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Orientability of real resultant singularities.

A. 1. Esterovt

1 Real resultant singularities

Let K be the field of real or complex numbers. For a finite set A € Z™, denote
the space of Laurent polynomials { >  ¢coy,.0,t1 - 2" | Cay,..an € K}

(a1,..,an)EA
by K[A].
DEFINITION 1. For finite sets £; C ZV, i = 1,...,1I, the resultant
variety Rx(Z1,...,21) CK[Z]&®...®K[X/] is defined as the closure of the
set

{(91,--,91) | 9: € K[Z:], A(t1, ..., tn) € (K\ {OPN :
91(ty, ..., tn) =...=gr(t1,...,tn) = 0}.

One simple example of a resultant variety is the set of all degenerate
matrices in the space of all N x I matrices with entries in K. The papers
[5], [6] study the intersection number of the variety Rc(Zy,...,%3r) with the
image of a complex analytic map f : C™ — C[Z,]®...®C[%X/] in terms of the
Newton polyhedra of the components of f. To discuss the real version of this
computation, we need to know if the intersection number is well defined for
the variety Rgr(%,,...,X) : in particular, if this variety is equidimensional,
orientable, if it has no boundary etc. The main result of this paper (Theorem
4 below) answers this question, if the sets X;,..., 2 are in general position
in a sense.

For a finite set ¥ C Z%, we denote the real vector space and the lattice,
spanning all vectors of the form a—b, a € ¥, b € ¥, by Ling(X) and Linz(¥)
respectively.

DEFINITION 2. A collection of sets ¥; C ZV, i =1,...,1, is said to be
consistent if J — dim Ling(%;, +...+%;,) < I —dim Ling (2, +... + X;) for
every subset {iy,...,27} C {1,...,T}. It is said to be essential if, in addition,
J —dim Ling(Z;, +...+%;,) < I —dimLing(3, + ...+ Xj) for every subset
{’il, .. ,i_]} - {1, .. .,I}, and LinR(21+. . .+EI)OZN = Ling(Z; +.. .+EI).
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DEFINITION 3. A collection of subsets 5, C %4,...,%; C £ is called
a codimenston 1 face of the collection Xy, ..., %, if the sum X; + ...+ X is
contained in a codimension 1 face of the convex hull of the sum £, + 42,
and the collection El, 2 r is a maximal collection of subsets of El, C X
with this property.

THEOREM 4. 1) The variety Rr(X1,...,L;) is equidimensional, and

its codimension equals ma T~ dim Lina (S + ..+ 5.,
! {il,._.,z‘J}c){cl,...,I} im Ling(%;, + ... + %))

2) If I > dim Ling(3; + ... + %) + 1, the collection ¥1,. .., is essential,
and every its consistent codimension 1 face is essential, then the codimension
of the singular locus of Rr(Z1,...,21) in Rr(Z4,...,2r) is greater then 1.

8) If, under the assumptions of Part 2, there ezists a € Z", such that the
shifted lattice a + 2ZY does not intersect the shifted lattice 21 +... 45+
Lmz(21+ +EI) for every consistent codimension 1 face (21, . E,—) of the
collection (X4, ...,%r), then the smooth locus of Rr(21, .. ., 1) is orientable.

We study only essential collections X1,...,%;, because the general case
can be reduced to this one in the same way as for complex resultant va-
rieties (see [7], section 2). Other assumptions of this theorem can not be
omitted. In particular, if /] = dimLing(X; + ... + X;) + 1, then the hy-
persurface Rg(Z;,...,Yr) may have self-intersections of codimension 1; if
I < dimLing(3; +...+X;) + 1, then Rg(X;,...,Xr) may have a boundary;
if the affine hulls of essential codimension 1 faces of the collection (X;,...,Xr)
intersect every shifted lattice of the form a + 2Z", then the smooth locus of
Rg(Z1,...,%r) is not orientable.

