0000000000
016090 2008 0 11-23 11

Quantized electromagnetic field interacting with a classical
source: infrared catastrophe and the physical subspace

BB AR RGP HI $iKE S} (Akito Suzuki) !
Department of Mathematics, Hokkaido University,

1 Introduction

We consider the quantized electromagnetic field interacting with a classical given source (5] satisfying the
following equation

OA,(x,t) = j.(z.t), (z,t) € R® xR, (1.1)
where the current density j# of the source is conserved:
OHju(z,t) = 0. (1.2)

We construct the quantized radiation field A, (z,t) and its time derivative A, (z,t) as an operator-valued
distributions [9] on R>. Here we assume that the time zero fields 4, (z) = A,(x,0) and A, (7) = 4,(z,0)
satisfy the following commutation relations

[Au(2), Ay (y)] = —igud(z — y) (1.3)
(Au(2), A, ()] = [Au(z), AL ()] =0 (1.4)

with :
goo=—9;; =1 =1,23), gu =0 (u#v).

It is well known that the commutation relations require the introduction of an indefinite metric state
space F in which A4,(x,t) and A,(z,t) act [2, 4, 5. 7]. Hence the usual probabilistic interpretation is not
valid in the whole space F. According to the Gupta-Bleuler formalism [2, 4], one can select a positive
semi-definite subspace Vphys C F, called the physical subspace, which is the subspace of all vectors ¥ € F
satisfying the Gupta subsidiary condition

A (z,1)¥ =0, (1.5)

where B“Aff) means the positive frequency part of 8A,. Then one can recover the probabilistic inter-
pretation on the physical Hilbert space Hphys defined by the quotient space Vphys/Vo, where Vo is the set
of all neutral vectors in Vphys 6, 7).

The solution of (1.1) is uniquely determined by the time zero fields A, (x) and A,(z). The time zero
fields are given by a representation of the commutation relations (1.3) and (1.4). Thus, via the Gupta
subsidiary condition (1.5), the physical subspace Vpnys depends on the choice of representations of the
commutation relations (1.3) and (1.4) for the time zero fields.

Recently, in [8], we characterize the physical subspace Vphys in the case where the source is static,
ie., jo(z,t) = p(z) is independent of time and j; = 0 (¢ = 1,2,3). We proved that (1) when we take
the usual Fock representation as the time zero fields, the physical subspace is positive semi-definite
and non-trivial, i.e., Vpnys # {0}, if and only if the infrared regular condition |k|=3/2p € L*(R3;dk) is
made and (2) when we choose a non-Fock representation for the time zero fields, Vphys is non-trivial
even if |k|73/2p ¢ L2(R3;dk). In the case of (1), the physical subspace is trivial, i.e., Vphys = {0} if

!Supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.



12

|k|=3/2p ¢ L2(R3;dk). This is a kind of infrared catastrophe. The Hamiltonian H of this system is given
by
H =Hi+V,

where H; is the free Hamiltonian of the photons and V the interaction Hamiltonian given by
V= / dzp(z)Ao(x).
]RLJ

We proved that H is “self-adjoint” with respect to the indefinite metric mentioned above and that H
leaves Vphys invariant, i.e., H(D(H) N Vphys) C Vphys, where D(H) means the domain of H. Moreover,
we showed that. for all U, ¥’ € D(H) N Vphys,

(O | HE) = (V' | [HE + Eo]¥),

where HT is the free Hamiltonian of the transverse photons and Ep = 1/2 f 1p(k) 12/ 1k|%dk.

In this paper, we take the Fock representation as the time zero field. Our purpose is to define the
physical Hamiltonian H,ys on the physical Hilbert space Hphys from the Hamiltonian H consistently and
prove the self-adjointness of Hpyys. For simplicity, we assume that the source is static. Then, by the result
in [8], one can define a reduced Hamiltonian Hy,, . on Vphys in the usual way. In general, for a bounded
operator T on Vphys, one can define a bounded operator Tphys on Hphys by Tohys[¥lphys = [TW]phys if T
leaves Vy invariant. Here we denote by [¥]ynys the element of Hypys for a representative ¥ € Vppys- Since
the reduced Hamiltonian Hy,,,,. is, however, unbounded, the above definition is ill-defined although Hy, ...
leaves V, invariant. Indeed ¥ € D(Hy,, ) and ¥ — ¥’ € Vy do not necessarily imply ¥’ € D(Hy,,..)-
We give a precise definition of Hphys and prove the self-adjointness of Hppys. As a by-product, we find
that Hpnys is unitarily equivalent to H' + Eo.

