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1 Introduction
This paper is a short review on mathematical theory of time operators in quantum
$1)1_{1}ysics^{\backslash }[2,6,7,8,9,10,12,13]$ . There are some types or classes of time $operat_{w}ors$

wliich are not necessarily equivalent each other. We first recall the definitions of
tllein with comments.

$Let_{!}\mathcal{H}$ be a complex Hilbert space. We denote the inner product and the norm
of $\mathcal{H}$ by $\langle\cdot,$ $\cdot\rangle$ (antilinear in the first variable) and $\Vert\cdot\Vert$ respectively. For a linear
operator $A4$ on a Hilbert space, $D(A)$ denotes the domain of $A$ . Let $H$ be a self-
adjoint operator on $\mathcal{H}$ and $T$ be a symmetric operator on $\mathcal{H}$ .
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The operator $T$ is called an ordinary timc operator of $H$ if there is a dense
subspace $\mathcal{D}$ of $\mathcal{H}$ siich that $\mathcal{D}\subset D(TH)\cap D(HT)$ and the canonical commutation
relation (CCR)

$[T, H]$ $:=(TH-HT)=i$
liolds on $\mathcal{D}$ $(i.e., [T, H]\uparrow/f=i\iota/),$ $\forall\psi)\in \mathcal{D})$ , where $i$ is the imaginary unit. In this case,
$T$ is called a canonical $C07?jugate$ to $H$ too.

$T1_{1}e$ naine (tiine operator” for the operator $T$ comes from the quantum tlieo-
retical context where $H$ is taken to be the Hamiltonian of a quantum sy,stem and
the heuristic classical-quantuin correspondence based on the structure that, in the
classical relativistic inechaiiics, tinie is a canonical conjugat$e$ variable to energy in
each Lorentz fraine of coordinates. We remark, however, that this name is somewhat
misleading, because time is not an observable in the usual quantum theory, but just
$n$ paraineter assigning the time when a quantum event is observed. But we follow
conv$(si_{i}tion$ in this respect. By the same reason as just remarked, $T$ is not necessarily
(essentially) self-adjoint. But tliis does not mean that it is “unphysical” [2, 13].

Froin a representation theoretic point of view, the pair $(T, H)$ is a symmetric
represeiitation of the CCR with one degree of freedom [3, Chapter 3]. But one
sliould remember that, as for this original form of representation of the CCR, the von
Neumann $uiiiquene\in ib^{}$ theorem ([3, Theorem 3.23], [14], [15, Theorem VIII.14]) does
not necessarily hold. In other words, $(T, H)$ is not necessarily unitarily equivalent
to a direct sum of tlie Schrodinger representation of tlie CCR with one degree of
freedom. Indeed, for example, it is obvious that, if $H$ is semi-bounded (i.e., bounded
below or bounded above), tlien $(T, H)$ cannot be unitarily equivalent to a direct sum
of tlie Sclir\"odinger represeiitation of the CCR with one degree of freedom.

A cla$\ sificatioi_{i}$ of pairs $(T, H)$ with $T$ being bounded (hence the case where $T$ is a
bouiided self-adjoint operator) has been done by G. Dorfmeister and J. Dorfmeister
[11].

A weak form of time operator is defined as follows. We say that a symmetric
operator $T$ is a weak time operator of $H$ if there is a dense subspace $\mathcal{D}_{W}$ of $\mathcal{H}$ such
$t1_{1\mathfrak{c}}\iota t\mathcal{D}_{w}\subset D(T)\cap D(H)$ and

$\langle T\cdot\psi,$ $H\phi\rangle-\langle H\psi,$ $T\phi\rangle=\langle\psi_{J},$ $i\phi\rangle$ , $\psi,$ $\phi\in \mathcal{D}_{w}$ ,

i.e., $(T, H)$ satisfies the CCR in $t_{T}he$ sense of sesquilinear form on $\mathcal{D}_{\iota v}$ . Obviously an
ordinary time operator $T$ of $H$ is a weak time operator of $H$ . But the converse is
not truel.

