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In the recent development of quantum information many people have discussed
the problem of finding a satisfactory quantum generalization of the classical
random walks. Motivated by such situation Accardi and Fidaleo introduced the
notion of entangled Markov chains which includes that of quantum random walk
[2]. They listed requirement that should be fulfilled by any candidate definition
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Abstract

Entangled Markov chains, which can be recognized as quantum Markov
chains in the sense of [1], were introduced by Accardi and Fidaleo in order
to extend the notion of classical random walk to quantum systems. In [3],
using our entanglement criterion for pure states [16] which is based on
the notion of the quantum mutual information, we proved that the vector
states defining the EMC’s on infinite tensor products of matrix algebra
"generically" are entangled.

On the other hand we showed that this entanglement condition for
pure state is sufficient condition for entanglement in the case of mixtures
[4]. This fact was then applied to prove that EMC with unitarily im-
plementable transition operator induce a mixture entangled state on any
local algebra.

Interestingly it was also shown that all these local states provide a new
class of examples (in any dimension) of entangled states which nevertheless
satisfy the PPT condition [4].

In this article we report the above results.

Introduction and preliminaries

of a quantum random walk.

(1) It should be a quantum Markov chain in the sense of [1] (locality),
(2) it should be purely generated in the sense of [10] (pure entanglement),
(3) its restriction on at least one maximal abelian subalgebra, should be a

classical random walk (quantum extension property),
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(4) it should be uniquely determined, up to arbitrary phases, by its classical
restriction (amplitude condition).

In order to give an intuitive idea of the connection of their construction with
entanglement, let us note that the key characteristic of entanglement is the su-
perposition principle and the corresponding interpretation of the amplitudes as
"complex square roots of probabilities". This suggest an approach in which,
given a homogeneous classical Markov chain with finite state space S, deter-
mined by a stochastic matrix P and an initial distribution described by a row
vector p, one can construct such a quantum Markov chain. The construction is
as follows.

We consider a classical Markov chain (S,,) with state space S = {1,2,--- ,d},
initial distribution p =.(p;) and transition probability matrix P = (p;;) (i.e.
pi; = 0, Y p;; = 1). Let {]e;)},., be an orthogonal basis (ONB for short) of

; <

CIS1. For fixed a vector |ep) in this basis, denote

Hy = %(Iew)clsl (1)

the infinite tensor product of N-copies of the Hilbert space C!S! with respect to
the constant sequence (eg). An orthogonal basis of Hy is given by the vectors

’ej()’ o ’ejn> = (690‘6[0’ n] ieja>) @ (®C¥E[0, n]C IeO)) :

Note: For any Hilbert space H we denote H* its dual and € € H — £* € H* the
canonical embedding. Thus, if £ € H is a unit vector, ££* denotes the projection
onto the subspace generated by &.

Let M, denote the d xd complex matrix algebra and let A := MagQ@My®--- =
o}i‘?ﬂ‘!d be the C*-infinite tensor product of N-copies of Mj.

An element A5 € A (observable) will be said to be localized in a finite region
A C N if there exists an operator Ay € ®a My such that
AA = ZA v ].Ac .

In the following we will identify Ay, = A5 and we denote .Ap the local algebra
at A.

Let \/p: (resp.,/Dij ) {€ C) be any complex square root of p; (resp. p;;) (i.e.
2 2 - ,_
'\/Pil = p; (resp. I, /pij| = p;;)). Define the vector

n—1
Wa) = D VBio I \/Piagars [€i0r" " »€5n) (2)

jOs"' ) Jn
Although the limit lim |¥,) will not exist the basic property of |¥y,) is the

following:

Lemma 1 There erists a unique quantum Markov chain ¢ on A such that, for
every k € N and for ever A € Aj, ¢}, one has

(Viy1, AVpir) = lim (Un, AV,) =9 (4). (3)



Moreover i is stationary if and only if the associated classical Markov chain
{p=(p:i), P=(pij)} is stationary, i.e. for any j

Zpipij = pj. (4)

Accardi and Fidaleo [2] called "entangled Markov chains" the family of quan-
tum Markov chains that can be obtained by the above construction. However
they did not prove that such quantum Markov chains are entangled. In [3],
using the degree of entanglement (DEN for short) obtained in [16], we proved
that EMC 9 in (3) "generically" satisfies the entanglement condition in terms
of our criterion (see Definitions below).

