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Time Optimal Quantum Evolution Within a Given Fidelity Range
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In a series of previous works we formulated a variational principle to find out the time-optimal
evolution for a quantum system with a given set of initial and final states. Here we show how to
obtain the shortest duration time T'(f) to reach the target state via quantum operations within a

given fidelity larger than a specified value f <1 .

PACS numbers:

I. INTRODUCTION

In a series of papers [1] we have considered the prob-
lem of finding the time-optimal path for the evolution
of a quantum state and the optimal quantum operation
with a driving Hamiltonian and measurements on the ba-
sis of variational principle. Before our work, Alvarez and
Gémez [2] showed that the quantum state in Grover’s al-
gorithm [3], known as the optimal quantum search algo-
rithm [4], actually follows a geodesic curve derived from
the Fubini-Study muetric in the projective space. Khaneja
et al. [5] and Zhang et al. [6], using a Cartan decompo-
sition scheme for unitary operations, discussed the time
optimal way to realize a two-qubit universal unitary gate
under the condition that one-qubit operations can be per-
formed in an arbitrarily short time. On the other hand,
Tanimura et al. [7] gave an adiabatic solution to the
optimal control problem in holonomic quantum compu-
tation, in which a desired unitary gate is generated as
the holonomy corresponding to the minimal length loop
in the space of control parameters for the Hamiltonian.

Schulte-Herbriiggen et al. [8] exploited the differential ge- -

ometry of the projective unitary group to give the tight-
est known upper bounds on the actual time complexity
of some basic modules of quantum algorithms. More re-
cently, Nielsen [9] introduced & lower bound on the size of
the quantum circuit necessary to realize a given unitary
operator based on the geodesic distance, with a suitable
metric, between the unitary and the ideptity operators.

In our previous work [1] we formulated the variational
principle for the time-optimal evolution of a quantum
system with a given set of initial and final states. How-
ever, it is more realistic to think of reaching the target
state within a tolerable error. In the present work we are
going to find the shortest duration time T'(f) to achieve
the target state by quantum operations within a given
fidelity larger than a specified value f < 1.
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I1. VARIATIONAL PRINCIPLE

Let us consider the optimization problem described in
the previous section on the basis of variational principle.
In our problem the quantum state |1 (t)) and the Hamil-
tonjan H(t) are the dynamical variables with a fixed ini-
tial state |1/(0)) = |¥;) but keeping the final state |[y/(T))
free within a fixed fidelity range. The action is defined
as

S(¢,H,$,)) =Sr +/dt [(qsw) + i(g|H|1) + c.c.
+ SN nE)] M

where Sp = A(f? — [(¥7|1¥(T))|?) (with the Lagrange
multiplier A(t) € R) ensures that the fidelity of the final
state |1(T)) with the target state |1;) is f. The overdot
denotes differentiation with respect to the time t. We
have chosen units in which Planck’s constant h is equal
to one.

The second term guarantees, through the Lagrange
multiplier |¢(¢)) € H, that |{1(t)) and H(t) satisfy the
Schrédinger equation and that the squared norm (¥|v) =
1 is conserved. The third term, through the Lagrange
multipliers A%, generates a constraint for the Hamilto-
nian. The constraints correspond to the fact that physi-
cally only a finite amount of resources (e.g., a finite mag-
netic field) is available, and that only certain operations
may be allowed (e.g., the magnetic field points in a defi-
nite direction).

Let us now derive the equations of motion. The vari-
ation of (1) with respect to (¢| leads to the Schrédinger
equation

i) = Hiy). @)
The variation with respect to (1(t)|, t < T also produces

the Schrédinger equation. The variation with respect to
the end point (y¥(7)|, gives via the partial integration

[6(T)) = Mg [(T)) |y)- (3)

Finally, the variation with respect to the Hamiltonian H



is
Fo= 2B -0 @

Equation (4) is an integrated version of the fundamental
equation that we studied in the previous works. The
problem reduces to solving the equations (4) together
with the Schrodinger equations for |) and |¢) with the
initial and final values, |4(0)) = |/;) and |¢(T)) x |vy),
respectively.

