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1 Introduction.

In this note we will provide a survey on several recent results
on the local classification problem of varieties under symplecto-
morphisms.

In general, there are two types of local classification problem:
(V) the classification of mappings and varieties, and (D) the
classification of differential forms and dynamical systems.

As a general tendency of results, for the classification prob-
lem of type (V), we have finite lists for simplest objects after
classification and at most finite dimensional moduli for compli-
cated objects. Finite determinacy holds for objects except for
infinite codimensional set of objects. Then the $C^{\infty}$ classification
and the analytic classification have no essential difference on the
classification results. In fact, the classification of isotropic or $Laarrow$

grangian varieties or mappings under symplectomorphisms turns
to fall into type (V), and several finiteness theorems are proved
for them [9][10][12]. Note that the differential classification of
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mappings under the right-left equivalence or $\mathcal{A}$-equivalence in
the sense of Mather belongs to (V) of course ([15]). We ob-
serve that the differential and symplectic classifications coincide
for map-germs for simplest objects (lst stage). Then, for more
complicated singularities, there appears a difference between dif-
ferential and symplectic classifications, the existence of $((ghosts$”

in the sense of Arnold [2] (2nd stage). The differential classi-
fication has a finit $e$ list while the symplectic classification has
finite dimensional moduli ([11] [13]). Moreover, if we proceed to
more complicated objects further, then we have finite dimen-
sional moduli for both differential and symplectic classifications
(3rd stage).

On the other hand, for the classification of type (D), we have
finite lists for simplest objects after classification at first (lst
stage). In the l-st stage, problems from (V) and (D) look sim-
ilar and no difference between (V) and (D) is observed after
classification. Then we have still finite lists more complicated
objects under the $C^{\infty}$ classification, while we have functional
moduli for the analytic classification (2nd stage). If we proceed
to more complicated objects further, then we have functional
moduli for both $C^{\infty}$ and analytic classification (3rd stage).

The 2nd stage can be phrased as a “time-lag”of classification.
The existence of a “time-lag”depends on cases in the classifica-
tion problems,

In this talk, we observe that a classification problem of (non-
Lagrangian) coisotropic mappings falls into type (D). Therefore
there is clear difference between differential and symplectic clas-
sifications. Moreover we investigate the “time-lag”for generic
symplectic classification of map-germs $\mathbb{R}^{3}arrow \mathbb{R}^{4}$ .
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2 symplectic classification of map-germs.

Let $\omega$ be a symplectic form on $\mathbb{R}^{2n}$ , and $f$ : $(\mathbb{R}^{m}, a)arrow \mathbb{R}^{2n}$ a
$C^{\infty}$ map-germ. We consider the classification problem of the
pair $(f, \omega)$ fixing $m$ and $n$ : The pair $(f, \omega)$ is called symplecto-
morphic to another pair $(f’, \omega’)$ if there exist a diffeomorphism-
germ $\sigma$ : $(\mathbb{R}^{m}, a)arrow(\mathbb{R}^{m}, a’)$ and a symplectomorphism-germ
$\tau$ : $(\mathbb{R}^{2n}, f(a))arrow(\mathbb{R}^{2n}, f’(a’)),$ $\tau^{*}\omega’=\omega$ , such that $f’o\sigma=\tau\circ f$ ,
namely that the diagram

$(\mathbb{R}^{m}, a)$
$arrow^{f}$

$(\mathbb{R}^{2n}, f(a)),$ $\omega$

$\sigma\downarrow$ $\downarrow\tau$

$(\mathbb{R}^{m}, a’)arrow^{f’}(\mathbb{R}^{2n}, f’(a’)),$ $\omega’$

commutes.
If the above condition is satisfied just for a diffeomorphism-

germ $\tau$ , (not necessarily a symplectomorphism-germ), then we
call $f$ and $f’$ are diffeomorphic.

First we mention a theorem which contains the classical Dar-
boux theorem as the special case $m=0$ :

Theorem 1 (Darboux-Givental [4]) For any immersion-germs
$f,$ $f’$ : $\mathbb{R}^{m}arrow \mathbb{R}^{2n}$ and for any symplectic forms $\omega,$

$\omega’$ on $\mathbb{R}^{2n}$ ,
$(f, \omega)$ and $(f’, \omega’)$ are symplectomorphic if and only if two forms
$f^{*}\omega$ and $f^{l*}\omega’$ are diffeomorphic; for some diffeomorphism-germ
$\sigma$ on $\mathbb{R}^{m},$ $\sigma^{*}(f^{1*}\omega’)=f^{*}\omega$ .