This paper is organized as follows. In Section 2, we review the usual Boson Fock space and introduce
an indefinite metric in the usual way. Trough this paper we assume that the time zero fields are given
by the Fock representation. Section 3 is devoted to characterize the physical subspace. We first solve
the operator-valued Cauchy problem (1.1) in the case where the source depends on time. We define the
positive frequency part of 8* 4, in a rigorous manner and characterize the physical subspace Vphys. These
results extend the results of [8]. Here again we encounter the infrared catastrophe. In Section 4, we first
investigate the properties of the physical Hilbert space Hphys. After that we give a precise definition of
the physical Hamiltonian Hphys on Hphys and prove the self-adjointness of Hphys.

2 Fock space and representations of the commutation relations

In this section we recall the Boson Fock space with an indefinite metric and define the Fock representation
of the commutation relations (1.3) and (1.4) thereon.

In general we denote the inner product and the associated norm of a Hilbert space H by (*,-)» and
|| - ||, respectively. The inner product is linear in - and antilinear in . If there is no danger of confusion,
we omit the subscript H in (-.-}» and || - ||». For a linear operator T on H, we denote the domain of a
linear operator T by D(T) and, if D(T') is dense, the (Hilbert) adjoint of T" by T~.

2.1 Boson Fock space

We first recall the abstract Boson Fock space and operators therein. The Boson Fock space over H is

defined by
2
< oo} ,
RrH

F(H) := éé}ﬂ = {w = {¥(™}e

n=0 s

o é)H, {Z o)
5 n=0
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where ®@I'H denotes the symmetric tensor product of H with the convention ®IH = C.
The creation operator a*(f) (f € H) on F(H) is defined by

(@ (AW = VS, (fo D)

with the domain
D(a"(f)) == {w - {w<">};:°=o‘ Sonls(reve ), < °°} *
n=0 b

where S,, denotes the symmetrization operator on ®"H satisfying S, = S, = S2 and S, (®"H) = QH.
The annihilation operator a(f) (f € H) is defined by the adjoint of a*(f), i.e., a(f) := a*(f)*. By
definition, a*(f) (resp. a(f)) is linear (resp. antilinear) in f € H. As is well known, the creation and
annihilation operators leave the finite particle subspace

Fo(H) = G {\1: = (M} | o™ =0, n> m}
m=1

invariant and satisfy the canonical commutation relations
[a(f),a™(@)] = (f,9)n, [a(f),a(g)] = [a"(f),a"(9)] = O.
The Fock vacuum Qy = {QS,?)} € F(H) is defined by Q(,‘}) =1 and QS,;” =0 (n > 1) and satisfies
a(f)t =0, feH. (2.1)

It is well known that €4 is a unique vector satisfying (2.1) up to a constant factor.
Let ¢ be a contraction operator on H, i.e., |lc/| < 1. We define a contraction operator I'(c) on F(H)
by
TED™ = (@) ¥™, ¥ ={TM}2,

with the convention ®%c = 1. If w is unitary, i.e. u™! = u*, then I'(u) is also unitary and satisfies

T'(u)* =I'(u*) and
L(wa(f)T(w)* = a(uf), T(w)a™(fI0(w)" = a™(uf).

For a self-adjoint operator h on H, i.e., h = h*, {T'(e%*")};cr is a strongly continuous one-parameter
unitary group on F(H). Then, by the Stone theorem, there exists a unique self-adjoint operator dI'(h)

such that
F(eith) — eitdl"(h).