In contrast to the weak form of time operator, there is a strong form. We say
that $T$ is a $st\uparrow^{\tau}or\iota gti$me operator of $Hif_{7}$ for all $t\in \mathbb{R},$ $e^{-itH}D(T)\subset D(T)$ aiid

$Te^{-itH}\psi)=e^{-itH}(T+t)\psi$ , $\psi\in D(T)$ . (1.1)

lIt is easy to see, however, that, if $T$ is a weak time operator of $H$ and $D(TH)\cap D(HT)$ is

dense in $\mathcal{H}$ , then $T$ is an ordinary tinie operator with $\mathcal{D}=D(TH)\cap D(HT)$ .
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NVe call (1.1) $tllc^{J}$ wcak Weyl relation [2]. From a representation theoretic poiiit of
view, we call a pair $(T, H)$ obeying $t1_{1}e$ weak Weyl relation a weak Weyl represen-
tatio $7l$ of the CCR. This type of represent ation of $t1_{1}e$ CCR was extensivelv studied

$|)\iota$. Scliiiiiidgen [17, 18]. It is shown that a strong tiine operator of $H$ is an ordinarv
tiine operatoi of $H[13]$ . But the converse is not true.

Relations aiiiong different types of time operat,ors are shown as follows:

{stroiig tiine operators} $\subsetneqq$ {ordinary tiine operators}
$\subsetneqq$ $\{$ weak tiine operators}. (1.2)

Tliere is a generalized version of strong time operator [2]. We say that $T$ is a
$fC7\downarrow e7^{\cdot}(\iota l1\approx e(i$ time opcrator of $H$ if, for each $t\in \mathbb{R}$ , there is a bounded self-adjoint
operatOr $K(t)$ on $\mathcal{H}$ witli $D(K(t))=\mathcal{H},$ $\epsilon^{-itH}D(T)\subset D(T)$ and a generalized weak

$TT’r_{C1/(}lr\cdot cl\iota t!or\iota$ (GWWR)

$Tc^{-itH}\psi=e^{-itH}(T+K(t))\psi$ $(\forall\psi\in D(T))$ (1.3)

liolds. In tliis case, the bounded operator-valued function $K(t)$ of $t\in \mathbb{R}$ is called
the comm utation factor of the GWWR under consideration.

In what follows, we present fundamental results on time operators.

2 Weak Time Operators
An iinportant $asl$) $ect$ of a weak t,ime operator $T$ of $H$ is tha.$t$ a time-energy uncer-
$t\iota i\uparrow\iota t\cdot|/7^{\cdot}()$la tion is naturally derived. Indeed, one can prove that, for all unit vectors
$\psi\dagger$ in $\mathcal{D}_{\iota v}\subset D(T)\cap D(H)$ ,

$( \Delta T)_{\psi}(\Delta H)_{\psi}\geq\frac{1}{2}$ , (2.1)

wliere, for a linear operator $A$ on $\mathcal{H}$ and $\phi\in D(A)$ with $\Vert\phi\Vert=1$ ,

$(\Delta A)_{\phi}:=\Vert(A-\langle\phi, A\phi\rangle)\phi\Vert$ ,

called the $\prime nncer\cdot tcxir\iota ty$ of $A$ in the vector $\phi$ . Not,e that, by (1.2), (2.1) holds also in
the case where $T$ is a strong time operator or an ordinary time operator of $H$ .

3 Galapon Time Operator
As all import,ant exalnple of ordinary time operator, we describe a tiine operator
introduced by Galapon [12] (see also [10]).

Let $\mathcal{H}$ be a complex Hilbert space and $H$ be a self-adjoint operator on $\mathcal{H}$ which
has tlie following properties (H.1) and (H.2):
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(H.1) Tlie $\backslash ’1$ ) $c^{3}ctrum$ of $H_{7}$ denoted $\sigma(H)$ , is purely discrete with $\sigma(H)=\{E_{71}\}_{n=1}^{\infty}$ ,
$1_{\backslash 1^{r\}_{1}ele}}$ eacli eigenvalue $E_{n}$ of $H$ is simple and $0<E_{\eta}<E_{7l+1}$ for all $!\gamma?_{l}\in N$ (the
set of positive integers).

(H.2) $\sum_{ll=1}^{\infty}\frac{1}{E_{7l}\underline{)}}<\infty$ .