Thus in the non-singular cas$e$ (the case of immersion-germs),
the classification problem is reduced to that of pull-back forms
to the sources. Note that the pull-backs of symplectic forms are
not arbitrary. In particular we have
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Corollary 2 All non-singular hypersurface-germs in $\mathbb{R}^{2n}$ are sym-
plectomorphic.
All coisotropic (resp. isotropic) submanifold-germs of fixed di-
mension in $\mathbb{R}^{2n}$ are symplectomorphic.

Note that all immersion-germs (on a fixed dimensional source)
are diffeomorphic in our sense. In the singular case, however,
even if $f$ and $f’$ are diffeomorphic and $f^{*}\omega$ and $f^{\prime*}\omega’$ are diffeo-
morphic, $(f, \omega)$ and $(f’, \omega’)$ are not necessarily symplectomor-
phic.

In fact, in the cas$em=n=1$ (planer curves), we have given
both symplectic and differential exact classifications of differ-
entially uni-modal plane curve singularities, and clarified the
difference of differential and symplectic classifications ([11] [13]).
For the classification of curves $(m=1, n\geq 2)$ , see [2] [3] [14] [7] [6].

3 Classification of isotropic surfaces.

A pair $(f, \omega)$ is called isotropic if $f^{*}\omega=0$ . Then $f$ is called
isotropic with respect to $\omega$ . If $m=1$ , then any pair $(f, \omega)$

is isotropic. Moreover if $f$ : $\mathbb{R}^{n}arrow \mathbb{R}^{2n}$ then we call $(f, \omega)$

Lagrangian.
In the case $m=n=2$ , we have

Theorem 3 ([9]) Let $f$ : $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{4}, \omega)$ be isotropic. Sup-
pose $f$ is diffeomorphic to

$f_{ou}(t, u)=(ut, t^{2}, \frac{2}{3}t^{3}, u)=(p_{1}, q_{1},p_{2}, q2)$ .

Then, for any symplectic form $\omega$ , the pair $(f, \omega)$ is symplecto-
morphic to $(f_{ou}, \omega_{st})$ . (Darboux-type theorem). Moreover, for
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any $n$ , there exists a class of open umbrellas, characterised by
the symplectically structurally stability, and for them, Darboux
type theorem holds.

We refer to a generalization of Darboux-Givental case to sin-
gular case.

Theorem 4 (Domitrz, Janeczko, Zhitomirskii, [7], 2006) For
any $N,$ $N’\subset \mathbb{R}^{2n}$ quasi-homogeneous, for any symplectic forms

$\omega,$
$\omega’$ on $\mathbb{R}^{2n},$ $(N, \omega)$ and $(N’, \omega’)$ are symplectomorphic if and

only if their algebraic restrictions $[\omega]_{N}$ and $[\omega’]_{N}/$ are diffeomor-
phic.

Corollary 5 Algebraic restwictions of symplectic forms to an
open umbrella are diffeomorphic to each other.

Example 6 Let $f_{\lambda}(u, t):=(t^{5}+ut^{3}+ \lambda u^{2}t, t^{2}, \frac{2}{5}t^{5}+\frac{4}{3}\lambda ut^{3}, u)=$

$(p_{1}, q_{1},p2, q_{2}),$ $\lambda\neq\frac{21}{100}$ . Then the family $f_{\lambda}$ of isotropic map-
germs with respect to $\omega_{st}$ is trivialised by diffeomorphisms, but
$\lambda$ gives the (symplectic moduli”.

There is the notion of symplectic codimension $sp- co\dim(f, \omega)$

also for an isotropic pair $(f, \omega)$ . The number sp-codim $(f,\omega)$

is characterised as the minimal number of symplectically versal
unfolding of $f$ .

Theorem 7 ([12]) $sp- co\dim(f, \omega)$ is a diffeomorphism invari-
ant for isotropic nomalisations $f$ : $(\mathbb{R}^{n}, 0)arrow(\mathbb{R}^{2n},\omega)$ ; If $f$ and
$f’$ are diffeomorphic, then $sp- co\dim(f, \omega)=sp- co\dim(f’, \omega’)$ for
any symplectic forms $\omega,\omega’$ with $f^{*}\omega=0,$ $f^{l*}\omega’=0$ .