2.2 Indefinite metric space of states

We introduce the indefinite metric space of states in the usual way [9]. The Hilbert space of the one-photon
states is given by

4
b = €D LA(R?; dk),
where k € R3 is the momentum of a photon. Let
F = F(bh)

be the Hilbert space of the photon field.
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We introduce an indefinite metric to F as follows. Let us define an operator g on h by

g(f1, f2: f3, fo) = (= f1, — f2, = f3, fo)

for (f1, f2, fa, fo) € . Then g is unitary, self-adjoint and hence involution, i.e.,

* -1

g'=9'=g, ¢=1
The metric operator is defined by
n=T(-g).
Then 7 is also unitary, self-adjoint and involution. We define a metric (- | -) on F by

(Y| ®@) =(¥,n®)

for ¥,® € F. The metric space (F,(- | -)) is a Krein space (see (3]). We also denote by F the Krein
space (F,(-|-)).
For a densely defined linear operator L on the Krein space F, the adjoin operator L' with respect to
the metric (- | -) is given by
Lt =qnL™n.

We say that L is n-selfadjoint if Lt = L.
Let
U‘(f, [L) = a((dlufs 62u.f1 63u.f7 60[.1./_.))1 f € LZ(R87 dk)

and set al(f, ) = a(f, u)t, where f is the complex conjugate of f. Then a(f, 1) and al(f, p) leave Fo(h)
invariant and satisfy the following commnutation relations on Fo(h):

[a(f\ /J')sa'T (gv V)] = _gm/(fﬂ g)mma), (22)
la(f, 1), a(g.v)] = [a'(f. 1), a’(g,1)] = 0. (2.3)

We often use the following symbolic notation by the kernel:
a(fon) = [ dbfatk ). al(F) = [, dksral k).
B .

2.3 Free field in the Fock representation
For f € (R3), we define operator ALO)(f) and ALO)(f) by

. 3 (¥ ¢ () F_.
Ago)(f) — __1_2_; [af (ei/:_{'i) +a (%_)Z>:|

o () (22

—_

and
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where w(k) = |k} is the single photon energy of the wave vector & € R® and e(¥(k) € R® (i = 1,2,3) the
polarization vectors satisfying

P (k) = W" j=1,2,3,

3
S eV (ke (k) = u, 1,0=1,2,3.

J=1

It follows from (2.2) and (2.3) that {A,(f), A.(f) | f € Z#(R?)} gives a representation of commutation
relations, i.e., A,(f) and A, (f) leave Fy(h) invariant and satisfy the following commutation relations on

Fo(h):
AL (£), AL ()] = ~iguu(F. g) L2
[AD(f), AD(g)] = [AD(£), AL (9)] = 0.

The maps .#(R3?) 3 f — AL (f) and #(R3) > f — AL (f) are operator-valued distributions acting
on Fy(h), i.e., for all ¥, ® € Fy(h), the map [ — (T | A&O)(f,t)‘b) is a tempered distribution. We call
the representation {A,(f),A,.(f) | f € S#(R3)} the Fock representation of the abnormal comunutation
relations. Let

Au(ft) = A, (e A(f,1) = P AL (fe Y,
where H; is the free Hamiltonian defined by

4
Hi =dl (@ w) .
Proposition 2.1. The following (i)-(iv) hold:

(i) For each t € R, the maps #(R3) > f — A(O)(f,t) and #(R3) > f — A(O)(f, t) are operator-valued

distributions acting on Fo(h), i.e., for all ¥, ® € Fo(h), the map f— (¥ | A 0’(f,t)<1>) is a tempered
distribution.

(ii) For eacht € R and f,g € #(R3), the following commutation relations hold on Fo(h).

