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1 Introduction

This paper is a short review on mathematical theory of time operators in quantum
physics [2, 6, 7, 8, 9, 10, 12, 13]. There are some types or classes of time operators
which are not necessarily equivalent each other. We first recall the definitions of
them with comments.

Let H be a complex Hilbert space. We denote the inner product and the norm
of H by (-, -) (antilinear in the first variable) and || - || respectively. For a linear
operator A on a Hilbert space, D(A) denotes the domain of A. Let H be a self-
adjoint operator on 3 and T be a symmetric operator on H.
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The operator T' is called an ordinary time operator of H if there is a dense
subspace D of H such that D € D(T'H) N D(HT) and the canonical commutation
relation (CCR)

[T,H]:=(TH - HT) =i

holds on D (i.e., [T, H|Y = 13, Yy € D), where ¢ is the imaginary unit. In this case,
T is called a canonical conjugate to H too.

The name “time operator” for the operator T' comes from the quantum theo-
retical context where H is taken to be the Hamiltonian of a quantum system and
the heuristic classical-quantum correspondence based on the structure that, in the
classical relativistic mechanics, time is a canonical conjugate variable to energy in
each Lorentz frame of coordinates. We remark, however, that this name is somewhat
misleading, because time is not an observable in the usual quantum theory, but just
a parameter assigning the time when a quantum event is observed. But we follow
convention in this respect. By the same reason as just remarked, T is not necessarily
(essentially) self-adjoint. But this does not mean that it is “unphysical” [2, 13].

From a representation theoretic point of view, the pair (T, H) is a symmetric
representation of the CCR with one degree of freedom [3, Chapter 3]. But one
should remember that, as for this original form of representation of the CCR, the von
Neumann uniqueness theorem ([3, Theorem 3.23], [14], [15, Theorem VIIL.14]) does
not necessarily hold. In other words, (T, H) is not necessarily unitarily equivalent
to a direct sum of the Schrédinger representation of the CCR with one degree of
freedom. Indeed, for example, it is obvious that, if H is semi-bounded (i.e., bounded
below or bounded above), then (T, H) cannot be unitarily equivalent to a direct sum
of the Schrédinger representation of the CCR with one degree of freedom.

A classification of pairs (T, H) with T being bounded (hence the case where T is a
bounded self-adjoint operator) has been done by G. Dorfmeister and J. Dorfmeister
[11].

A weak form of time operator is defined as follows. We say that a symmetric
operator T is a weak time operator of H if there is a dense subspace D, of 3 such
that Dy, € D(T) N D(H) and

(Ty, Hé) — (HY, T¢) = (¢, i4), ¢, ¢ € Dy,

i.e., (T, H) satisfies the CCR in the sense of sesquilinear form on D,,. Obviously an
ordinary time operator T of H is a weak time operator of H. But the converse is
not truel.

In contrast to the weak form of time operator, there is a strong form. We say
that T is a strong time operator of H if, for all t € R, e™*#D(T) C D(T) and

Te=H ) = =*H(T 1 ), ¢ € D(T). (1.1)

Tt is easy to see, however, that, if 7" is a weak time operator of H» and D(TH)ND(HT) is
dense in H, then T is an ordinary time operator with D = D(TH) N D(HT).
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We call (1.1) the weak Weyl relation [2]. From a representation theoretic point of
view, we call a pair (7, H) obeving the weak Weyl relation a weak Weyl represen-
tation of the CCR. This tvpe of representation of the CCR was extensively studied
by Schwiidgen [17, 18]. Tt is shown that a strong time operator of H is an ordinary
time operator of H [13]. But the converse is not true.

Relations among different types of time operators are shown as follows:

{strong time operators} g {ordinary time operators}
G {weak time operators}. (1.2)
There is a generalized version of strong time operator [2]. We say that T is a
generalized time operator of H if, for each t € R, there is a bounded self-adjoint

operator K (t) on H with D(K(t)) = H, e D(T) C D(T") and a generalized weak
Weyl relation (GWWR)

Te #Hy = e "4(T + K(t))y (V¢ € D(T)) (1.3)

holds. In this case, the bounded operator-valued function K (t) of ¢t € R is called
the commutation factor of the GWWR under consideration.
In what follows, we present fundamental results on time operators.

