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Abstract

In this paper we present a construction of an infinite dimensional separable
Hilbert space Hg, on which the Exotic trace plays as the usual trace and give
an infinite dimensional stochastic process associated with the Exotic Laplacian by
extending recent results in [13]. This implies that the Exotic Laplacian plays as the
Gross Laplacian in the Boson Fock space I'( Hg ) over the Hilbert space Hga. The
Hilbert space Hp , is directly constructed by using the Exotic trace. Motivated by
the constructions in [2] and extending the results in [13], we introduce an example
of Hg, as a direct sum of some Hilbert spaces with the norm induced from the
Exotic trace. Then the stochastic process associated with the Exotic Laplacian is
given by an infinite dimensional Brownian motion based on an orthonormal basis
for Hga.
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1 Introduction

The Exotic Laplacian was introduced by L. Accardi [4]. It also has been discussed
in [1] and others. The Lévy Laplacian introdnced in [19] is one of Exotic Laplacians.
The Lévy Laplacian has been studied by many authors from several different aspects
in [3, 5, 20, 21, 25] and references cited therein. In particular, the Lévy Laplacian was
distinguishably studied in white noise theory (7, 8, 16, 17, 18, 26, 27, 28]. Recently,
in [2], the Cesaro Hilbert space associated with the Lévy Laplacian was constructed
by completing a pre-Hilbert bundle. We also obtained a similarity between the Gross
Laplacian and the Lévy Laplacian in [13].

Main purpose of this paper is to construct an infinite dimensional separable Hilbert
space Hg , on which the Exotic trace plays as the usual trace, generalizing recent results
in our previous paper [13]. This implies that the Exotic Laplacian plays as the Gross
Laplacian in the Boson Fock space I'(Hg,) over the Hilbert space Hg,. The Hilbert
space Hg, is directly constructed by using the Exotic trace. Extending the construction
in [13], we introduce an example of Hy, as a direct sum of some Hilbert spaces with the
norm induced from the Exotic trace. However this space is slightly different from the
Cesaro Hilbert space, since the norm of the Cesaro Hilbert space is not exactly equal to
the Exotic norm (Remark 2.2). Then the stochastic process associated with the Exotic
Laplacian is given by an infinite dimensional Brownian motion based on an orthonormal
basis for Hg.. Thus the Exotic Laplacian strongly depends on the space in which the
associated infinite dimensional Brownian motion moves.

The paper is organized as follows. In Section 2, we construct an infinite dimensional
Hilbert space Hg, on which the Exotic trace plays as the usual trace. In addition,
motivated by the Cesaro Hilbert space in [2], we introduce an example of the space
Hg.. In Section 3, we give a nuclear rigging of Fock spaces based on the space Hg,. In
Section 4, we give a similarity between the Gross Laplacian and the Exotic Laplacian.
Precisely, we prove that the Exotic Laplacian coincides with the Gross Laplacian acting
on some domain in ['(Hg.). Based on this result, we give a stochastic process associated
with the Exotic Laplacian in Section 5.

2 Basic Gelfand Triples

Let H be a complex Hilbert space and let E be a countably Hilbert nuclear space
such that

ECHCE" (2.1)

is a complex Gelfand triple, where H is identified with its dual space. More precisely,
we constrict the complex triplet as follows: Let {A¢}%, be an increasing sequence of
positive real numbers such that

1<M<A<A<... and Y AP <oo (2.2)
j=1

For each p € R, define

€%, =3 MPlol?,  £=) ae;€H
=1 ij=1
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where {e;}32; is an orthonormal basis for H. Let p > 0. Put E, = {{ € H; |§ lrp < 00}
and let E_, be the completion of H with respect to |-|5 . Then we have a Gelfand
triple

E =projlimE, C H CE* =indlim E_,. (2.3)

p—00 p—oo

Let J be the conjugate operator on H defined by

Jﬁ———i&iei, {-——iaieieH.
=1

=1

Then the real parts of E, H and E* are subspaces invariant under the action of J and
are denoted by Er, Hr and EY, respectively. Then we obtain a real Gelfand triple:

Er C Hgr C Eﬁ (24)

The inner product on Hgr and the canonical C-bilinear form on Ef X Eg is denoted by
the notation (-, -).