[ (O)(f t) A(O)(gvt)] = _'iguu<fag>L2(]R3),
[AQ(£,1), A0 (g,8)] = [AL(£,1), Al (g,8)] = O

(iii) For all U € Fy(h), ALO)(f,t)\II and AEP)(f, YU are strongly differentiable and satisfy
L) (0) (0) — A A
D A0 (10w = AP (5,08, LAV, = AD(Af,0)F
_In particular, ALO)( F, )V is twice differentiable and
; P
E—Z-AE?)( £,)¥ = AD(Af, )T (2.4)

In the sense of the above proposition, we write symbolically

AD(f,) = /R ; dz f(z)AQ (z,t).
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Formally the kernels A,(P)(x,t) and A&O)(I,t) are given by

( )(k) (a*(k,i)ei“’(k)‘_ik'x + a(k’i)e—iu(k)zﬂk.r)

3
1
A x,t) =
J ( ) ;(21(')3/2 RS /2 (k

A(()O)(.T, t) - 1 (G/T(k', O)ezw(k)t-z‘k‘x + a(k, O)e—iw(k)t+ik-z)

(2m)3/% Jgs \/-Q_UT(’T)

k)
A(O) (z,1) / "J( k) uu(k)t ikzot(p e—iw(k)t+ikz o f 4
gki 2 (ki) - (k) «

1(0) - . w(k zu.(k)t ik-x T —uu(k)t-f-ikz
Al (.r,t)~1/3dk e )g( (k,0) - a(k.0)).

and

Thus we have the unique solution ALO)(x,t) of the following Cauchy problem in the operator-valued
distribution sense:

dz

Et—_ZALO)(z:,t) - AAD(z,t) =0
A9 (z,0) = A0 (2)
A (z,0) = AO(z).

We set ALO)(:I?) = A (z,0) and AE,O)(.T,) = ALO)(:I:.O).

3 Interaction field and the physical subspace

3.1 Interaction field

For the technical simplicity, we assume that j,, € (R*). Our first task is to solve the following operator-
valued Cauchy problem:

2
-(%—2-14,,(1:,1!) — AAL(E t) = ju(x,t)
Au(z,0) = AD(x,0)

d

dt

Proposition 3.1. The unique solution of the above Cauchy problem is given explicitly by
Ap(z,t) = AE?)(a?,t) + Aﬁfn(z,t),

(. t)\ = A (z,0).

where .
it —
A = [ ar T )
o w
and w is the self-adjoint operator satisfying w? = —A.
Let
Au(z,t) = A (x.t) + A (2,0),
where

t
Aff‘l) (r.t) = / drcos(t — T)wju (T, T).
0
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Remark 3.1. A,(z,t) and A,(z,t) satisfy the Heisenberg equations
d . .
;j—t-Au(ar,t). =i[H(t), Au(z,t)] = Au(z,t)

9 Auta,t) = ilH®), Au(z,)

on Fo N D(H(t)), where H(t) is the Hamiltonian of this system given formally by
1 LA
H) =5 /R dz: [ Ay(@1)? + (VA;(z, 1))’
Jj=1

— Ag(z,t)? — (VAo(z,t))z] : +/ drj*(x,t)Au(z,t).
RS

Here : - - - : denotes the Wick ordering.

3.2 Positive frequency part and Physical subspace

In what follows, we solve the Gupta subsidiary condition for the interaction field A, and characterize the
physical subspace. To this end, we define the positive frequency part of 9% A,, in a rigorous manner. Let

3
B(f.t) = Aoi) + 3 A0, fu0), BULO) = 2B

=1
and set
b(h) = i (B(9s,5) = B(gs:9))
bt () := b(R)'",
where the function g, is defined by

Ga(k) = gfu—(ll:)) gisw(k) (3.1)

and g, denotes the derivative of g, with respect to s. Since, by the charge conservation law 9*j, = 0, B
is a free field, i.e.,

d2
B0 = BALOY, e Fob),
b(h) and bf(h) are independent of s € R. It follows from direct calculation that
B(f,t) = b(e™* f(=)) + b/ (" ).

We call b(e= f(—-)) (resp. bi(e** f)) the positive frequency part (resp. the negative frequency part) of
B(f,t) and write L -
BD(f,t) =b(e™™ (=), B(f.1) =bl(e"f).

‘We define the physical subspace by
Vphys = {¥ € F | b(R)¥ =0, h € #(R%)}.

Then we have
(‘IJ , B(f« t)@> = 0? ‘Ilv P c vphys.
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To characterize Vphys, we define a unitary operator U by

U =exp [——\}_—2 (aT (J(L(s’/g).?) —-a (%5923>>} W,

where W is a unitary operator defined by the following relations:

wa=Q,
I«Va(f])ﬂ" = a(f’j)7 Jj= 1,2,
Wa(f,3)W = —=[a(f.3) + a(f,0)].