In the complex analytic case, if codim$\Sigma(f)\geqq 2$ , then

sp-codim $(f, \omega)=\dim_{\mathbb{C}}\mathcal{R}_{f}/f^{*}\mathcal{O}_{2n}$ ,
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where
$\mathcal{R}_{f}:=\{h\in \mathcal{O}_{7l}|dh\in \mathcal{O}_{n}\cdot df\}$ .

In the case $n=1$ , we have

$sp- co\dim(f,\omega)=\dim_{\mathbb{C}}\mathcal{O}_{1}/f^{*}\mathcal{O}_{2}$ .

Moreover the difference of differential/symplectic classification
is given by

$gh(f, \omega):=\dim_{\mathbb{C}}\mathcal{G}_{f}/f^{*}\mathcal{O}_{2n}$ ,
symplectic defect or ghost number where

$\mathcal{G}_{f}:=\{h\in \mathcal{O}_{n}|dh\in f^{*}\Omega_{2n}^{1}\}=\{h\in \mathcal{O}_{n}|dh\in f^{*}\mathcal{O}_{2n} . df\}$ .

Remark that

$\mathcal{R}_{f}\supseteq \mathcal{G}_{f}\supseteq f^{*}\mathcal{O}_{2n}$ , $f^{*}:\mathcal{O}_{n}arrow \mathcal{O}_{2n}$ .

Example 8 For the open umbrella

$f_{ou}=(ut, t^{2}, \frac{2}{3}t^{3}, u):(\mathbb{R}^{2},0)arrow(\mathbb{R}^{4},0)$ ,

we have that

$dh(t, u)\in\langle d(t^{2}),$ $du,$ $d(ut),$ $d( \frac{2}{3}t^{3})\rangle_{\mathcal{O}_{2}}=\langle tdt,$ $du,$ $udt\rangle_{\mathcal{O}_{2}}$

if and only if $h=a(t^{2}, t^{3}, ut, u)$ for some $C^{\infty}$ function $a$ . There-
fore $\mathcal{R}_{f}=\mathcal{G}_{f}=f^{*}\mathcal{O}_{4}$ .

Proposition 9 Let $f$ : $\mathbb{R}^{2}arrow \mathbb{R}^{4}$ be isotropic map-germ of
comnk $\leq 1$ for a symplectic $f_{07}m\omega$ . If $sp- co\dim(f, \omega)\leq 1$

then $(f,\omega)$ is symplectomorphic to $(f_{ou},\omega_{st})$ the open umbrella,
or to $(f_{1nou}^{\pm}, \omega_{st})$ the multiple open umbrella, where $f_{mo\iota\iota}^{\pm}(t, u):=$

$(t^{3} \pm u^{2}t, t^{2}, \frac{4}{3}ut^{3}, u)$ .
Moreover $(f_{mou}^{+}, \omega_{st})$ is not symplectomorphic to $(f_{1\overline{n}ou}, \omega_{st})$ .

In fact $f_{mou}^{+}$ and $f_{\overline{m}ou}$ are not diffeomorphic.
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Remark 10 For the multiple open umbrella, $\mathcal{R}_{f}\supsetneq \mathcal{G}_{f}=f^{*}\mathcal{O}_{2\cdot;\iota}$ :
There is no ghost in this case. The map-germs $f_{\lambda}$ in Example
6, we have that $sp- co\dim(f_{\lambda)}\omega_{st})=2$ , and that $\mathcal{R}_{f_{\lambda}}\supsetneq \mathcal{G}_{f_{\lambda}}\supsetneq$

$f_{\lambda^{*}}\mathcal{O}_{2n}$ .

4 Symplectic classification of
$-$

Whitney um-
brellas.

Now we consider the symplectic classification of generic map-
germs $f$ : $\mathbb{R}^{3}arrow \mathbb{R}^{4}$ as a typical example of our classification
problem.

As for the differential classification, it is known that a generic
map-germ $f$ : $\mathbb{R}^{3}arrow \mathbb{R}^{4}$ is diffeomorphic to an immersion or
to a Whitney umbrella. A map-germ $f$ : $(\mathbb{R}^{3}, a)arrow \mathbb{R}^{4}$ is
called a Whitney umbrella if $f$ is diffeomorphic to the map-
germ $(\mathbb{R}^{3},0)arrow(\mathbb{R}^{4},0)$ given by $(u, v, w)\mapsto(p_{1}, q_{1},p_{2}, q_{2})=$

$(uv, u^{2}, w, v)$ .
The double point locus $D(f)$ (resp. singular point locus $S(f)$ )

of the (normalized) Whitney umbrella, designated also as $f$ , is
given by $\{v=0\}$ $($ resp. $\{u=v=0\})$ . In fact, the points
$(\pm u, 0, w)$ are mapped to the same point by $f$ . Thus we have
the canonical stratification of $\mathbb{R}^{3}$ associated to $f$ : $\mathbb{R}^{3}\supset D(f)\supset$

$S(f)$ . Moreover note that the kernel field $K(f)$ of the differen-
tial $f_{*}:T\mathbb{R}^{3}arrow T\mathbb{R}^{4}$ along $S(f)=\{u=v=0\}$ is given by
$K(f)(0,0, w)= \frac{\partial}{\partial u}$ .