2 Weak Time Operators

An important aspect of a weak time operator T of H is that a time-energy uncer-
tainty relation is naturally derived. Indeed, one can prove that, for all unit vectors
¢ in Dy € D(T)N D(H),

1
(AT)y(AH)y > 3 (2.1)
where, for a linear operator A on H and ¢ € D(A4) with ||¢|| =1,

(AA)y = (A = (¢, Ab)) 4|,

called the uncertainty of A in the vector ¢. Note that, by (1.2), (2.1) holds also in
the case where T is a strong time operator or an ordinary time operator of H.

3 Galapon Time Operator

As an important example of ordinary time operator, we describe a time operator
introduced by Galapon [12] (see also [10]).

Let H be a complex Hilbert space and H be a self-adjoint operator on J which
has the following properties (H.1) and (H.2):
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(H.1) The spectrum of H, denoted o(H), is purely discrete with o(H) = {E,}>,,
where each eigenvalue E,, of H is simple and 0 < E,, < E,,; for all n € N (the
set of positive integers).

(o @]
By (H.1), H has a complete orthonormal system (CONS) of eigenvectors {e, }32 ;:

He, = E,e,, n € N. Using {e,}52,, one can define a linear operator T' on H as
follows:

[\.1

o —{‘/ e3> | gl <°°} (3.1)
n=1 m#n t m
T¢=i§3(22§¥%§)a“ ¥ € D(T). (3.2)
n=1 meEn n m

We denote by Dy the subspace algebraically spanned by the set {e,}>2,. It
follows from (H.2) that Dy € D(T'). Moreover we have:

Proposition 3.1 The operator
Tl = TI'DO (33)
(the restriction of T" to Dy) is symmetric.

Let D, be the subspace algebraically spanned by {e,—e,, € H|n,m > 1}). Then
it is easy to see that D, is dense in H and

D, C Dy.
The next theorem shows that 73 is an ordinary time operator of H:
Theorem 3.2 [12] It holds that
D. C D(TVH) N D(HTY) (3.4)

and

[Ty, Hly =i, 4 € De. (3.5)

We call T the Galapon time operator. Detailed properties of 7' and 17 have been
investigated in [10]. Here we only mention a result on boundedness of 77.
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Theorem 3.3 [10. Theorem 4.5] Suppose that there exist constants o« > 1,C" > 0
and a > 0 such that

E,-E,> C(na - 777‘6!), n>m>a.
Then Ty is a bounded self-adjoint operator with D(T1) = H and Ty = T.

This result is striking in a sense, because there has been a “belief” or a “folklore”
among physicists that there are no self-adjoint canonical conjugates to a Hamiltonian
which is bounded below. Theorem 3.3 clearly shows that this belief is an illusion.
We also remark that the Galapon time operator 7 is not a strong time operator.
This follows from directly calculating (T~ — e="HT})e,, (t € R) or a property of
strong time operators (see Theorem 4.1 below).

Remark 3.1 Theorem 3.3 does not cover the case where E,, = ¢, := a(n — 1) +
b, € N (a > 0,0 > 0 are constants), i.e., the case where {E,}, is the spectrum
of a one-diemsional quanutm harmonic oscillator. But, by using another method,
oune can prove that 7 with E, = &, is a bounded self-adjoint operator on H and
Ty = T ([10, Theorem 4.6]). Puttmg 0 := aT; and N := a~'H — b (the number
operator), we have [f, N] = i on D, and o(#) = [—m,x]. This allows one to interpret
6 a quantum phase operator. For the details, see [10, Example 4.2].

4 Strong Time Operators
Suppose that a self-adjoint operator H has a strong time operator 7. A basic
property of H is given in the next theorem:

Theorem 4.1 [13] The operator H is purely absolutely continuous (hence H has no
eigenvalues).