On the other hand, using the PPT (Positive Partial Transpose) criterion [11,
18], Miyadera showed [14] that the finite volume restrictions of a class of EMC on
infinite tensor products of 2 X 2 matrix algebras is indeed entangled. On the one
hand we showed that the degree of entanglement gives the sufficient condition for
entanglement in the case of mixtures (for pure states this condition is necessary
and sufficient) [4]. This fact allows us to prove that the restriction of EMC’s,
generated by a unitarily implementable provides a new class of examples (in any
dimension) of entangled states which nevertheless satisfy the PPT condition [4].
In that argument we use an another criterion which is the recently established
equivalence between the Blelavkin-Ohya and PPT condition [12].

2 Notions of multiple entanglement and degree
of entanglement

Definition 2 Let A; (7 € {1,2,--- ,n}) with n < oo be C*-algebras and let

A = é% A; be a tensor product of C*-algebras. A statew € S <‘%1Aj) is called
j=1 J=
separable if

| n
we Con'v{ 'QQIWj;Wj € S(A4;),j€{1,2,--- ,n}}
j:
where Conv denotes norm closure of the convexr hull.

A non-separable state is called entangled.

Notice that the notion of separability may depend on the choice the tensor
product of C*-algebras. Unless otherwise specified, one realizes the C*-algebras
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on Hilbert spaces and one considers the induced tensor product. In any case a

separable pure state must be a product of pure states.

Definition 3 /3] In the notations of Definition 2 a state w € S (A) is called
2-separable if

w € Conv{wy dwa 5 wr) €S (Ax)), wr €S (Aw)}, vk €{1,2,--- ,n—1}
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where A = .Ak] @ A(k = -A[lk] @ -A(k:,n]-
A non-2-separable state is called 2-entangled.

Remark 4 Notice that, for n = 2, 2-entanglement is equivalent to usual entan-
glement. For n > 2, 2-entanglement is a strictly stronger property than usual
entanglement.

Definition 5 Let H;, Hs be separable Hilbert spaces and let 6 be a density
matriz in B(Hy % Ha), p and o be marginal densities of 8 in B(H1), B(Hz2)
respectively.

The quantum quasi mutual entropy of p and o w.r.t 6 [15] is defined by

Iy (p,0) :=trf(logfd —logp® o). (5)
The degree of entanglement of 6, denoted by Den () [16], is defined by

1
Dow (6) == 5 S (p) + S ()} = Lo (p, ) (6)
where S (-) is the von-Neumann entropy.

In the following we identify normal states on B(H) (M : some separable
Hilbert space) with their density matrices and, if p is such a state, we will use
indifferently notations ”

p(A) =trpA, Ac B(H).

Recalling that, for density operators p and o in B (H), the relative entropy
(or the information divergency) of the state p with respect to a reference state
o is defined by

R (plo) == trp(logp —loga). (7)

We see that the quasi mutual entropy is defined as the relative entropy of the
compound state 8 on B (H; ® Hz) with respect to the product state of its mar-
ginal states p and 0. This quantity, generalizing the classical mutual information
corresponding to the case of Abelian algebras, describes an information gain in
a quantum system (B (Hi),p) or (B(Hz2),r) via a compound state € with a
quantum correlation between p and o. It is natural treated as a measure of
the strength of the entanglement having zero value only for completely disen-
tangled state § = p ® 0. Using the quasi mutual entropy we can define the
entanglement criterion as a kind of symmetrized quantum conditional entropy
by (6). In the classical case the conditional entropy always takes non-negative
value, however our new criterion Dgn can be negative according to the strength
of quantum correlation between p and o. Actually the degree of entanglement
Dgy has good properties to judge the separability of compound state as follows
(see Appendices):

Theorem 6 [3, 16] For a pure state 6,
(1) 6 is separable iff Dpn (6) =0,
(2) 6 is not separable, i.e. entangled iff Dy (6) < 0.
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Theorem 7 [4] For a mixture state 0, if 6 is separable, then Dyy (6) > 0.
Equivalently: a sufficient condition for 8 to be entangled is that Dgy () < 0.

The degree of entanglement criterion, being based on a numerical inequality,
is in many case easier to verify than the positivity condition required by the
PPT criterion.

3 EMC "generically" satisfies the entanglement
condition
Throughout this paper we assume the stationality of the EMC v corresponding
to the condition of (4).
The vector |¥,) defined by (2) induces the state |¥,,) (¥,| which can be
recognized as a pure state on a local algebra Ajo,n)- In order to measure the

degree of entanglement of EMC ¢ in (3) we define the Dpn of |¥,) (¥, as
follows:

Doy (Wn) (Tnl) :=  inf {% () +5 (o)) = Trwwycwat (P 0<u)}
(8)

where p,; and o, are marginal states of the pure state |¥,,) (¥,,| with respect
to the Hilbert space H,) = ®;¢[0,,H; and H(. = ®je(u,n)H; respectively. Then
the following definition introduces to a natural way to measure analytically the
strength of entanglement of EMC .