However, we can get rid of the assumptions of Part 2 as follows. A
point z of a piecewise-smooth set V' C R” is said to be weakly smooth,
if an open neighborhood of z is homeomorphic to the product of an open
disc D and the bouquet of open segments [;. Under this assumption, an
orientation of the smooth locus of V near z is called an orientation of V'
at the point z, if it is induced by some orientations of D and I;. The weak
smooth locus of V is the set of all weakly smooth points, and the weak singular
locus is its complement. The intersection number of piecewise-smooth sets
of complementary dimension is well defined, if their weakly smooth loci are
orientable, and the codimensions of their weakly singular loci are greater
than 1.

This leads to the following version of Theorem 4:
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1) If the collection %,...,%; is essential, then the codimension of the
weak singular locus of Rg(Xy,...,%;) in Rgr(X,,...,Xr) is greater then 1.

2) If, in addition, there ex1sts a € Z™, such that the shifted lattice a + 22"
does not intersect the shifted lattice El—l— +3 [+L1nz(21+ 43 1) for every

consistent codimension 1 face (1, ..., ;) of the collection (T4, . .., ¥;), then
the weak smooth locus of Rg(Xi,...,% ) is orientable.
Lemma 8 below explicitely describes orientations of Rg(%,,...,2;).

2 Proof of Theorem 4

Parts 1 and 2 easily follow from the corresponding facts about complex re-
sultant varieties, and Part 3 of Theorem 4 is the main result of this paper.

Part 1. We denote the real locus VNRY of a complex analytic set V C C?
by RV.

LEMMA 5. Ifp: C? — C" is a complez analytic map such that p(R9) C
R", and V C C9 is an irreducible complex analytic set such that dimg RV =
dimc V at every point of RV, then dimg p(RV) = dim¢ p(V') at every point
of p(RV).

Proof. We denote the set of all points y € V such that dim¢p(V) +
dime pUY (p(y)) NV > dimc V by V. Obviously, dim¢ V < dime V/, hence
dimg RV, < dime¢ Vy < dime V = dimg RV, hence RV \ RV} is everywhere
dense in RV, hence the subanalytic set P = p(RV \ RV}) is everywhere dense
in p(RV'). We note that

dimg p{~Y (z) "RV < dim¢ V — dime p(V) (1)
for every point z € P, because p{~(z) NRV c p{-(z) NV and
dimg¢ p(-l) (SC) NV =dimcV — dim¢ p(V)

If we assume that the dimension of the set P is smaller than dimc p(V')
at every point of its open non-empty subset P, then, by inequality (1),
the dimension of RV at every point of its open subset p(~1)(FP) N RV is
smaller than dimc p(V)+ (dim¢ V —dime p(V)) = dime V, which contradicts
the condition dimg RV = dim¢ V. Thus, the set of all points of P, where
dimg P = dim¢ p(V'), is everywhere dense in P. [J
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Let V be the set of all points (¢, ¢1,...,¢1) € (C\ {0})" x (C[Z4] &
... @ C[X[]) such that ¢(t) = ... = ¢r(t) = 0, and let p be the projec-
tion of the product (C\ {0})¥ x (C[Z;] @ ... ® C[%X;]) to the second mul-
tiplier. The variety V is irreducible and dim¢V = dimg RV, because V
and RV are K-vector bundles of the same rank over (K \ {0})", where K
stands for C and R respectively. Since the closures of p(V) and p(RV') equal
Rc(Z,...,%r) and Rg(X,. .., Z) respectively, the lemma above gives the
equality codimg Rgr(Z,,...,2r) = codimc Re(Zy,...,Zr). The latter codi-
mension is equal to max J — dim Ling(%;, + ...+ %;,) by Theorem

{3150ensig }C{Lyeen I}
2.12 from [7].