This theorem implies that, for all ¥, ¢ € H, limy . 1o <'L/J, e~ itH d)} = 0 [3, Theorem
7.5].

Hence one can ask how fast the transition probability amplitude <'l/),€‘“H <z§>
decays as t — Fo0o. The strong time operator T° controls it in some way:

Theorem 4.2 Let n € N. Then, for all . € D(T") and t € R\ {0},

| (¢, e )| < __dﬁfﬁ;)"w)’ (4.1)

where dX (¢, ) is as follows:
di (¢ 4) = 1Tl + NI Tw |,

& (6.0) = [T 0l ] + I I + Z n

Vv
V]

)'7! 71 1(¢ I d’) n
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The theorem with n =1 (resp. n > 2) was proved by Miyamoto [13] (resp. the
present author [2, Theorem 8.5]). Note that, in estimate (4.1), the order n of decay
in [t] is exactly equal to the order of the domain in T to which ¢ and ¥ belong and
the constant dl(¢,v) is determined by n, T, ¢ and +. In this way the strong time
operator T has a connection to quantum dynamics, independently of whether it is
(essentially) self-adjoint or not.

As for properties of the strong time operator 7' we have the following theorem:

Theorem 4.3 ([13], [2, Theorem 2.8]) If H is semi-bounded (i.e., bounded below or
bounded above), then T is not essentially self-adjoint.

This theorem combined with a general theorem ([3, p.117, Appendix C], [16,
Theorem X.1]) implies that, in the case where H is semi-bounded, the spectrum
o(T) of T is one of the following three sets :

(i) C.
(i) TI4, the closure of the upper half-plane IL; := {z € C|{Imz > 0}.
(iii) TI_, the closure of the lower half-plane II_ := {z € C|Imz < 0}.

From this point of view, it is interesting to examine which one is realized, depending
on properties of H. In this respect we have the following theorem:

Theorem 4.4 [6, Theorem 2.1] The following (i)—(iii) hold:
(i) If H is bounded below, then o(T) is either C or I1,.
(ii) If H is bounded above, then o(T) is either C or I1..
(iii) If H is bounded, then o(T) = C.

Example 4.1 Let A be the n-dimensional generalized Laplacian acting in L?(R})
(n € N), where R? := {x = (21, ,x,)|z; € R,j=1,--- ,n}, and

A

= 4.2
2m (4.2)

HO =
with a constant m > 0. In the context of quantum mechanics, Hy represents the
free Hamiltonian of a free nonrelativistic quantum particle with mass m in the
n-dimensional space R?. It is well known that Hp is a nonnegative self-adjoint
operator. We denote by i; the multiplication operator on L?(R}) by the j-th variable
r; € Rland set
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with D, being the generalized partial differential operator in the variable z; on
) . ~ A~ . . . .

L“(R7). It is casy to sce that 2; and p; are injective. For each j = 1,--- ,n, one can

define a linear operator on L?(R") by

m o, L
T = = (555" + 85 '2)) (4.4)

with domain A
D(Ty) = {f € L*(R})|f € C§° ()}, (4.5)

where f is the Fourier transform of f and €, := {k = (k1. -+ . kn) € R7|k; # 0}.
Omne can show that T} is a strong time operator of Hy ([2, 13]). The time operator
T; is called the Aharonov-Bohm time operator [1]. One can prove that

U(Tj):ﬁ-f—? J:l‘an
For proot, see [6, §4.1].
Example 4.2 A Hamiltonian of a free relativistic spinless particle with mass m > 0
moving in R? is given by
H(m) =V —-A+m? (4.6)
acting in L2(R?). It is shown that the operator
T;(m) = H(7n)]3j_1§:j + :ifjH(77'z.)]3j_1 (4.7)

with D(Tj(m)) := D(T;) is a strong time operator of H(m) [2, Example 11.4].
Moreover one can prove the following fact [6, §4.2]:

o(T;(m)) =TI, j=1,---,n

5 A Class of Generalized Time Operators

A general theory of generalized time operators including various examples has been
developed in [2]. Here we only describe a special class of generalized time operators.
Let H be a self-adjoint operator on a complex Hilbert space H and T be a symmetric
operator on H. We call the operator T a generalized strong time operator of H if
e"tHD(T) € D(T) for all t € R and there exists a bounded self-adjoint operator
C # 0 on H with D(C) = I such that