By (H. 1), $H$ has a complete orthonormal system (CONS) of eigenvectors $\{e_{n}\}_{n=1}^{\infty}$ :
$H\epsilon_{7l}^{\gamma}=E_{n}e_{\uparrow?},$ $71\in \mathbb{N}$ . Using $\{e_{n}\}_{7l=1}^{\infty}$ , one can define a linear operator $T$ on $\mathcal{H}$ as
follows:

$D(T)$ $:= \{\psi;\in \mathcal{H}|\sum_{n=1}^{\infty}\sum_{m\neq 7l}^{\infty}|\frac{\langle e_{m},\psi\rangle}{E_{\tau\iota}-E_{m}}|^{2}<\infty\}$ (3.1)

$T\psi$ $:=i \sum_{7l=1}^{\infty}(\sum_{m\neq n}^{\infty}\frac{\langle e_{m},\psi\rangle}{E_{n}-E_{7’ 1}})e_{t1}$ , $\psi\in D(T)$ . (3.2)

We $clenote$ by $\mathcal{D}_{0}$ the subspace algebraically spanned by the set $\{e_{7l}\}_{n.=1}^{\infty}$ . It
follows froin (H.2) that $\mathcal{D}_{0}\subset D(T)$ . Moreover we have:

Proposition 3.1 The operator

$T_{1}:=T|\mathcal{D}_{0}$ (3.3)

(the restriction of $T$ to $\mathcal{D}_{0}$ ) is symmetric,

Let $\mathcal{D}_{c}$ be the subspace algebraically spanned by $\{e_{\gamma 1}-e_{7?l}\in \mathcal{H}|n_{\tau}m\geq 1\})$ . Then
it is easy to see that $\mathcal{D}_{c}$ is dense in $\mathcal{H}$ and

$\mathcal{D}_{c}\subset \mathcal{D}_{0}$ .

Tlie next theorein shows that $T_{1}$ is an ordinary time operator of $H$ :

Theorem 3.2 [12] It holds that

$\mathcal{D}_{c}\subset D(T_{1}H)\cap D(HT_{1})$ (3.4)

and
$[T_{1}, H]\psi=i\psi$ , $\psi\in \mathcal{D}_{c}$ . (3.5)

We call $T_{1}t1_{1}e$ Galapon time operator. Detailed properties of $T$ and $T_{1}$ have been
investigated in [10]. Here we only mention a result on boundedness of $T_{1}$ .
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Theoreiii 3.3 $[10$ . $\prime r1_{1}eo1^{\cdot}(\lrcorner 1U4.5]$ Suppose that there $e.i:istco$nstan$tsc\iota>1,$ $C>0$
( $\iota\uparrow\prime d(l>0$ such that

$E_{n}-E_{7’ 1}\geq C(n^{\alpha}-7?^{\alpha})$ , $n>7??>a$ .

$Tl\}eriT_{1}$ is a bounded self-adjoint operator with $D(T_{1})=\mathcal{H}an_{T}dT_{1}=T$ .

Tliis result is striking in a sense, because tliere has been a “belief” or a “folklore”
among pliysicists that there are no self-adjoint canonical conjugates to a Hamiltonian
wlrich is bounded below. Theorein 3.3 clearly shows that this belief is an illusion.
$1V(s$ also reinark tliat the Galapon time operator $T_{1}$ is not a strong time operator.
Tliis follows froin directly calculating $(T_{1}e^{-itH}-e^{-itH}T_{1})e_{n}(t\in \mathbb{R})$ or a property of
strong tiiiie operators (see Theorem 4.1 below).

Remark 3.1 Theorein 3.3 does not cover the case where $E_{?1}=\underline{c}n$ $:=a(n-1)+$
$b,$ $\uparrow l\in N$ (a $>0,$ $b>0$ are constants), i.e., the case where $\{E_{7l}\}_{71}$ is the spectruin
of a $oncarrow dieinsional$ quanutm harmonic oscillator. But, by using another method,
$O11G$ can prove that $T_{1}$ with $E_{n}=\epsilon_{n}$ is a bounded self-adjoint operat,or on $\mathcal{H}$ and
$T_{1}=T$ ([10, Tlieorem 4.6]). Putting $\grave{\theta}$

$:=aT_{1}$ and $\hat{N}$ $:=a^{-1}H-b$ (the nuinber
operator), we have $[\hat{\theta}, N]=i$ on $\mathcal{D}_{c}$ and $\sigma(\hat{\theta})=[-\pi, \pi]$ . This allows one to interpret
$\theta$ a $qnaritu\uparrow n$ phase operator. For the details, see [10, Example 4.2].