Part 2. For a fan I' in R", we denote the corresponding toric variety
by CTT, and denote its real locust by RT' (see details in [1] or, for the
smooth case, in [2]). The inclusion (K \ {0}) € KT' induces the inclusion
K\ {OD" x (K[Z1] & ... 9 K[Z]) € KTF x (K[Z] @ ... & K[E;]) for
K = C and K = R, we denote the compactification of V.and RV in the
latter space by CU and RU respectively, and denote the extension of the
projection p : V. — R¢(Z4,...,21) to CU by the same letter p. Since
Rk(Z1,...,%1) = p(KU), the singular locus of Rg(X1,..., %) is contained
in the union of the following three sets:

p(S1k), where Sy x C KU is the singular locus of KU,

p(S2x), where Spx C KU is the set of all smooth points z such that
dp|ku (z) is degenerate,

p(Ss ), where S3x C KU is the set of all points z such that z is not the
only point in its fiber p(~Y (p(z)) N KU.

Obviously, S;g C Sic. We assume (without loss of generality) that the
dimension of the convex hull of £; + ...+ X; equals N, and that the fan T’
is dual to the convex hull of ©; + ... + X;. If, under these assumptions, the

collection ¥,..., Xy is essential, then dim¢ S; ¢ < dim¢ V' —2 by Lemma 4.3
from [7].

Part 3. Instead of orientations of Rg(Xi,..., %), we discuss its coori-
entations.

DEFINITION 6. A coorientation of a piecewise-smooth set M C R"
is a choise of orientations of the smooth locus of M and R”, up to the
simultaneous reverting of these orientations.

The function s; on the set (R\ {0}Y X (R[Z,] @ ... ® R[Z}]) is defined
by the equation s;(t, ¢1,-..,9r) = @i(t). The smooth variety RV C (R\
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{OHY x (R[Z1] @ ... ® R[Z/)) is the complete intersection defined by the
equations s; = ... = sy = 0. The coordinate system dsi,...,ds; on a fiber
of the normal bundle N(RV') defines its orientation, which we refer to as the
tautological orientation.

Again, without loss of generality, we assume that the dimension of the
convex hull of ¥; +... + ¥; equals N, and the proof of Part 2 of Theorem
4 gives the following fact as a byproduct. There exists an open dense subset
D in the smooth locus of Rg(X;, ..., X;), such that the projection p : RV —
Rg(Z1,...,Z;) induces a diffeomorphism of D and its preimage p{~V(D) N
RV. If y € RV is the preimage of a point z € D under this diffeomorphism,
then, identifying the tangent spaces T, D and T,(RV'), we have the identity

Ny (RV) + T,D =T, (R \ {0})” + T (R[Z1] @ ... ®R[E))).

Suppose that the tautological orientation of the first term of this identity
and orientations O,, Oz and O3 of the other three terms induce the same
orientation of the two sides of this identity. Then the coorientation (O, O3)
of D is said to be induced by the orientation Oy of (R\ {0})".

Below we describe all orientations of (R\ {0})¥, such that the correspond-

ing induced coorientation of D can be extended to the coorientation of the
whole Rgr(%,,...,Zr).

DEFINITION 7. If an orientation of the group (R \ {0})" is invariant
with respect to the action of (R \ {0})" on itself, and coincides with the
standard orientation at the point (1,...,1), then it is called the invariant
orientation of (R\ {0})". For an arbitrary (not necessary linear) function
r : Z% — Za, the r-orientation of (R \ {0})" is the orientation that differs
from the invariant one by (—1)7(1+en) at the point ((—1)®,...,(~1)%") for
every (ai,...,an) € Z3.

For a codimension 1 face (51, e f)l) of the collection (X, e 1), con-
sider a primitive normal covector of the convex hull of the sum ¥; +...4+%;.
This covector is unique modulo 2, we denote it by v, 5, € ZY , and denote

its value at an arbitrary point of fl +...+3r by 9&,,..5) € Zs.