Sl

Wal£,0W = —la(£.3) - a(£.0)]

Lemma 3.2. Let w=3/255(0,-) € L*(R3). Then U For all h € #(R®), the following holds:
U~ Yb(h)U = ia(v/wh,0).

Proof. By direct calculation, we have

i 1 jo(k.0)
= — - h,0) + — dkh(k
b(h) = = |a(voh.3) — a(via,0) + 7 [ dk( el
where we have used the equation (1.2) and integration by parts. O

Similar as in paper [8], we have the following theorem.
Theorem 3.3. (i) If w™3/250(-,0) € L*(R3;dk). then Vphys is positive semi-definite and
Vphys = UFTL,
where Frp, = F(@3L*(R3)) @ {af) | a € C}.
(i) If w™3/250(-,0) ¢ L*(R3:dk), then Vpnys is trivial,

Vphys = {0}

4 Physical Hilbert space and the physical Hamiltonian

4.1 Physical Hilbert space

In the rest of this section, we assune that w~3/2p € L?(R3 dk). Then, by Theorem 3.3, the physical
subspace Vphys is closed and given by Vphys = UFTL # {0}

Let Fr = F(®2L%*(R?) @ {aQg2r2(rs) | @ € C}. Then the physical subspace Vphys is decomposed
into

vphys =V & Vo, (41)

where
Vi =UFr, Vo =U[FF NFrL].
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Lemma 4.1. (1) V; is closed and satisfies
(U1 | T)) = (U, 0)), ¥y, ¥) €V
In particular, V; is positive definite.

(2) Vo is closed and
Vo={¥o € Vphys | {(To | WZ)) =0}

Proof. See the proof of [8, Theorem 2.17]. ]

For subspaces U, V and X in F, X = V [+] U stands for the orthogonal direct sum with respective
to the metric (- | -}, i.e., the following hold: (1) for all x € X, there exist unique vectors u € «f and v € V
such that z =u+wv, (2) forallu € U and v € V, (u | v) = 0 holds.

Lemma 4.2. It follows that
Vphyg =V [—l—] Vo.

Proof. Since Vphys is positive semi-definite with respect to the metric (-|-), we have, by the Schwarz
inequality, for all ¥; € V; and Ug € Vo, [(¥1 | ¥o)|? < (1 | ¥1)(To | ¥o) = 0. Hence we have
(¥ | ¥p) = 0, which, together with (4.1), we obtain the desired result. a

Let us define the physical Hilbert space Hphys by the quotient space Vpnys/Vo. We denote by [¥]pnys
the element of Hphys for the representative ¥ € Vphys and by (-, -)phys the inner product of Hpnys:

([T]physs [P']phys)phys = (¥ [ ). W, ¥ € Vonys.
Lemma 4.3. Hphys is unitarily equivalent to V.
Proof. The map T : Vi — Hphys defined by
710 = [Wilphys:, ¥1 €W
is isometrically isomorphism, i.e., 73 is bijective and satisfies, for all ¥, ¥’'; € Vi,
(Uy | 1) = (191, T1¥ 1) phys- (4.2)
By Lemma 4.1 (1), the left hand side in the above equation is equal to (¥1,¥’;). Thus the proof is

complete., .|

4.2 Physical Hamiltonian

In the rest of this section, mainly for simplicity, we assume that the external source is static, i.e., jo(x,t) =
p(z) and j; = 0. Then the Hamiltonian of this system is time independent and given by

H = H; + AY (p).

In (8], we prove that H is n-self-adjoint on D(H) = D(Hs). Our task is to define the physical Hamiltonian
Hyhys on the physical Hilbert space Hpnys = Vphys/Vo consistently and prove its self-adjointness. Let
Pphys be the orthogonal projection onto Vphys, i.€., Pphys = P;‘hys = Pghys. We ﬁrst‘ note that, H is not
reduced by Vphys, i-€., Pohys H ¢ H Pphys The following lemma is a good starting point for our problem.