4 Strong Time Operators
Suppose that a self-adjoint operator $H$ has a strong time operator $T$ . A basic
$P^{ro}1)ertv$ of $H$ is given in the next theorem:

Theorem 4.1 [13] The operator $H$ is purely absolutely $\omega nti7\iota,uoc\iota s$ (hence $H$ has no
$.ige7lt)c\iota lues)$ .

This tlieorein iinplies that, for all $\psi,$ $\phi\in \mathcal{H},$ $1in1_{tarrow\pm\infty}\langle\psi),$ $e^{-itH}\phi\rangle=0[3$ , Theorem
7.5].

$Henc\cdot e$ one can ask how fast the transition probability amplitude $\langle\psi,$ $e^{-itH}\phi\rangle$

decavs as $tarrow\pm\infty$ . The strong time operator $T$ controls it in soine way:

Theorem 4.2 Let $|?\in \mathbb{N}$ . $Tl_{7_{i}en}$ , for all $\phi,$ $\psi\in D(T^{r\iota})$ and $t\in \mathbb{R}\backslash \{0\}$ ,

$|\langle\phi,$ $e^{-itH} \psi\rangle|\leq\frac{d_{n}^{T}(\phi,\psi)}{|t|^{7i}}$ , (4.1)

$t^{1}/\iota e\uparrow^{\sim}\epsilon d_{n}^{I}(\phi, \psi)?s$ as follows:
$d_{1}^{T}(\phi, \iota/):=\Vert T\phi\Vert\Vert\psi)\Vert+\Vert\phi\Vert\Vert T’\psi\Vert$ ,

$(l^{T}( \phi, t/):=\Vert T^{??}\phi\Vert\Vert\psi)\Vert+\Vert\phi\Vert\Vert T^{n_{l}}\psi\Vert+\sum_{r=1}^{n-1}\frac{n!}{(n-\uparrow\cdot)!7^{\backslash !}}d_{n-r}^{T}.(\phi, T^{r}l^{1})$ , $n\geq 2$ .
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The tIieorem witli $tl=1$ $($ resp. $r\iota\geq 2)$ was proved by Miyainoto [13] (resp. tlie
present autlior [2, Tlieorem 8.5] $)$ . Note tliat, in estiinate (4.1), the order $??$. of decav
in $|t|$ is exactly equal to the order of the domain in $T$ to which $\phi$ and $\psi$ belong and
the constant $d_{7l}^{T}(\phi, l^{7})$ is deterinined by $n,$ $T,$ $\phi$ and $\psi$ . In this way the strong time
operator $T$ has a connection to quantum dvnamics, independently of whether it is
$(e\mathfrak{d}^{I}seliti_{C}\backslash 11y)$ self-adjoint or not.

As for properties of tlie strong time operator $T$ we have the following theorem:

Theorem 4.3 ([13], [2, Theorem 2.8]) If $H$ is $semi- bo\prime nnded(i.e.,$ $bo$ im$ded$ below or
$bo$ nndcd $abol$ ) $e)_{i}$ then $T$ is not essentially self-adjoint.

This theorem combined with a general theorem ([3, p.117, Appendix $C$], $[16$ ,
Theorem X.1] $)$ iinplies that, in the case wliere $H$ is semi-bounded, the spectrum
$\sigma(T)$ of $T$ is one of the following three sets :

(i) $\mathbb{C}$ .

(ii) $\overline{\Pi}_{+}$ , the closure of the upper half-plane $\Pi_{+}:=\{\approx\in \mathbb{C}|IniZ>0\}$ .

(iii) $\overline{\Pi}_{-}$ , the closure of the lower half-plane $\Pi_{-}$ $:=\{\sim\in \mathbb{C}|{\rm Im}\approx<0\}$ .