Definition 8 Let v be the EMC in (3). The Dgy of ¢ is defined by
Dpy (¢) := lim Dy (|¥n) (¥nl) (9)

Using the above definition we can "generically" estimate the entanglement

of EMC v as follows:

Theorem 9 [3] To the stochastic matriz P we associate the density matriz o p

given as
op = sz' |fa) (fsl (10)

where |fi) = > \/Dix |ex) and p = (p;) is the initial distribution of . Then
k
(1) the state |¥,,) (,]| is a pure 2-separable state for any n < co iff

S (O‘p) = (.
(2) The state |¥,,) (U,| is a pure 2-entangled state for any n < oo iff
S (Up) > 0.

(3) There always exists the Dy of ¢ such that
—H (p) < Dgn () = =S (op) <0,
where H (p) is the Shannon entropy of the probability measure p.
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In the above theorem if the stochastic matrix P = (p;;) is unitarily imple-
mentable, i.e. there exists a unitary matrix U = (u;;) such that,/p;; = u;; for
any ¢ and j, then the set {|f;)} giving the decomposition of op by (10) becomes
an ONB, i.e.

(Fi fi) = D _wipwar = (UU”),; = 6i;
%
where u, is the complex conjugate of u;i. Thus the following corollary holds.

Corollary 10 If EMC 1 is a stationary with o unitarily implementable matriz
P, then the DEN of Y exists and is equal to:

Dgy (¢) = —H (p) (11)

where p is the initial distribution of 1.

4 Entanglement of EMC generated by a unitar-
ily implementable stochastic matrix on local
algebra

We discuss the entanglement of the finite volume restrictions of a class of EMC
on infinite tensor products of d X d matrix algebras. By restricting an EMC to
some local algebra one obtains a mixed state to which our entanglement criterion
Dgy is applicable because of Theorem 7. This allows to prove the restriction
of EMC'’s, generated by a unitarily implementable d x d stochastic matrix, to
algebras localized on arbitrary intervals are entangled.

Finally, using the recently established equivalence [12] between the Belavkin-
Ohya entanglement condition and PPT entanglement condition we prove that
the above mentioned restrictions of EMC’s satisfy the PPT condition.

4.1 Dgn of localized density

Let denote the unitarily implementable EMC state restricted to a finite region
[0,n] by jg,n, then for every local observable A € Ajg,,) one has g, (A) =
(Uy41, (A& I) P, 41). Its corresponding density operator g ) is given by tak-
ing the partial trace as follows:

g[ovn] = t'an-}-l I\Iln+l> (‘Ij'11+1l

n—1
* II *
E Vpi() Vp.’iO u’iuiu_pl‘ujn.jﬁ“kl
. . a=0
Jos* s dn,!
io: RS 271

*
uinl‘ujnl ‘ejO’ e ’ejn> (ei()‘ U ’ein

I
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From the unitarity of U = (u;;) one has 37, wy U0 =0z, 5. . So that

n—2
—— - * . * . .
H[O,n] - E vV DPiy vV Dje H uiwia.,. 1 anJQ+1

jOvjla"' ,jn——l, =0
iﬂail’"' >in—lsk
*
Y1k Uinrk lejoa €jtr " 5 € e’ﬂ> <eio> €irs " 5 €ip1s ek'
= Zpk |eio,n) (K)) (ejo,n (K)] (12)
k .

n—2

Where ,e[o’n] (k)> = \/—%f PR Z N ijO H’u’jaja+l ujn—ik ejO’ e 7ej-n.—17 ek)’ It
a=0

JOsJ1s s dn—1

is easy to check that {|ej,,) (k))} becomes an ONB. The normality is as follows:

n—2

1
Hl“flo,n](’“»”2 = o Z Pa‘oHPjujuHPjn_lk

pijajl,"“ajn-—l a=0

1
= —~ l 'n - 12— k=
pk E :pJ 1 p.? 1

j'n, —1

P _ 1.
Pk

The orthogonality of {|eo,n) (k))} is clear because of the orthogonality of {|ex)} .