Let ¢2 = {(aj)' o; € C, 3 %2 lo;l* < oo} The space 2 is the Hilbert space with
inner product (-,-)e2 given by (@, B)e = > 72, a;B; for a = (o), 8 = (B;) € 2. Take

a € N arbitrarily. Let € be a countable family of double sequences f : N x N — C
satisfying the following conditions:
N
(C1) for each j,k € N, the limit A}im Z f(n,3)f(n, k) exists and for any o =
(o) € £2 with o # 0, )

Zajak hm —an k) 2

7,k=1

(C2) for any f,g€ € with f #g,and all j,k€ N

hm———an] = 0;

N—o0o Na‘

(C3) forall j €N,

o0

D f(n,j)en € E".

n=1

We can take € to be a class which contains the following sequences as examples:

fu(n,j) = cjn,%‘lei")‘vvf, v=12,..., where all \,;, v,j € N, are different numbers
with Ayy < A2 <---, v=1,2,...,and (¢;)2; € £2 with ¢; # 0 for all j.
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Motivated by the Cesaro Hilbert space introduced in [2], we define the spaces H for
f €Cby

Hy = LS{s;(f); j € N}

where LS means a linear span and s,(f) = Zf(n,j)en for each j € N. We introduce a
n=1
norm | - | by
1 XN
lg’g = I}Enoo_jv—;; I(gaen>|2a g € Hf-

Let H; be the completion of H; with respect to | - |o. Then the space H; becomes a
Hilbert space with the inner product (-, -)g. given by
1 & —
<€7 n)E,a = lim — Z<€a €n><n) en)v 67 n € Hf

N—oo N2

n=1

Proposition 2.1 For any f,g € € with f # g, the Hilbert spaces Hy and H, are
orthogonal.

PRrROOF. The proof is immediate from the condition (C2). |

Let Hg, = EBE Then the space Hg, is an infinite dimensional separable Hilbert
fee
space with the inner product (-,-)g. which is extended to the inner product on Hg,.
From now on we take Hg, to be this space.

Remark 2.2 In [2], the Cesaro Hilbert space is introduced by

Ho={[ sy «c2o.m.an},

oC

where sy = Zem’\en for any A € (0, 7). The space H, is a Hilbert space with the inner
n=1

product (-,-)g. given by

< / a(N)sadA, ﬂ()\)s,\d/\> _ / (VB (52, 83)adA
(07) ©0,7) H, (0,m)

=/ «NBVAA, a8 € LA((0,7),dA).
(0,m)

The inner product. (-, ), is different from the inner product (, )y ;. In fact, we have

< / a(N)srdA, ﬂ(,\)s,\d/\> ~ 0.
. (0,7!') (O,?‘I’) E,l
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Let A be a selfadjoint operator (densely defined) in Hg, satisfying the condition:

. inf Spec (4) > 1 and A~ is of Hilbert-Schmidt type.
Then there exist a sequence
oC
1<l < <6< .., HA_1||%1822£;2<°°7
and an orthonormal basis {e,x}32; of Hg, such that Ae,r = lk€qk, k=1,2,.... By
Condition (C1) we see that s;(f), j = 1,2,..., are linearly independent for all f €

¢. Therefore by the Gram-Schmidt orthogonalization we have an orthonormal system
{3;(f)}32,. Collecting {5;(f)}3, for all f € € we can take an example of {e,x}2>,
satisfying the above properties. From now on, we take this orthonormal basis. For
p € R we define

(€2 =A% 5 = Zeif’l € ear)pal’ €€ Hpa

Now let p > 0. We put N}, = {£ € Hg,; | €], < oo} and define N_, to be the completion
of Hg, with respect to |- |_p. Thus we obtam a chain of Hllbert spaces {N,; p € R}
and consider their limit spaces:

N = projlim Ny, N* = indlimAN_,

p—oo p—oo

which are mutually dual spaces. Note also that A becomes a countably Hilbert nuclear
space. Identifying Hg . with its dual space, we obtain a complex Gelfand triple:

N C Hp. C N™. (2.5)
Remark 2.3 The bilinear form 7, defined by

N
. 1 Z —
<Taa zQ ’UJ> = 1\11_{%0 F (Z, ei) <’LU, ei)a zZ,w € HE,aa

i=1

is called the Ezotic trace. Then by definition we obtain that for any z,w € Hg,,
(Tay 2@ W) = (2, W) , -

Therefore, the Exotic trace coincides with the usual trace on Hg, and hence 7, can be

represented by
oo
= Z €ak & €q k-
k=1

Theorem 2.4 The Exotic trace belongs to N_1/2 @ N_y/a.

