 = ago with o > 0 and gy = d6?, the
standard length on S. Then S(p) has a different microlocal propagation properties.
Namely,

WF(S(p)p) C {6+ ar |0 € WF(p)}.
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Classical Scattering Theory for Conic Metric: In order to under-
stand the meaning of the Melrose-Zworski theorem, let us consider the classical
scattering for the conic metric. Let p(r, 6, p,w) be the classical Hamiltonian for the
conic metric:

1 *
p(r, 0, p,w) = p* + e D> g @) wwr, T>0,peR,(6,0) € T*OM.
1.k

Let (r(t),0(¢t), p(t),w(t)) be the solution to the Hamiltonian equation:

. op . Op
T‘—g;,

— =25

0w P or’

with 7(0) = ro, 6(0) = 8y, etc. It is easy to see h(6(t),w(t)) is invariant, i.e.,
h(6(t),w(t)) = h(6,wo) = ho. Then we can solve equation for (r, p) easily to obtain

r(t) = \/4E0t2 + dropot + 73, Eo = p(ro, b0, po, wo),
and (0, w) satisfies the equation:

1 6h : 1 0h

=22 =

r2ow T 1206
So, by changing the time variable t — 7(t) = fot ds/r(s)?, we have
(0(t), w(t)) = exp(7(t)Hr)(o, wo),

where exp(tH},) is the Hamilton flow generated by h on T*0M. As t — oo, 7(t)
converges to finite values:

lim 7(¢) =7+

1 T 700
= (+T _tan 2.
t—+oo 2vhg ( 2 ~ \/ho)

Hence we have
Jim (0(2),w(?)) = (0, wz) = exp(7+ Hp) (0o, wo)-

Similarly, we can show by straightforward computations,

. _ _ . _ — . — 4 T0P0
t}}rinoop(t)—pi—:t Ey, t_lgcnw(r(t) 2tp(t)) =ra i\/F'o

This gives us the explicit formula for the (inverse) classical scattering operator:
(‘V:T:l . : (T07 Po; 00’ L(Jo) e (t:ba P+, O:i:a w:t) = tl}gloo(lr(t) - 2tp(t)1 p(t)$ o(t)) w(t))

We note that the corresponding free Hamiltonian is simply given by p?, which gen-
erates the free motion : (7, p,0,w) — (r + 2pt, p,6,w). By the formula, it is easy to
show

(W1 (Ry x R) x (T*OM) — (R x Ry) x (T*OM)



91

is diffeomorphic, and hence
Sh=WH oW : (R.xR) x (T*OM) — (Ry x R) x (T*OM)
is also diffeomorphic. In fact, we can easily show
S 1 (r,p,0,w) = (=1, —p,exp((T+ = 7-) Hp)(0,w)),

and 7. —7_ = 7/(2v/ho). In general, we have exp(tH,) = exp((2t/q)H ) for ¢ > 0,
and hence we learn ’

exp((T4 — 7-)Hp)(0,w) = exp(nH ).

Thus we have
59 = (~I) ® exp(rH ),

and we realize that the Melrose-Zworski theorem is a quantization of this observa-
tion.

Scattering Calculus: In the proof of Theorem 3, we use the scattering
caluculus following Melrose [2], but again in a quite different formulation. For
a € C&(T*(R. x M) (or € CP(T*(R x OM)), we denote the scattering quantiza-
tion by
A = a(hr,0,D,,hDy), h>0.

Note the difference of the location of the semiclassical parameter £ > 0 from the
usual semiclassical quantization a(r, 9, hD,, ADg). We identify R, x OM with M,
and we consider A as an operator on L?(M, V/Gdz). For such an operator A, we

consider
A(t) — e’itHf,- J*e—itHA e’l:tHJe-—'itHfr’ t I= R'

A(t) satisfies the Heisenberg equation:
g—t—A(t) = ¢[T'(t), A(t)] + (lower order error terms)

where

| | h(6, D
T(t) = e*ir(HJ — JH)e i ~ j(r — 2tD;) - (T-(-—é—t_—_lg))a

as r — 0o0. We can construct the asymptotic solution to the Heisenberg equation:
A(t) = b} (hr,0,D,,KDy) where b} ~ bo(h™'t;7, 6, p.w) + O(h),

and by can be computed explicitly using the classical flow. We let ¢ — +o00 and we
learn

lim A(t) = WL AW. ~ bg(hr,8, D, hDq),
where by ~ (a o W§)(r,0, p,w) + O(R). Using this procedure again, we learn
SAS™' = cp(hr,0,D,, hDg), where cp~ ao(S?) ™+ O(R).
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If A=a,(D;)ax(0,khD;h), then we learn
SAS™! ~ a;(—D,)(ag o exp(mH /7)) (8, Dy),
and hence

S(p)az(8, hDg)S(p) ™" ~ (az o exp(wH,zz))(6, Do).

Then Theorem 3 follows from an inverse Egorov theorem.
Finally we remark that this calculus can also be used to show the propagation
properties of the scattering wave front set of Melrose, but we omit the detail here.

References

[1] Ito, K., Nakamura, S.: Singularities of solutions to Schrédinger equation on
scattering manifold, 2007, submitted. (http://jp.arxiv.org/abs/0711.3258).

[2] Melrose, R.: Spectral and scattering theory for the Laplacian on asymptoti-
cally Euclidean spaces, Spectral and Scattering Theory (M. Ikawa ed.), 85-130,
Marcel Dekker, 1994.

[3] Melrose, R., Zworski, M.: Scattering metrics and geodesic flow at infinity. In-
vent. Math. 124, 389-436 (1996).