Let Os, ... x, be the set of all functions 7 : ZY — Zo, such that r(a+yr) =
r(a) + gr + 1 for every consistent codimension 1 face F' of the collection
¥,..., 2. Let ¢(3,...,Xr) be the codimension of the linear span of the
covectors yr. We note that, if there exists a point a € Z" mentioned in
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the formulation of Part 3 of Theorem 4, then the set Ox, . », consists of

922F1E1) olements, and Os,,..x; = @ otherwise. Hence, Part 3 of Theorem
4 1s a corollary of the following statement.

LEMMA 8. Under the assumptions of Part 8 of Theorem 4, the coori-
entation of the set D, induced by the r-orientation of (R \ {0}V, can be
extended to the variety Rr(%,,...,%;) for everyr € Og, .. 5, -

The proof is given below and implies the following remarks.

1. The variety Rg(%,,...,X;) may admit more than two coorientations
because its smooth locus may have more than one connected component;
namely, it has 29(F1--Z1) components.

2. Lemma 8 describes all possible orientations of the smooth locus of
the variety Rgr(Xi,...,%;) under the assumptions of Part 3 of Theorem
4. However, it may not describe all orientations of the weak smooth lo-
cus (which is defined one paragraph after the statement of Theorem 4). For
example, if Rc(Xy,...,%r) is a hypersurface, then it is given by a certain
square-free real polynomial, which is called the (X;,...,¥)-resultant (see
[3], [4]). The differential of this polynomial defines a coorientation of the
smooth locus of Rg(X;,...,Xr) that can be extended to the weak smooth
locus of Rg(X,,...,X;). However, if the codimension of the singular locus
of Rr(X1,...,%s) equals 1, then this coorientation can not be induced by an
orientation of (R \ {0})".

3 Proof of Lemma 8

If (39,...,5}) is a codimension 1 face of (¥4,...,%), then the convex hull
of &} +...+3] is a codimension 1 face of the convex hull of ¥; 4. ..+ X, and
the primitive external normal covector to this face is denoted by ¥(s;,...z!) €
(ZN)*. Let I be the dual fan of the convex hull of the sum ¥; + ... + %y,
and let RT! be the corresponding real toric variety. If v generates a 1-
dimensional cone of the fan I", then the corresponding codimension 1 orbit
of RTT is denoted by W.,. Let RTY be the union of (R\ {0})" and the orbits
W5, where F runs over all consistent codimension 1 faces of (¥i,...,Zr).
The inclusions (R \ {0})¥ ¢ RTY ¢ RTT induce the inclusions

R\ {O)" x (R[T]@... 0 R[Z]) C
RT! x (R[Z]®...®R[Z;]) C
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RT" x (R[Z1] & ... ® R[Z;)),

we denote the closure of the variety RV in the second and the third of these
spaces by U; and U respectively, and denote the extension of the projection
p: RV — Rr(%4,...,%;) to U by the same letter p.

LEMMA 9. There erxists an open subanalytic subset D in the smooth
locus of Rg(X1,...,X;), such that the codimension of Rr(%y,...,%;) \ D in
Rr(%1,...,%1) is at least 2, and the projection p : Uy — Rg(Zy,...,%r)
induces a diffeomorphism between D and its preimage p(_l)(D) NU;.

Proof. We define D as the interior of the complement to the union of
p(S1r), P(S28), P(S3r) and p(U\U1). The codimension of p(S; r), p(S2r), P(S3r)
in Rg(X1,...,E) was estimated as a part of the proof of Theorem 4, Part
2. To estimate the codimension of p(U \ U;), we choose an arbitrary cone C
in the fan I', such that the corresponding orbit W of RTT is not contained
in Uy, and estimate the codimension of the set

p(Un (W x ®RIi] & ... 6 RIZ)))

as follows. We choose a covector v in the relative interior of C, and denote
by X7 the subset of £;, where -y attains its maximum as a function on ;.
Then the set

p(U N(W x RIZ] ... @ R[Z))

is the preimage of Rr(X7,...,%X]) under the natural projection R[Z;] &
. ORE] —» RE]]® ... ® R[X]], and we can estimate the codimension
of Rg(X7,...,X]) by Theorem 4, Part 1. [J