Froiii this point of view, it is interesting to examine which one is realized, depending
on properties of $H$ . In this respect we have the following theorem:

Theorem 4.4 [6, Theorem 2.1] The following $(i)-(iii)$ hold;

(i) If $H$ is bounded below, then $\sigma(T)$ is either $\mathbb{C}$ or $\overline{\Pi}_{+}$ .

(ii) If $H$ is bounded above, then $\sigma(T)$ is either $\mathbb{C}$ or $\overline{\Pi}_{-}$ .

$(\ddot{n}i)$ If $H$ is bounded, the$n\sigma(T)=\mathbb{C}$ .

Example 4.1 Let $\Delta$ be the 7?-dimensional generalized Laplacian acting in $L^{2}(\mathbb{R}_{x}^{7l})$

$(n\in \mathbb{N})$ , where $\mathbb{R}_{x}^{n}$ $:=\{.\iota\cdot=(x_{1}, \cdots , x_{r\iota})|.r_{j}\in \mathbb{R},j=1, \cdots, n\}$ , and

$H_{0}:=- \frac{\Delta}{2m}$ (4.2)

with a constant $m>0$ . In the context of quantum mechanics, $H_{0}$ represents the
free Hmiiltonian of a free $nonrelativist_{!}ic$ quantum particle with mass $77l$ in the
$\eta_{\Gamma}$-diiiicnsional space $\mathbb{R}_{x}^{n}$ . It is well known that $H_{0}$ is a nonnegative self-adjoint
operator. We denote by $\hat{x}_{j}$ the multiplication operator on $L^{2}(\mathbb{R}_{r}^{n})$ by the j-th variable

$t_{j}\in \mathbb{R}_{r}^{r\iota}$ and set
$\grave{p}_{j}:=-iD_{j}$ (4.3)
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witli $D_{7}|\gamma eiilg$ the generalized partial $(1ifferent_{\Pi}ia1$ operator in the variable $x_{j}$ on
$L^{A})(\mathbb{R}_{\gamma}^{\prime t})$ . It is easv to see tltat $\dot{x}_{j}$ and $\hat{p}_{J}$ are iiijective. For each $j=1,$ $\cdots,$ $’ l$ , one can
define a linear operator on $L^{2}(\mathbb{R}_{r}^{7l})$ by

$T_{j}:= \frac{??1}{2}(.\hat{r}_{j}\hat{p}_{j}^{-1}+\hat{p}_{j}^{-1}\grave{x}_{j})$ (4.4)

witli (lomain

$D(T_{j}):=\{f\in L^{2}(\mathbb{R}_{x}^{?1})|f\in C_{0}^{\infty}(\Omega_{j})\}$ , (4.5)

where $f$ is the Fourier t,ransform of $f$ and $\Omega_{j}$ $:=\{k= (k_{1}, \cdots , A_{n})\in \mathbb{R}_{k}^{n}|k_{j}\neq 0\}$ .
Oiie $(^{}a11$ show $t$ liat $T_{j}$ is a strong time operator of $H_{0}([2,13])$ . The time operator
$T_{J}$ is called the Aharonov-Bohm time $ope$rator [1]. One can prove that

$\sigma(T_{j})=\overline{\Pi}_{+}$ , $j=1,$ $\cdots,$ $n$ .

For proof, see [6, \S 4.1].

Exaniple 4.2 A $H_{c}’\backslash nuiltonian$ of a free relativistic spinless particle with mass $?l1\geq 0$

nioving in $\mathbb{R}_{\tau}^{\prime l}$ is given by
$H(7?t):=\sqrt{-\Delta+\uparrow|?^{2}}$ (4.6)

acting $i_{l1}L^{2}(\mathbb{R}_{J:}^{\mathfrak{n}})$ . It is shown that the operator

$T_{j}(71\iota):=H(m)_{I_{j}^{\grave{J}^{-1}}}\grave{x}_{g}+\grave{x}_{j}H(??\iota)\hat{p}_{j}^{-1}$ (4.7)

with $D(T_{j}(\prime 7!)):=D(T_{j})$ is a strong tinie operator of $H(?71)$ [ $2$ , Example 11.4].
Moreover one can prove the following fact [6, \S 4.2]:

$\sigma(T_{j}(\uparrow n))=\overline{\Pi}_{+}$ , $j=1,$ $\cdots,$ $n_{l}$ .