Lemma 4.4. (1) Pyhys leaves D(H) invariant, i.e., Ponys D(H) C D(H).
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(2) H leaves Vpnys tnvariant, i.e., H(D(H) 0\ Vphys) € Vphys-
Proof. Let Prp =T'(1® 1 & 1@ 0) be the orthogoanl! projection onto Fr. Then Pphys is given by
Porys = UPrL U

Since U, U1, Py, leaves D(H;) invariant and D(H) = D(Hy), we conclude (1).
Let ¥ € D(H) N Vohys. Then there exists a vector & € Fry, such that ® = U~'¥ € D(H). Hence we
have
HY = HP,,, . =U-U'HU - Pr,U™'¥
= U[H; — a*(p/Vw.3) — a(p(—)/Vw.0) + Eo]®

= UH® € Vohys. (4.3)
where
H = H; — a*(p/ V@, 3) + Ey, (4.4)
1 (k)
== | dk—-. 4.5
B =5 | o
Thus we have the desired result. O

By the above lemma, one can define a reduced operator Hy,, . of H on Vphys as follows:

rhys

D(vah,w) = D(H) N Vphys
vahw\l’ =HY¥, Ve D(vahy_).

Since H is densely defined and closed on F, it follows fron Lemuma 4.4 that Hy,, . is also densely defined
and closed on Vphys. The following lemma follows from (4.3).

Lemma 4.5. The operator H defined by (4.4) is closed on D(H) = D(H;) and satisfies
Hy,,, ¥ =UHU™'Y, Ve D(Hy,,.) (4.6)

We consider the resolvent of Hy,, .. In general we denote by p(A) the resolvent set of a linear operator

A. Since the creation operators are infinitesimally small with respect to H, we observe that p(H) # 0.
By (4.6) we have the following lemma:

Lemma 4.6. It follows that p(H) C p(Hv,,,.) and that the resolvent of Hy,,,, at z € p(H) is given by

(Hv,,. —2) ' =UH - 27U

Let

R = {z € p(H; + Ep) | 2¢ + b(¢)/|Eo — z| < 1 with some € > 0},
here e/l , 16/VE)

_ip/w A/ Vw
b(e) = 5 + 7
For all z € @, it follows that |la*(p/v/w,3)(H; + Eo — z) !l < 1 and hence that z € p(H) and
o0
(H -2)7' = (Hi + Eo - 2)"'a"(§/ Ve, 3)(Hr + Eo — 2) '™ (4.7)

n=0
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Lemma 4.7. Let z € #. Then (Hy,, .. — z)~* leaves Vo invariant.

phys

Proof. By Lemma 4.6 and the equation (4.7), we have, for all ¥4 = U®¢ € Vy,

(vah_vs - Z)_l\lfo =U Z(H{ + Ey — z)‘l[a*(f)/\/;,B)(Hf + Ey — Z)_l]nCD() € Vg.

n=0
The proof is complete. |

Let us fix zg € Z and set
Ry = (vahw - Zo)—l.

Then, by the above lemma, the following operator [Ro|phys 0N Hphys is well-defined:
[RO]phys[‘Il]phys = [RO‘I,]phySa [\I’]phys € thys~
Lemma 4.8. (1) [Rolphys is bounded and ||[Ro]phys]l < || Roll-

(2) [Rolphys is injective and [Ro]_hlys is closed.
Proof. (1) follows from Lemma 4.1 and the equation (4.2). By the boundedness of [Ro|phys, [Ro];hlys is
closed if [Rolphys is injective. We need only to prove the injectivity on [Rg]pnys- Let [Ro]phys[¥]phys = 0
Then (Ro¥ | Ro¥) = 0 and hence Rg¥ € V,. Hence there exists a vector ®; € .Ff: N FrL such that
U~lRo¥ = @;. By (4.6), we have

¥ = (Hy,,,. — 20)Ro¥ = UZ(H{ + Eo — z) " Ya*(p/vw,3)(H; + Eo — 2) 7" ®g € Vo,
n=0
which implies that [¥]phys = 0. Thus the proof is complete. ]

Let us define the physical Hamiltonian Hppys by

thy5 = zp + [Ro];}‘IYS.