To be more specific we study quadratic and linear con-
straints,

fo(H):=TrH?/2 —w® =0, (5)
fo(H) : = Tx(Ho,) = 0, (6)

where o, are subset of generators of su(N) with normal-
ization Tr(c,op) = 28,5. We have

F=XH+) Xoa=—ill¥)s| - lo)@I]. (7)

From the constraint Tr(Ho,) = 0, we determine the La-
grange multipliers as

Ao = In(p|oay). (8)

Choosing A\p = 1, we obtain the Hainiltonian

H = —i[[$)(¢] — 1¢)(9l] = > Im(gloat)oa

= P(=i[[¢) (] — [8)(w]) = Y Im(glori)as, (9)

where P stands for the projection to the space spanned by
o/, orthogonal to o,. Palao and Kosloff [10] formulated a
slightly restricted version of the variational principle for
the optimal fidelity. They resorted to the numerical and
iterative method to solve the Euler-Lagrange equation.
We shall give a more formal development which enables
us to access analytic solutions . Our formulation can also
be viewed as the optimization of the fidelity with a fixed
time duration.

III. A SIMPLE EXAMPLE

To illustrate the procedure consider the case that we
have only the quadratic constraint. The Hamiltonian and
the Sclirédinger equations read,

I9) = (¥|@)|o) — (Dld)¥)
[y = 16) = (Bl w) (10)
where we have used the normalization (¥[¢) = 1 but

keeping the normalization for (¢|$) to be determined. In-
troducing the normalized state |¢) = (@) — (¥|d)|¥))/N
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orthogonal to |¢) with N := /{$|¢) — (911} (¥|¢) being
the normalization. Then (10) simply becomes

6) = —N|¥)
[) = N|g), (11)

with the use of (¥|¢) = const = ((T)|p(T)) = Af? € R.
The solution is

l¥(t)) = cos Nt|1p(0)) + sin Nt|@(0)). (12)
The (constant) Hamiltonian then becomes
H = iN{|g)(¢] ~ 1) (@] (13)

and the constraint (5) (we choose w > 0) gives N = w.
Recalling that the fidelity f is defined by

(Wslp(T)) := fe'c, - (14)

with an arbitrary phase ¢, we then obtain

l(t)) = (cos wt — \/_Tf.———-f—z sinwt) [th;)
+ sin wte'®
Vi-F
Here we have used A = w/(f/1 — f2) and
H = w(|é)(y] — [¢¥)(d]
T = coswT — sinwT(|6) (% — [¥) (&[]
(Y5l Tys) = coswT

(Yrlp(T)) = V1 — f2e

SHT [yy). (15)

: f
T)p(T)) = w—ree
TN = w—=ies
(16)
Let us find out the duration time T by
- f wYe—i
f={coswTl — smwT—l——w? (hrla)e
sinwT coswT an

i-P

The imaginary part of this equation gives e % = =*1 so
that we obtain either wT = x +nm, n € Z or

WwI=60—-—x+mm, m€Z (18)

with (¥f{4;) 1= cos@ and f := cosx. In particular, if
[4¢) and |1;) are orthogonal, i.e. 8§ = /2, the duration
time is given by wT = 7/2 — x and (18) can be geomet-
rically understood if we consider a great circle and the
angles corresponding to the target state ¢ and the fidelity
allowance .



IV. A SINGLE QUBIT EXAMPLE WITH THE
TWO CONSTRAINTS

Now let us take into account the linear constraint
Tr(Ho.) = 0. On the basis of the general discussion
hefore. we sce that the Hamiltonian is

H=Xo,+ Yoy,
X = Im[{¢|ozy)]
Y = Im{{(gloy )],
Z = Im[(¢|o.y)].

(19)
X satisfies the differential equation,
X = Im[(lowy) + (lo=t))]
= Im(i(¢|[H. oz ]4))]
=2Y2Z.
(20)
Similarly we have
YV =-2XZ,
Z=0.
(21)

The initial condition (1- P;)F(0)(1— P;) = 0, with P; :=
|1} (4| fixes the initial value of X equal to zero so that
we get the solution writing Z = Q2 = const.,

X = wsin(2Qt),
Y = wcos(20t), (22)

where we have used the quadratic constraint Tr(H?) =
2w?. The Hamiltonian can be rewritten as

H(f) = weintﬂ: a-ye-iﬂt-d: (23)

Let J¢) = e |9)) to reduce the Schrodinger equation
to

i) = (Qo. +woy)1) := V64), (24)
where V= vV + w? and 6 := (Qo, + wo /.