To extend the desired coorientation from D to D, which would prove
Lemma 8, we need the following notation. The support function Z(-) :
(R¥)* — R of a finite set £ C Z" is defined as follows: its value X(v)
at a covector v € (RM)* equals the maximal value of v as a function on
2. The set of all primitive generators of 1-dimensional cones of the fan I is
denoted by I';. For every « € I';, the corresponding codimension 1 orbit of
the complex toric variety CT" is denoted by W.,. If the support function of
3 is linear on every cone of the fan I', then the variety CTT carries an ample
line bundle Zy, with a meromorphic section 75, such that the divisor of zeros
and poles of 7 equals } .. X(v) - W,. The pair (Zg, 7s) is uniquely defined
by this condition. The section 75 generates a real line bundle on RTT, and
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defines an orientation of its fibers over (R\ {0})" C RTT; we denote this real
line bundle by RZs,, and refer this orientation to as the X-orientation.

The ¥;-orientation of the line bundles RZy, for ¢ = 1,...,I and the r-
orientation of (R\{0})" define an orientation on the total space of the bundle
P, RZyx, over (R\{0})", and we refer this orientation to as the r-orientation
on the total space of the bundle @, RTs, over (R\ {0})V.

LEMMA 10. The r-orientation on the total space of the vector bundle

@D, RZs, over (R\ {0})" can be extended to the total space of this bundle
over RT] if and only if r € Ox, .5,

We denote the latter total space by M.

Proof. Every codimension 1 orbit W of RT} corresponds to a 1-dimensional
cone of I', generated by a primitive covector «. If we choose a coordinate
system so that v = (1,0,...,0), then the inclusion (R \ {0})" C RTY
extends to the inclusion R! x (R \ {0})¥~! C RTY, such that the image
of {0} x (R \ {0})™-! equals W. The line bundles RZy, are trivial on
R! x (R \ {0})¥-!, and we identify them with the trivial line bundle I on
R! x (R\ {0})V-!. Thus, we can consider the Z;-orientation of the line
bundle RZs, on (R \ {0})" as an orientation of the trivial line bundle I
on (R\ {0})¥, consider the r-orientation of the total space of the vector
bundle @, RZs, over the set (R\ {0})" as an orientation of the total space
of [®...®I over (R\ {0})", and our aim is to verify if the r-orientation

N s

I
can be extended to the total space of I® ... ® L over R! x (R\ {0})V-1.

I
For arbitrary as, ..., ay in Zg, we denote by Wa2-+4~N the connected com-
ponent of W = {0} x (R\{0})¥~1, containing the point (O, (=1)%=, ..., (—1)‘“") .
-ori i leld...0l
The r-orientation of the total space of the vector bundle I®...® I over

I
the set (R \ {0})" can be extended to the total space of this bundle over
the set (R \ {0})¥ U Wa2--or if and only if it is the same at the points
(=1, (=1)%,...,(=1)**) e R* x (R\ {0})¥* and (1, (-1)%,..., (-1)°~) €
R! x (R \ {0})¥~1. The Z;-orientation of the line bundle I over (R \ {0})"
is the same at these two points if and only if ¥;(y) is even (this number is
the multiplcity of the hypersurface W in the divisor of the section 7x,, that
defines the ¥;-orientation). The r-orientation of (R \ {0})" is the same at
these two points if and only if (0, az,...,anx) — r(1,az,...,an) = 1. Thus,
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the r-orientation on the total space of the vector bundle I ... ®1 is the
W