5 A Class of Generalized Time Operators

A general tlieory of generalized tixne operators including various ex\v{c}amples has been
developed in [2]. Here we only describe a special class of generalized time operators.
Let $H$ be a self-adjoint operator on a complex Hilbert space $\mathcal{H}$ and $T$ be a symmetric
operator on $\mathcal{H}$ . We call the operator $T$ a generalized strong time operator of $H$ if
$c^{\lrcorner^{-itH}}D(T)\subset D(T)$ for all $t\in \mathbb{R}$ and there exists a bounded self-adjoint operator
$C\neq 0$ on $\mathcal{H}$ witli $D(C)=\mathcal{H}$ such that

$Te^{-\uparrow tH}$ th $=e^{-itH}(T+tC)\psi$ , $\psi\in D(T)$ . (5.1)

We call $C$ the $rior\iota com7nutatic$ ) $e$ factor for $(H, T)$ . The pair $(H, T)$ with $T$ a general-
ized strong time $operat_{1}or$ has properties siinilar to those of $(H, T)$ with $T$ a strong
tiine operator, but in weakened forins.
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Theorem 5.1 [2] Let $T$ be a genemlized strong time operator of $H$ with noncom-
$7\gamma\prime i\iota tatii)ef(\iota$ctor C. $Tl\iota e7l$ :

(i) Let $H$ be semi-bou$7tdeda7\iota d$

$CT\subset TC$ . (5.2)

The$nT$ is not essentially self-adjoint.

(ii) $Hls$ reduced by $\overline{Ran(C)}$ and the reduced part $H|\overline{Ran(C)}$ to $\overline{Ran(C)}$ is $p$urely
absolutely continuous.

(iii) Let $H$ be $bo$ cmded below. Then, for all $\beta>0,$ $e^{-\beta H}D(\overline{T})\subset D(\overline{T})$ and

$\overline{T}\epsilon^{\rangle^{-\beta H}}\psi-e^{-9H}f\overline{T}\psi=-i\beta e^{-\beta H}C\psi$ , $\psi\in D(\overline{T})$ . (5.3)

For $(T, H)$ with $T$ a generalized strong tinie operator, Theorem 4.2 is generalized
as follows:

Theorein 5.2 [2, Theorem 8.9] Let $T$ be a generalized strong time operator of $H$

$?i)ith$ noncommutative factor C. Then, for each $n\in \mathbb{N}$ , there exists a subspace
$\mathcal{D}_{7l}(T, C)$ such, that, for all $\phi\in D(T^{7l})$ and $\psi\in \mathcal{D}_{n}(T, C)(\phi, \psi\neq 0)$ ,

$|\langle\phi,$ $e^{-itH}C^{n},d) \rangle|\leq\frac{d_{n}(\phi,l^{y})}{|t|^{n}}$ , $t\in \mathbb{R}\backslash \{0\}$ (5.4)

rvhevc $d_{7l}(\phi, \iota/\})>0$ is a constant independent of $t$ .

6 A Mapping on the Space of Weak Weyl Repre-
sentations and Construction of Weyl Represen-
tations

One caii consider the set of all weak Weyl representations:

WW $(\mathcal{H})$ $:=$ { $(T,$ $H)|(T,$ $H)$ is a weak Weyl representation}. (6.1)

Let $(T, H)\in$ WW $(\mathcal{H})$ . Then, by Theorem 4.1, one can define, via functional
$calc\iota\iota 1\iota\iota s$ ,

$L(H)$ $:=\log|H|)$ (6.2)

which is self-adjoint. One can also show that the $operat_{}or$

$D(T, H)$ $:= \frac{1}{2}(TH+\overline{HT})$ (6.3)
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is (lenselv defined and syinmetric.
Bv direct coiiiputations, one can sliow tliat the following commutation relations

liold:

$[T, D(T, H)]=iT$ on $D(T^{2}H)\cap D(HT^{2})\cap D(THT)$ , (6.4)

$[H, D(T.H)]=-iH$ on $D(H^{2}T)\cap D(TH^{2})\cap D(HTH)$ , (6.5)