PROOF. By definition we have

o0
1Tal21p =2 c%lean ® eaplo = |4 s < 00
k=1

which follows the proof. |
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3 Nuclear Riggings of Fock Spaces

Now, we construct a rigging of (Boson) Fock space based on the basic Gelfand triple
(2.3). For each p € R let T'(E,) be the Fock space over the Hilbert space E, i.e.,

P(E,) = {d> = (fa)0; fn € EE* 1615, = D_n! | falh, < oo} .
n=0

Then by identifying I'(H) with its dual space, we have a chain of Fock spaces:
- CE) CT(Ey)y=T(H)CI(E_,)C---
and a Gelfand triple
(E) = projlimI'(E,) C I'(H) C (E)" = indlimI'(E_p,). (3.1)

p—o0 p—0o0
An ezponential vector (or also called a coherent vector) associated with § € E is
defined by
S
¢£=(1,€,—2—!—,...,F,...). (32)

Since ¢¢ € (E), the S-transform of an element ® € (E)* is defined by
S®(E) = (P, &) §€E,
where ((-, -)) is the canonical C-bilinear form on (E)* x (E) which takes the form:
(@, ) =D nl(Fu, fa), ®=(F)e(B), ¢=(f)€(E).  (33)
n=0

Every element ® € (E)* is uniquely specified by its S-transform S since {¢¢; £ € E}
spans a dense subspace of (E).

A complex-valued function F on E is called a U-functional if F is Gateaux entire
and there exist constants C, K > 0 and p > 0 such that

IF()| < Cexp (KI€lh,), €E€E.

Theorem 3.1 [24] A C-valued function F' on E is the S-transform of an element in
(E)* if and only if F is a U-functional.

Remark 3.2 The Bochner-Minlos Theorem admits the existence of a probability mea-
sure p on EE such that

/ e®du(z) = e~ 388, £ € En.
JER

Then the famous Wiener-It6-Segal isomorphism between I'(H) and L2(E*, i) is a unitary
isomorphism uniquely determined by the correspondence:

§®2 §®n (@€) 9
Pg = (1,57‘5,—,...,—”"'—,...> A = ¢¢(z), £ € E.
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The Gelfand triple obtained from (3.1) through the Wiener-It6-Segal isomorphism is
denoted also by
(B) C L*(E*,p) C (B)

which is referred to as the Hida—Kubo-Takenaka space. An element of (E) (resp. (E)*)
is called a test (resp. generalized) white noise function.

By same argument with the Gelfand triple (2.5), we construct a rigging of Fock
spaces:

(N) = projimT'(N,) C --- € T(N,) C T'(NG)

p—0o0

= [(Hpa) CT(N.p) € -+ € (M) = ind im (VL) (34)

where I'(N,) is the Fock space over the Hilbert space A, i.e.,

I(N,) = {45 = (fa)nzo; fn EA/;;Qna Il ‘z’“z = Z"”fn |;2, < OO} , peR.

n=0

The Sk ,-transform of an element ® € (N)* is defined by

Sea®(§) = (2, dehp., EEN,

where ¢¢ is the exponential vector defined as in (3.2) and ((-, -))g, is the canonical
C-bilinear form on (NM)* x (N) which takes the form:

«(Da ¢>>E,a, = Zn' (Fn’ fn)E,a s d = (Fn) € (N)*a ¢ = (fn) € (N) (35)
n=0

Then as a similar result to Theorem 3.1 we prove that a C-valued function F on N is
the Sg,.-transform of an element in (A)* if and only if F is Gateaux entire and there
exist constants C, K > 0 and p > 0 such that

[F)<Cexp (K el;), €N

4 Infinite Dimensional Laplacians

Let X be a locally convex nuclear space. A function F' : X — C is said to be an
element of class C?(X) if F is twice (continuously) Fréchet differentiable in each variable,
i.e., there exist two continuous maps