Te tHy = ¢ (T + tC)y, + € D(T), (5.1)

We call C' the noncommutative factor for (H,T). The pair (H,T) with T" a general-
ized strong time operator has properties similar to those of (H,T') with T a strong
time operator, but in weakened forms.
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Theorem 5.1 [2] Let T be a generalized strong time operator of H with noncom-
mutative factor C'. Then:

(i) Let H be semi-bounded and
CT c TC. (5.2)

Then T is not essentially self-adjoint .

(ii) H s reduced by Ran(C) and the reduced part H|Ran(C') to Ran(C') is purely
absolutely continuous.

(iii) Let H be bounded below. Then, for all 3 >0, e PED(T) c D(T) and
Te Py — e PHTY = —ipe™PHCy, + € D(T). (5.3)

For (T, H) with T a generalized strong time operator, Theorem 4.2 is generalized
as follows:

Theorem 5.2 [2, Theorem 8.9] Let T be a generalized strong time operator of H
with noncommutative factor C'. Then, for each n € N, there exists a subspace

D, (T,C) such that, for all $ € D(T") and ¢ € D, (T,C) (¢, #0),

| (¢, e HC™p) | < —-——d"'l(z;,w), t € R\ {0} (5.4)

where d,(p,) > 0 is a constant independent of t.

6 A Mapping on the Space of Weak Weyl Repre-
sentations and Construction of Weyl Represen-
tations

One can consider the set of all weak Weyl representations:
WW(H) := {(T, H)|(T, H) is a weak Weyl representation}. (6.1)

Let (T, H) € WW(H). Then, by Theorem 4.1, one can define, via functional
calculus,

L(H) = log |H], (6.2)

which is self-adjoint. One can also show that the operator

D(T, H) := %(TH + HT) (6.3)
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is densely defined and synunetric.
By direct computations, one can show that the following commutation relations

hold:

[T.D(T.H)| = iT on D(T?H)N D(HT?) N D(THT), (6.4)
[H.D(T.H)] = —iH on D(H?T)N D(TH?) N D(HTH), (6.5)
[H.L(H)] =0 on D(HL(H))N D(L(H)H). (6.6)

This implies that, if there is a domain D C D(T) N D(H) such that 7D C D and
HD C D, then {T,H,D(T,H)} generates a Lie subalgebra of £(D) (the vector
space of all linear operators on D). If we introduce

A=—-T, B:=H, C:=-iD(T,H),

then we have

[(C,A]=—A, [C,B]=B, [AB]=1

on D. This is the same set of commutation relations as that defining the harmonic

oscillator Lie algebra generated by three elements a, a' and a'a obeying [a,a'] = 1

(the correspondence is: a — A,a' — B,ala — C). In other words, {4, B,C} gives

a representation of the harmonic oscillator Lie algebra. But this representation is

somewhat unusual in the sense that B is not the adjoint of A and C'is antisymmerric.
We can prove the following theorem:

Theorem 6.1 [9, Theorem 2.4] (D(T,H),L(H)) € WW(H).
By this theorem, we can define a mapping f : WW(H) — WW(H) by
f(T,H) = (D(T,H),L(H)), (T.H)e WW(H). (6.7)

Thus, starting from each weak Weyl representation (T, H) € WW(H), we have a
set {f™(T. H)}>, of weak Weyl representations which may be an infinite set.
The quantity
Eo(H) :=info(H),

the infimum of the spectrum of o(H), is called the lowest energy of H. The fol-
lowing theorem is concerned with unitary equivalence between (T, H) and f(T', H)
((T,H) € WW(H)).

Theorem 6.2 If infae,(ar)log |A| # Eo(H), then (T, H) is not unitarily equivalent
to f(T,H).