By Lemuna 4.8, Hphys is closed on Vphys. Our next task is to prove that the definition of Hphys is
independent of the choice of zp € 2. To this end, we seek another expression of Hphys. Let Py be the

orthogonal projection onto Vi given by
P, =UPU™!,

where Pr = '(1© 10 & 0) is the orthogonal projection onto Fr. We set
Dy := {[¥]phys € Hphys | P € D(Hy,,,,.)}

Since [¥]pnys = [¥']phys implies that Py ¥ = P, ¥’, the right hand side of the above equation is independent
of the choice of the representative. Since Py leaves D(Hy,,,,) invariant, it follows that Dy is dense in
Hphys. The following proposition implies that Hphys is densely defined and independent of the choice of
20 € #.

Proposition 4.9. (1) D(Hpnys) = Dy
(2) For all [‘I’]phys € D(thyS).v thys[qj]phys = [vahyspl\y}phys'
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Proof. Let [¥]phsy € D1. Then we have P¥ € D(Hy,,,.) and set © := (Hy,,. — z0)P\¥ € D((Hy,,,. —
20)~1). By direct calculation, we have

[Wlphys = [P1¥]phys = [(HV.,h_w - ZO)‘I‘I’]phys = [Ro)phys(®]phys € D([RO];hlys)

and hence (¥],nys € D(Hphys). Conversely, setting [¥]ohys € D(Hphys) = D([RO];hlys). there exists a
vector [®]pnys € Hphys such that [¥]pnys = [Rolphys(®]phys = [Ro®]phys- By the fact Py leaves D(Hy,,,.)
invariant, we have P,¥ = P;Ro® € D(Hy,,,.) and hence [¥],nys € 21. Thus we conclude (1).

Let [¥]phys € D(Hphys) = 21. Then it follows from the above discussion that Pi¥ € D(Hy,,,.) and

that there exists a vector [®]phys € Hphys such that [¥]phys = [Ro]phys(®]phys. Since we have

Hophys[¥lohys = [Hvy PL¥]phys = [20% + @ — Hy,, . P1¥pnys,
we need only to prove zo% + & ~ Hy,, PV € Vo. Indeed, by Pi¥ — Ro® € Vo N D(Hy,,,. ). we have
¥ +® - Hy,  P1¥ = z(1 - P1)¥ - (Hy,,,. — 20)(P1¥ — Ro®) € Vo.
Thus the proof is complete. O

As is shown in Lemma 4.3, the physical Hilbert space Hpnys is unitarily equivalent to V; and ThV; =
Hphys- In order to prove that the self-adjointness of the physical Hamniltonian Hppys, we prepare the
following lemma:

Lemma 4.10. The following operator equation holds:

thys = T1P1HV,.1.WP1T1_1‘

Proof. Let [¥]phys € D(Hphys). Then we have P,¥ = TP phys = T5 [ ¥)phys € D(Hy,,,.) and

thys[‘l’]phys = [PIHV

phve

P1¥)phys = Ti PiHy,, . P [®lonys-

Thus we obtain Hphys C T1 Plep,MPlel. Conversely, setting [U]phys € D(TyPiHy,,, PyTT '), we have
PV = P,T; ! [W]pnys € D(Hy,,,.) and hence [¥]pnys € D(Hphys). Then we have

Ty P Hy,,..PiT] ' [¥lphys = [P1Hy

,.:.V”Pl‘p]phys = thys[‘l’]phys'
Thus we obtain the desired resuit. ]

By the above lemma, we observe that Hpnys is self-adjoint if and only if PiHy,,, P is self-adjoint.
Indeed, by direct calculation, we have

P,Hy P, = PUHU™'P, = UHT + Eo|PrU™?,

Phys
where HY = dI'(®%w) ® I. Thus we have the following theorem:
Theorem 4.11. (1) Hpnys is self-adjoint and bounded below.

(2) Hphys has a unique ground state [UQphys with the ground state energy Ey:
thys [UQ]phys = Eg [UQ]phys~
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