E— F(§) e X", £+ F"(§) € L(X,X7), EeXx
such that 1
F(€+mn) = F(&) + (F'(&), m) + 5 (£ (E)n, m) +e(n)

for any n € X, where the error terms satisfy

4
lim _s(tn> —0

t—0

, n e X.
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From the kernel theorem, we use the common symbol F”(£), i.e.,

(F"(&)n. n) = (F"(£), n®n) = F"(€)(n,n) = DXF (&),

where 5,, is the Fréchet differentiation in the direction 7, i.e.,

B, F(€) = lim 7 [F(E + 1) ~ F©) = 5 FE+tm)|

4.1 Gross Laplacian
The Gross Laplacian Ag acting on (N) is defined by

AG¢ = Sg,la <§: bga'k) SE,a¢7 ¢ € (N)*

k=1

where {e,x}$,is an orthonormal basis of Hg.. Then for any ¢ = (fn)7l0 € (N) we
have

Acé = ((n +2)(n+ 1)Ta®2fn+2) , (4.1)
see [6, 16, 23]. Moreover, we have the following

Theorem 4.1 The Gross Laplacian is a continuous linear operator acting on (N).

PROOF. Let ¢ = (f.)%, € (N). Then for any p > 1/2 and ¢ > 0 we obtain from
(4.1) that

1Aco 2 < S (n+2n+2)(n+ ) | r 2| fasa s

n=0
< Cral@) |7l 101,
where
Cg.(q) = sup(n + 2)(n + 1)41—2q(n+2) < co.

n>0

Therefore, for any p > 1/2 and q¢ > 0 we have

1Acoll, < 1/Cral@ | Tal_p 1 dllprg: D EWN)

which follows the proof. |

4.2 The Exotic Laplacians
Let Dom(Ag,) denote the set of all € (E)* such that the limit

N
ReaS2(E) = Jim 12 > (520, ex®er), E€E
k=1

exists for each £ € F and a functional ZE,B(SQ) is the S-transform. Then the Ezotic
Laplacian Ag ,® defined on Dom(Ag,) is defined by

Ap.® = S7H(Ag.S®), ® € Dom(Ag,).
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Theorem 4.2 Any element ¢ € (E)*N(N) is in Dom(Ag.). Moreover, if ¢ = (fn)azo,
then we have

Ap ¢ = ((n +2)(n+ 1)T3®2fn+2> . (4.2)

PrRoOOF. Let ¢ = (f,) € (N). Then we can easily show that

(S8)"(€)ex,ex) = 3 (n+2)(n+ 1) { (ex ® )@ fava, €27

n=0

which implies from the definition of Levy trace that

N oo
BeaS6e) = Jim o325+ 20+ 1 ((0r © ) fran )

oC

Z(n +2)(n+1) <Ta<§>2fn+2, §®“> )

n=0

I

Therefore, by applying (3.3) we prove (4.2). |

By Theorem 4.2 and (4.1), the Exotic Laplacian coincides with the Gross Laplacian
on (E)*N(N), which is dense in (V). Therefore, we can consider (A) as the domain of the
Exotic Laplacian. On the other hand, every harmonic function in (E)* associated with
the Exotic Laplacian belongs to (A) as the zero element. Hence, the vector space (V) &
(E)%, can be considered as the reasonable domain of the Exotic Laplacian, where (E); ,
is the linear space of all harmonic functions in (E)* associated with Ag,. Note that
for the study of heat equation and (infinite dimensional) stochastic process associated
with the Exotic Laplacian, the harmonic functions associated with the Laplacian are
not necessary. Therefore, from now on we consider (AN') as the domain of the Exotic
Laplacian which is defined by (4.2) for each ¢ = (f,) € (N) and then, by Theorem 4.1,
the Exotic Laplacian is a continuous linear operator acting on (N)

5 One-parameter group and Stochastic process associated with
the Exotic Laplacian

5.1 One-Parameter Group

The symbol of a continuous linear operator = € L((N), (N)*) is defined by

2 ) = (Ee, g, EMEN.

An operator E € L((N), (N)*) is uniquely specified by the symbol since {¢¢; £ € N}
spans a dense subspace of (N). Moreover, we have an analytic characterization of
symbols.

Theorem 5.1 [22] A C-valued function © on N x N is the symbol of an operator
Z e L(N), N)*) if and only if

(i) © is Gdteauz entire;
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(ii) there exist C > 0, K > 0 and p > 0 such that
O, < Cexp K(I€l, +1nl;),  &neEN.