Proof. By the spectral mapping theorem, we have o(L(H)) = {log|A||\ €
o(H)}. If (T, H) is unitarily equivalent to f(7, H), then o(H) = o(L(H)). This
implies that Eo(H) = infaeo(m) log |A|. But this contradicts the present assumption.
O



33

Corollary 6.3 If H > 0, then (T, H) is not unitarily equivalent to f(T, H).

Proof. It H > 0, then Eq(H) > 0. Hence, if Eo(H) > 0, then infye,m) log || =
log Ey(H) # Eo(H). If Eg(H) = 0, then infyey gz log|A| = —o00. Thus the assump-
tion of Theorem 6.2 is satisfied. O

Investigations towards a complete classification of {f*(T, H)}>2, are still in
progress.

It also is interesting to know when (D(T, H), L(H)) becomes a Weyl represen-
tation of the CCR. As for this aspect, we have the following result:

Theorem 6.4 [9, Corollary 2.6] Suppose that D(T, H) is essentially self-adjoint.
Then, for all s,t € R,

isDIH) itL(H) _ ,—ist ,itL(H) jisD(T.H)

Namely (D(T, H), L(H)) is a Weyl representation of the CCR.

Example 6.1 In the case where H = Hy and T = T; (Example 4.1), we can prove
that D(T}, Hy) is essentially self-adjoint. Hence, by Theorem 6.4, (D(T}, Hy), log Hy)
is a Weyl representation. Therefore, by the von Neumann uniqueness theorem ([14],
[3, Theorem 3.23]), we can conclude that (D(T}, Hy), log Hy) is unitarily equivalent
to a direct sum of the Schrodinger representation of the CCR with one degree of
freedom.

Example 6.2 Let us consider Example 4.2. In this example, there is a big difference
between the case m = 0 and the case m > 0. Indeed, we can prove the following
facts:

(i) If m = 0, then D(T;(0), H(0)) is essentially self-adjoint. Hence, by Theorem
6.4, (D(T;(0), H(0)),log H(0)) is unitarily equivalent to a direct sum of the
Schrédinger representation of the CCR with one degree of freedom.

(ii) If m > 0, then D(T;(m), H(m)) is not essentially self-adjoint and

o(D(T;(m), H(m)) = I1,.

In particular, (D(T;(m), H(m)), log H(m)) is not unitarily equivalent to a di-
rect sum of the Schrodinger representation of the CCR with one degree of
freedom.

These mathematical structures are interesting in the sense that it gives a represen-
tation theoretic meaning to the mass m.
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7 Concluding Remark

Finally we would like to give a remark on Theorem 6.4 from a view-point of nat-
ural philosophy or quantum-mathematical cosmology® (not physics). Suppose that
H is separable. Let (T, H) be a pair obeying the weak Weyl relation such that
D(T, H) is essentially self-adjoint. Then, by Theorem 6.4 and the von Neumann
uniqueness theorem, (D(T', H), L(H)) is unitarily equivalent to a direct sum of the
Schrédinger representation of the CCR with one degree of freedom. On the other
hand, a direct sumn of the Schrodinger representation of the CCR with one degree
of freedom describes a set of external degrees of freedom associated with the usual
macroscopic perception of space. Hence, in this representation theoretic scheme,
one can infer that a pair (T, H) obeying the weak Weyl relation “creates” a set of
external degrees which is a basis for quantum mechanics associated with the usual
(daily-life) space-time picture that the humanbeing has. In this sense, a pair (T, H)
obeying the weak Weyl relation may be more fundamental in ontological structures
or orders (cosmos). Thus an important thing is to how to interpret philosophically,
in a proper way, a pair (T, H) obeying the weak Weyl relation such that D(T, H)
1s esssentially self-adjoint. A possible view-point for this is that 7T is a fundamen-
tal “time” and H is a fundamental “energy” in the metaphysical sense that they
produce a “phase” or a “rank” in the metaphysical dimension of existence which
is more directly connected with the usual picture of space-time in the physical or
sensorial-phenomenal dimension. In connection with this philosophical view-point,
we are now considering the problem of uniqueness of weak Weyl representations [8].
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