$[H, L(H)]=0$ on $D(HL(H))\cap D(L(H)H)$ . (6.6)

Tliis implies that, if there is a domain $\mathcal{D}\subset D(T)\cap D(H)$ such that $T\mathcal{D}\subset \mathcal{D}$ and
$H\mathcal{D}\subset \mathcal{D}$ , theu $\{T, H, D(T_{7}H)\}$ generates a Lie subalgebra of $L(\mathcal{D})$ (the vector
space of all linear operators on $\mathcal{D}$ ). If we introduce

$A$ $:=-iT$, $B$ $:=H$, $C$ $:=-iD(T, H)$ ,

then we have
$[C, A]=-A$ . $[C, B]=B$ , $[A, B]=1$

$Ol1\mathcal{D}$ . Tliis is the saiiie set of coininutation relations as tliat defining tlie harinonic
oscillator Lie algebra generated by three elements $a,$

$a^{\uparrow}$ and $aa\dagger$ obeying $[a, a^{\uparrow}]=1$

(the correspondence is: $aarrow A,$ $a^{\uparrow}arrow B,$ $a^{\uparrow}aarrow C$ ). In other words, $\{A, B, C\}$ gives
a representation of the liarinonic oscillator Lie algebra. But this representation is
soinewliat unusual in $t1_{1}e$ sense that $B$ is not the adjoint of $A$ and $C$ is antisymmerric,

We call prove the following theorem:

Tlieorem 6.1 [$9_{t}$ Tlieorein 2.4] $(D(T, H), L(H))\in$ WW $(\mathcal{H})$ .

$Bv$ this theorem, we can define a mapping $f$ : WW $(\mathcal{H})arrow$ WW $(\mathcal{H})$ by

$f(T, H):=(D(T, H), L(H))$ , $(T, H)\in$ WW $(\mathcal{H})$ . (6.7)

Thus, starting from each weak Weyl representation $(T, H)\in$ WW $(\mathcal{H})$ , we have a
set $\{f^{7l}(T, H)\}_{\gamma 1=1}^{\infty}$ of weak Weyl representations which may be an infinite set.

The quaiitity
$E_{0}(H):= \inf\sigma(H)$ ,

the iiifiiiiniii of the spectrum of $\sigma(H)$ , is called t,he lowest energy of $H$ . Tlie fol-
lowing theorein is concerned with unitary equivalence between $(T, H)$ and $f(T, H)$

$((T, H)\in WW(\mathcal{H}))$ .

Theorem 6.2 If $i_{11}f_{\lambda\in\sigma(H)}\log|\lambda|\neq E_{0}(H)$ . then $(T. H)$ is $r\iota ot$ unitarily equivalent
to.$f(T, H)$ .

Proof. By the spectral niapping theorem, we have $\sigma(L(H))=\{\log|\lambda||\lambda\in$

$\sigma(H)\}$ . If $(T_{I}H)$ is uiiitarily equivalent to $f(T, H)$ , then $\sigma(H)=\sigma(L(H))$ . Tliis
iinplies that $E_{0}(H)=i_{l1}f_{\lambda\in\sigma(H)}\log|\lambda|$ . But this contradicts the present assumption.
$\square$
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Corollary 6.3 If $H\geq 0$ . then $(T, H)$ is not $\tau\iota mta7\dot{\eta}ly$ equivalent to $f(T, H)$ .

Proof. If $H\geq 0$ , then $E_{0}(H)\geq 0$ . Hence, if $E_{0}(H)>0$ , then $\inf_{\lambda\in\sigma(H)}\log|\lambda|=$

$\log E_{0}(H)\neq E_{0}(H)$ . If $E_{0}(H)=0$ , then $i_{I1}f_{\lambda\in\sigma(H)}\log|\lambda|=-\infty$ . Thus the assump-
tion of Theorein 6.2 is satisfied. $\square$

Investigations towards a complete classification of $\{f^{n}(T_{t}H)\}_{n=1}^{\infty}$ are still in
$prog_{1}\cdot eb_{t}^{\tau}S$ .