I

same at these two points if and only if r(0,as,...,an) — 7(1,a2,...,an) —
1+, Zi(v) =0 modulo 2, ie. 7(a) —=r(a+v) — 1+ 3, Zi(y) = 0 modulo
2, where a = (0,as,...,a,) or a = (1,as,...,a,). This condition for all a

and v gives the definition of the set Oy, . x,. O

We recall that the function s; on the space (R\{0})" x (R[Z;]®. . . ©R[Z/])
is defined by the equality s;(¢, ¢1,...,91) = @i(t). The section s;7s, of the
pullback of the bundle RZy, to the product (R\ {0}V x (R[Z,]®... ®R[Z;])
can be extended to a certain section §; of the pullback of this bundle to RT' x
(R[Z1]®...®R[E;]). The divisors of zeros of the sections &, ..., §; intersect
transversally on the smooth variety RTL, and their intersection equals U,.
For every point (¢,z) € U, C RT! x (R[Z;] & ... ® R[E/]), the differential
(d31,...,d3r) identifies the fiber of the vector bundle €, RZs, at ¢ with the
fiber of the normal bundle of U; at (t,z). Equipping the fiber (@, RZs,),
and the fiber of the normal bundle N(; ;yU; with the same orientation, and
equipping M at the point ¢ € RT} C M with the r-orientation (see the
formulation of Lemma, 10 for this notation), we can equip the smooth varieties
R[Z:]®...®R[X] and U, with orientations O; and O, that induce the same
orientation of the two sides of the identity

(GBiRIE‘.)t + N(t,z)Ul + T(t,z)Ul =T,M + Tx(R[El] D...D R[E[])

Since the projection p establishes a diffeomorphism between p and an open
dense subset of U;, we can consider O, as an orientation on D, and the pair
(01, O2) induces a coorientation on this set. By Lemma 9, this coorientation
extends to a coorientation of the resultant variety Rgr(3;,...,%7). On the
other hand, as a coorientation on D, it is induced by the r-orientation of

(R\ {oh)".

4 Intersection numbers of real resultant va-
rieties

A key observation in [6] is Proposition 5, which relates intersection numbers
of complex resultant varieties and intersection numbers of divisors on toric
varieties. To formulate the real version of this result, we need the following
definition.
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Suppose that the codimension of the singular locus of a closed m-
dimensional subanalytic set M is at least 2, suppose that the total space
S of an m-dimensionsl real vector bundle F on M is oriented, and suppose
that the zero locus of a continuous section w of F is compact. Then we can
consider a smooth perturbation w of this section, such that its zero locus
consists of finitely many nondegenerate isolated points p; in the smooth locus
of M near the zero locus of w. The differential dw at the point p; identifies
the tangent spaces Ty and Ty to the graphs of the sections 0 and @ of the
bundle E. Since the tangent space to the total space S at p; equals the direct
sum 1o+ T3, an arbitrary orientation of T and the corresponding orientation
of T;; define an orientation of S at p;, which differs from the given orientation
of S by 1. We denote the latter number by sgn,.

DEFINITION 11. The sum ), sgn; does not depend on the choice of
the perturbation @, and is called the indez of w.

Let n be the codimension of the resultant variety Rg(¥,...,%;), and
let f:R* — R[X;]® ... R[Z;] be a continuous mapping such that the
preimage of Rgr(Xi,...,2;) is compact. We adopt the notation RZs,, §;
and M from the proof of Lemma 8. In this notation, let S be the total
space of the poolback of the vector bundle €, RZy, under the projection
RTT x R® — RT'. The pullback of the section (i,...,3;) under the map
(id, f) : RTY xR — RT" x (R[Z;]®...®R[E/]) is a section s of this bundle.

We equip R" with the standard orientation, and equip the resultant va-
riety Rg(X1,...,Xr) with a coorientation, induced by the r-orientation of
(R \ {0})" for some r € Oy, s,. The r-orientation of the total space M
and the standard orientation of C* define an orientation of S.

THEOREM 12. For the specified choice of orientations and coorienta-
tions, the intersection number of f(R") and Rr(X1,...,Xr) equals the index

of s.

Proof. If the image of f intersects the resultant variety transversally at
a single point, then the statement is obvious from definitions. The general
case can be reduced to this one by a small perturbation of the map f. U
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