The solution is
[9(t)) = eV [(0) (25)
so that
(1)) = U(1)[(0)) = e¥o=e™¥y,).  (26)
More explicitly
U(t) = eMto= =it (27)

= cos Qtcos V't + —g; sin Q¢ sin 't (28)
+4 [f % (sin Nt sin Q'to, + cos QU sin V'tay) (29)

+ (sinQtcos Q't — S—% cos Qi sin Q’t)a:} (30)
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We are now going to determine the three integration
constants 2,7 and X by the four equations
£ = s (TN,
(T) = wsin 2QT = Im[(¢(T)|o(T))],
Y(T) = weos2QT = Im{{¢(T)|o, v(T)],
Z(T) = @ = Im[{$(T)|e=y(T))},

>

(31)

one of which is redundant. Here |¢(T)) is related to the
target state |¢5) by (3). The above set of equations can
be solved for ©2, T and A once the target state |¢/f) and the
required fidelity are given. In the following we illustrate
the procedure for the special choice of |4;) and |y¢),which
is a slight generalization of the one in the paper 1(1].

vy = &2 (32)
. i —1i0
s} = (—e—j—i—> (33)

Namely,we consider an optimal unitary transition from a
state to another on the equator within a given fidelity f
in the Bloch sphere. A straightfoward calculation gives

X =Im{¢(T)|oz¥(T))]
= A Im[(@ [ (T))* (W slow(T))]
= Im( [cos(QT —8)cosQUT + —g% sin(QT — 6)sin Q'T

+ ig; sin(QT — 6) sin Q’T} [cos(QT +8)cos UT

+ E, sin(QT + 6)sin Q'T + i

o o sin(QT + 8) sin Q’T] )

= Y n20sin 20T (34
2%

Sumilarly we have

. WA ]
Y = ~ 5 cos 20sin 2Q'T

= % {sin(2QT —26) cos 2Q'T

Q
o cos(20T — 26)sin 2Q'T
2f2 — 1 = cos(2QT — 26) cos 2Q'T
Q
+ o sin(2Q7T — 20) sin 2Q'T (35)
The last equation comes from the definition of fidelity
£2 = (s p(T)H)I?. From (34) and (35) we see that
_ 20/
T sin2QVT
Then the solutions of X = wsinQT and ¥ = wcos QT
imply

(36)
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QT =6 — - +nw, n€ Z, (37)



the equation for € is automatically satisfied and the last
equation for the fidelity 22 — 1 = cos 20T gives

1 9
QT = 3 arccos(l — 2f<) + mw +nmw, m € Z. (38)

Combining (37)and(38) we finally arrive at the expression
for the duration time T'

Wl =+/(7/2 —x + nm)? — (7/2 — 0 + mn)?, m,n € Z,
(39)

where the fidelity angle x is defined by f = cosyx.
It is curious to point out that the obtained minimum
duration time wTiy = /(7/2 = x)2 — (n/2 - 0)% =
V(@ —x)(m — 8 — x) is the geometric mean of the mini-
mum time and maximum time along the equator to the
target region. To conclude this section we just present
the trajectory in the Bloch sphere

x2(t) = (Y(t)|oz(t)) = cos 2Qt cos 20t

+ —g—, sin 20t sin 20't,
y(t) = (W(t)|oy(t)) = —sin 20t cos 22"t

Q
+ s 20 sin 2Q't,

() = (W(t)]o.v(t)) = —h“i, sin 2Q't. (40)
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for the minimum duration time. The other local minima
for various m,n € Z can be easily obtained.

V. SUMMARY

We have formulated a variational principle to obtain
the time-optimal evolution for a quantum system to reach
the target state with the shortest duration time T'(f) and
within a given fidelity larger than a specified value f < 1.
One qubit examples are demonstrated to show simple ge-
ometric interpretations. 'We hope the present approach
is helpful to develop a fast approximate quantum algo-
rithm.
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