It also is interesting to know when $(\overline{D(T,H)}, L(H))$ becomes a Weyl represen-
tation of the CCR. As for this aspect, we have the following result:

Theorem 6.4 [9, Corollary 2.6] Suppose that $D(T, H)$ is essentially self-adjoint.
Then, for all $s,$ $t\in \mathbb{R}$ ,

$e^{is\overline{D(T_{\backslash }H)}}e^{itL(H)}=e^{-ist}e^{itL(H)}e^{is\overline{D(T,H)}}$ .

$N(\ddagger 7i?,ely(\overline{D(T,H)}, L(H))$ is a $\ddagger t’eyl$ representation of the $CCR$ .

Example 6.1 In the case where $H=H_{0}$ and $T=T_{j}$ (Example 4.1), we can prove
that $D(T_{j}, H_{0})$ is essentially self-adjoint. Hence, by Theorem 6.4, $(\overline{D(T_{j},H_{0})}, \log H_{0})$

is a Weyl representation. Therefore, by the von Neuinann uniqueness theorem ([14],
[3, Theorein 3.23] $)$ , we can conclude that $(\overline{D(T_{j},H_{0})}, \log H_{0})$ is unitarily equivalent
to a cfirect sum of the Schr\"odinger representation of tlie CCR with one degree of
freedom.

Example 6.2 Let us consider Example 4.2. $I_{11}$ this example, there is a big difference
between the case $m=0$ and the case $??,$ $>0$ . Indeed, we can prove the following
facts:

(i) If $\uparrow n=0$ , then $D(T_{j}(0)7H(0))$ is essentially self-adjoint. Hence, by Theorem
6.4, $(\overline{D(T_{j}(0),H(0))}, \log H(0))$ is unitarily equivalent to a direct sum of the
Schrodinger representation of the CCR with one degree of freedom.

(ii) If $\uparrow n>0$ , then $D(T_{j}(m), H(7n))$ is not essentially self-adjoint and

$\sigma(D(T_{j}(7\iota), H(?7?))=\overline{\Pi}_{+}$ .

In particular, $(\overline{D(T_{j}(m),H(\uparrow?1,))}, \log H(rr\iota))$ is not unit $\epsilon 1lily$ equivalent $t_{1}o$ a di-
rect suiii of the Schr\"odinger represent,ation of the CCR with one degree of
freedom,

These mathematical structures are interesting in the sense that it gives a represen-
tatioii theoretic meaning to the mass $\eta 1$ .
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7 Concluding Remark
Finallv we would like to give a remark on Theorem 6.4 from a view-point of nat-
ural pliilosopliy or $qnant_{1}\iota\uparrow n$-mathematical cosmologj2 (not physics). Suppose that
りて $i_{b}$. separable. Let $(T, H)$ be a pair obeying tlie weak Weyl relation such that
$D(T, H)$ is essentially $self- adjoint$ . Then, by Theorein 6.4 and the von Neuiuann
uiiiqueness theorem, $(\overline{D(T,H)}, L(H))$ is unitarily equivalent to a direct sum of the
$Sc1_{11}\cdot\ddot{o}di_{l1}ger$ representation of the CCR with one degree of freedoin. On the ot,her
$11_{f}\iota nd$ , a direct suin of $t1_{1}e$ Schr\"odinger representation of the CCR with one degree
of freedoin describes a set of external degrees of freedom associated with the usual
iiiacroscopic perception of space. Hence, in this representation theoretic scheme.
one can infer that a pair $(T, H)$ obeying the weak Weyl relation (creates” a set of
external degrees which is a basis for quantum mechanics associated with the usual
(daily-life) space-time picture that the humanbeing has. In tliis sense, a pair $(T, H)$

obeying the weak Weyl relation may be more fundamental in ontological structures
or orders (cosinos). Thus an important thing is to how to interpret philosophically,
in a $1)roper$ way, a pair $(T, H)$ obeying the weak Weyl relation such that $D(T, H)$

is esssentiallv self-adjoint. A possible view-point for this is $thatT$ is a fundamen-
tal “time“ and $H$ is a fundamental (energy” in the metaphysical sense that they
procluce a “phase” or a “rank“ in the metaphysical dimension of existence which
is inore directly connected with the usual picture of space-time in the physical or
seiisorial-plienomenal diniension. In connection with this philosophical view-point,
we are now considering t,he problem of uniqueness of weak Weyl representations [8].
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