For any p € [0,n — 1] the margihal states py) With respect to the Hilbert
space H,) has the same decomposition form of B0,n) :

Pyl = truuBion

= Dk leqou (B) (e, (R)] (13)
k

The another marginal state T (u with respect to the Hilbert space H(, is given
by

O = trHyle[Oan]
n—2
— * b . * u . .
- plu”;ﬁ-l u13;5+1 /u”iaia.f.] JaJea+1
. , =1
l).?p.-i—la """ yIn—15 *=pt
tut1, - )Zn——l,k
ks [ i) (€6 arr e s €6,y ek
uitl~lku]1t—lk e.?,u—f—l y T 0T 56.711.-—-—] » €k <ez,,,+1 3 yCen_19Ck
= E ,pl Ie(p,n——l](l7 k) ® ek> <e(,u.,n—1] (l7 k) © ek" (14)
N
where
n—2
Ie(“’n‘l] (l’ }’3)) = : : /u,lj[l,+| H ujtxjct+1uj1n.—1k ejp,+l7 Ty ejn.-l > .

.7‘11.+1:“' >jn-—l, a=i+1
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Put o, (1) = >, Ie(“,n,l] (L k) e e) <e(“1n_1] (L k) & ekl, then o, (I) can be
recognized as densities and

o= pog ) (15)
!
Both decompositions (12) and (13) are Schatten decompositions. Therefore

S (Bo,n)) = (Pu]) Zpk log -

Before estimating the entropy of ¢(, we recall the following lemma [17].

Lemma 11 For a density operator p given as the convex combination
p= ZNP:: A >0, ZAz =1
! !

of densities p,, the following inequality holds:
S(p) <D NS (p) ~ D _Milog. (16)
! !

The equality holds if p; L py for 1 # k.

According to the above lemma one has
a(“ ZpLS O (u (l — Zp, log p;. (17)
!

For any number s included in (u,n — 1] we separate the Hilbert space Hjg n]
as Hio,n) = Hio,u] @ Hu,x] @ H(x.n)- Then the strong subadditivity assert the
following:

S (610.m) +5 (py) < S () +5 (00.)

The Schatten decomposition of p,; is given by p,y = > px lefo.xg (K)) {efo,) (K)] -
%

Therefor one has

- E Pk logpk <S (J(I.L) . (18)

Notice that the decomposition of o, _; is given by Epk ]ek> (ex| so that S (o (n— 1) =

= "p log pk. However the rank of o(, ({) is blgger than one when p is chosen
k

from [0,n — 2]. This fact means that S (o(,(l)) > 0. Summarizing the above
argument we have the following theorem which means that 8y ) is 2-entangled
state (see also (24) in Appendix A):

Theorem 12 [4]
Dgn (6j0,n)) < O. (19)
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4.2 Entanglement mapping on EMC

Let us briefly recall the Belavkin—Ohya entanglement condition [7, 8).
Let 'H and K be separable Hilbert spaces. Denote B (H @ K) the algebra of
all bounded linear operators on H & K and let 6 be a normal state on B (H » K).
The density operator 6 satisfies, for all A € B(H) and B € B(K), the
identities:

(AR B) =trygc (A B) 8 =tryA(tric (I ® B)6) =tre (trn (A 1) 6) B.
(20)
Moreover the linear maps ¢ : B(K) — B(H),, ¢" : B(H) — B(K), defined by

" (A)=tru (A DO ; ¢(B):=trc(I®B)0o

(called entanglements in [7, 8]) are dual to each other with respect to the
Hilbert—Schmidt scalar product:

t’I’HA¢ (B) = t?‘;cq‘)* (A) B.

Both maps are completely co-positive (lience positive), but not always com-
pletely positive.

Theorem 13 [7, 8] If 6 is separable, then its entanglements ¢ and ¢™ are com-
pletely positive.

The equivalence between the above and the PPT condition was proved by
Jamiotkowski, Matsuoka and Ohya [12].

Theorem 14 ¢ or ¢* are completely positive if and only if the associated den-
sity operator @ satisfies the PPT condition.

Now we apply these results to EMC [4].

Theorem 15 For each n € N and each p € [0,n — 1]the state

00,3 (App,u) ® Bunl) = trHg y0Me, .. (A.u ® Bunl) o,

is a PPT state i.e., its corresponding density operator 6o ) satisfies the PPT
condition.

Proof. From theorem 14 it is enough to prove that the operator ¢”, defined for
any A[O,u} by
(75* (A[O,“]) = tTH'{O,u} ((A[Ovl"‘] & I)O[O’n]) (21)

is completely positive. By Choi’s criterium [9] the complete positivity of ¢” is
equivalent to the positivity of the operator

> leton 0)) (epo.u ()] ® 6" (lefo,u (1)) (e, (D) (€ B (Hom)) - (22)

2%
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Using (12), (13), (14) the density operator can be represented as

Bony = D lefo,u (1)) (epo,u ()] 0
1,7,k
VPV |€(un-1)(i, k) ® ex) (e(un—1(J; k) @ ex].