Moreover, © is the symbol of an operator Z € L((N), (N)) if and only if © satisfies (i)
and

(iii) for any p > 0 and € > 0, there exist constants C > 0 and ¢ > 0 such that
0, m| < Cexpe (lElprg +2,), &neEN.

By applying Theorem 5.1 we can easily see that for each ¢ € R there exists a unique
operator P, € L((N), (N)) such that

ﬁt(g’n) — <(Pt¢£a ¢n>>E,a - et(r,,{@f)#—({ﬂl)m,a’ 6’7] € N

In fact, if we put © = P, for fixed t € R, then © satisfies the conditions (i) and
(iii) in Theorem 5.1 which proves the existence of the operator P,. Moreover, for any

¢ = (fn) € (N), P,¢ is given by

Pg¢ = (f: th(7§m®2mfn+2m)> . (51)

nlm!
m=0

Theorem 5.2 {P;;t € R} becomes a regular one-parameter group of operators acting
on (N) with infinitesimal generator Ag,.

The proof is a simple modification of the proof of Theorem 4.3 in [6].

5.2 An infinite dimensional stochastic process generated by the Laplacians

Let {X;;t > 0} be a (N)-valued stochastic process. Then we can write the process
in the form X, = (X:,). The expectation E[X] of X; is given by

E[Xq] = (E[X¢n))

if (E[X;,,]) exists in (N).
For n € N let T, be a translation operator defined on (NM)* by

o0

1 *
T, = 7C—!D,’;cb, ® e (M),
k=0

where D, is defined by D, ® = Sg;(ﬁ,,SE,acb). Then we have
Dp® = ((n + 1) (Fata, z)E,a)a ¢ = (Fp).
and

k=0 o

Therefore, for given z € N* and & € (N)*, it is natural to define T,® by (5.2) whenever
the right hand side of (5.2) is well defined as an element in (NV)*.
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Proposition 5.3 For all z € N*, the operator T, is in L((N), (N)). Furthermore, for
any p > 0, ¢ > 0 with |z|-(p4q < 00, it holds that

2
.ol < A exp (2—(';—_(—,2—)—)) L e,
1

The proof is given by a similar method of the proof of Theorem 4.2.3 in [23].

Let {Bx(t);t > 0}, & = 1,2,..., be an infinite sequence of independent one di-
mensional Brownian motions and {B;;t > 0} an infinite dimensional stochastic process
defined by

B; = Z By(t)ea,k, t>0. (5.3)
k=1
Lemma 5.4 For allt > 0 we have B, € N* (a.e.).

PROOF. By definition, we can check that

E[BJ%,] = E 2552”1<Bt,6a,k>E,aIQ]

k=1

= > &7E[Bk®)
k=1
o0
=ty 4P <oo, t20
k=1
for any p > 1 which implies the assertion. i

Theorem 5.5 Let ¢ € (N). Then the equality
Pt¢ = E[Tthd)]

holds for t > 0.

PROOF. Let ¢ = (f,) € (N). Then by (5.2) we have

Ty, ¢ = (Z (nn-:—kl'c)l (Frtks B2t®k>E’a) (5.4)
£=  nlk!

and by (5.3) we have

oo k k
(frtk: Ba® )y, = D [’H Be,v(zt)} <.fn+ka ®€L,e,-> :
E,a

£y, =1 Lj=1 j=1

i}
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Therefore, we have

SE,a[E[TBm Qﬂ (é)

© L, OO0 m J ®m
t E:E: n+2m E: E: ®2 S g®n
ml fn+2ma ea,l,, ®€

=0 n=0 j=1 £y =1
all dif ferent E,a

®Xm
(n+ 2m ~
tm <fn+2m, (Z e; ) ®§®n>
0 E,a

(n +2m)!
m!

||M8

I

Mg i[]¢
[M]8

tm< ®m®2mfn+2m"$ )Ea

3
Il
o
3
I
=

This implies

E(Tg,, 9] (Z (m + 2m) tm(T;em@QMf"-F?m))

= Pt¢
i

By Theorem 5.5, we can consider {Ba:}:>0 as a stochastic process generated by

the Lévy Laplacian Ag,. This is one of reasons why the Exotic Laplacian is called
‘Laplacian’.
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