Therefore we see that the operator (22) is equal to
Z le[O,uI (z)> <e{0,u] (J)I ® PiVPi |e(u»‘n~1](j’ k) ® ek> <e(um-—1l(i’ k) ® ek' :
4,5,k

Then, for all z; = 3 a

j;;-illy"'»jn ju+h"'yjn
the unitarity of U = (u;;) one has

Z <xi’ (VP5vPi Ie(um—ll(j» k) & ek> <e(u,n-1](i’ k) & ek]) ;)

5,9.k

— |9
- Z pJ laju-kly"':jn—l’k

j,k‘;j;t+l [ 5jn.—l

: - . J
€jut1> 7ejn>a A t1s e dn e C, from

> 0.

|2

This means that the operator (22) is positive. Thus ¢* is completely positive
and so that 0 ,) satisfies the PPT condition. m

Appendix A

If  on ‘H = K is an entangled pure state with marginal states p, o, then von
Neumann entropy S (6) = 0. Moreover, from the Araki-Lieb inequality [6]:

1S (p) —S(a)| <5(0) <S(p)+S (o), (23)
the purity of 8 implies that S (p) = S (o). In general it follows

Ip(p,0) = trf(logh—logp® o)
= trflogf —trllogp® I —trflogl ® o
= S(p)+S(0)-5(0). (24)

In the case of a pure state 6, Dgy (6) can be computed as

Den () = 51{8(0)+S(0)}~Is (p,0)
= S(o)-25(p)
= —S(p) (or =—-8(o)) (25)

If Dpn (8) < 0, then S (p) = S (o) > 0 which means that p and ¢ are mixture
states. Therefore p can be written as p = > \; jz;) (x;| where {|z;)} is an ONB

1
in H and Y \; = 1,0 < A; <1 and at least two A; are strictly positive. Then
i
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due to the Schmidt decomposition there exists an ONB {|y;)} of K such that 6
is given by 6 = |¥) (¥| where

- Z\/)‘—ilwi) % |yi) -

Since at least two \; are strictly positive, this implies that € is a pure entangled
state. The converse statement obviously holds.

If Dex () =0, then S (p) = S (0) = 0 which means that p and o are pure
states respectively. Thus 8 is a pure state whose marginals are pure states. This
implies that 8 is a product of pure states. Conversely, if 8 is pure and separable,
then it is the product of two pure states, hence Dgy (8) = 0.

Appendix B

In order to prove theorem 7 we review the monotonicity property of relative
entropy of the state p with respect to a reference state o defined in [5, 13, 19]
even more general von Neumann algebra M. Its monotonicity property, i.e.
nonincrease of the R(p|o) after the application of the pre-dual of a normal
completely positive unital map A : M — M°O to the states p, and o on a von
Numann algebra M° is‘stated as follows [13, 19]:

p=poh, 0 =00A = R(plo) < R(poloo). (26)

Let 85 be a separable state on B (H ® KC) with its density 8, given by

s = anpn X On.
n

Moreover we define the diagonal separable state 8, as a special case of 6, i.e.
its density 6,(1) with respect to H is given by

by = D Pn|n) (@nl @ 7n,

where {|z,)} is an ONB in H. Their quasi mutual entropies are defined by

Iy, (p, o) = tré;(log6s — log p & o),

Ipoin, (Par0) = trbya(logbaery — log py ® o)
= antran(log o, — logo),
n .

where p = ZPan o= anffn and py; = S“pn |zn) {zn|. Then we can introduce
the CP map A given by

A(A®B) = pnlza)trdp, (.| ® B, A®B€B(H®K) (27)
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into M? & B (K) where M? denotes the diagonal sub-algebra in B (H). So that
due to the monotonicity of relative entropy we have

Iga (p? U) < Ied(?-() (pd3 (T) : (28)

From the inequality (26) it is immediately shown that conditional entropies of
8, and 6, satisfy the following :

S(0s50) 2 S (Baprgy;0) = — antmrn logo, >0, (29)

where S (8;0) = S (o) — Iy (p, 7).
For the diagonal separable density 84y = > _Pnp, @ {yn) (Yn| With respect

to X, where {|y,)} is an ONB in K, using same argument above we have

S(0s;p) = S (Barcys ) = — D _pntrp, log p, 2 0. (30)
From (29) and (30) theorem 7 is shown as

Din (8) = 5 (S (9530) + 5 (843 p)) > 0. (31)
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