On the other hand, for a generic symplectic form $\omega$ , the pull-
back $f^{*}\omega$ on $\mathbb{R}^{3}$ is of rank 2. Then the kernel field of $f^{*}\omega$ is
called the characteristic filed of $(f, \omega)$ and we have the charac-
teristic foliation $\mathcal{F}=\mathcal{F}_{(f^{\omega})}$ on $\mathbb{R}^{3}$ . The relative position of the
characteristic foliation of $(f, \omega)$ and the canonical stratification
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of $f$ is clearly an symplectically invariant character of $(f, \omega)$ .
For example, the standard symplectic form $\omega_{st}=dp_{1}\wedge dq_{1}+$

$dp_{2}\wedge dq_{2)}$ pulled back by $f$ ,

$f^{*} \omega_{st}=d(uv)\wedge d(u^{2})+dw\wedge dv=d(w-\frac{2}{3}u^{3})\wedge dv$

is of rank 2. In this example, the characteristic foliation is given
by $w- \frac{2}{3}u^{3}=$ const $v=$ const.. Therefore each characteristic
curve is contained in the singular locus $S(f)=\{v=0\}$ , and
that situation is never generic.

Note that the kernel field $K(f)$ of the differential $f_{*}$ coincides
with the characteristic field along $S(f)$ . Hence each character-
istic curve is necessarily tangent to the locus $D(f)$ of double
points along $S(f)$ .

Generically, each characteristic curve contacts with the dou-
ble point locus $D(f)$ in the second order along $S(f)$ except iso-
lated points of $S(f)$ , and, in the third order at those isolated
points.

Define $g:\mathbb{R}^{3}arrow \mathbb{R}^{2}$ as the symplectic reduction determined
by the characteristic foliation of $f$ (which is determined up to
left equivalence). Consider the map $g|_{D(f)}$ : $D(f)arrow \mathbb{R}^{2}$ . If
each characteristic curve contacts with the double point locus
$D(f)$ in the second order along $S(f)$ , then $g|_{D(f)}$ has a fold
singularity along $S(f)$ and it is a two-to-one mapping off $S(f)$ ,
which induces an involution $\tau(f)$ : $D(f)arrow D(f)$ on the surface
$D(f)$ . Moreover, $f|_{D(f)}$ : $D(f)arrow \mathbb{R}^{3}$ is also two-to-one off $S(f)$ .
It also induces an involution $\eta(f)$ : $D(f)arrow D(f)$ on $D(f)$ . So
we have a pair of involutions $(\tau(f), \eta(f))$ on the surface $D(f)$ .
If a characteristic curve contacts with $D(f)$ in the third order
at a point $S(f)$ , then $g|_{D(f)}$ : $D(f)arrow \mathbb{R}^{2}$ has a more degenerate
singularity than the fold singularity.
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Similar situation appeared in the classification of glancing
hypersurface due to Melrose [16][17]. See also [1][20].

Consider (not a mono-germ but) a bi-germ $f=f_{1} \prod f_{2}$ :
$( \mathbb{R}^{3},0)\prod(\mathbb{R}^{3},0)arrow(\mathbb{R}^{4},0)$ and the standard symplectic form

$\omega_{st}$ on $(\mathbb{R}^{4},0)$ . Suppose $fi$ and $f_{2}$ are transversal immersion-
germs. Then the self-intersection forms a smooth surface $S$

in $(\mathbb{R}^{4},0)$ . Consider the characteristic foliations $\mathcal{F}_{1}$ on $\Lambda’I_{1}=$

$f_{1}(\mathbb{R}^{3},0)$ and $\mathcal{F}_{2}$ on $M_{2}=f_{2}(\mathbb{R}^{3},0)$ . Then the relative position
of $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ with respect to $S$ is a symplectically invariant
character. If $\mathcal{F}_{1}$ is transversal to $S$ in $A/I_{1}$ , then $\mathcal{F}_{2}$ is transversal
to $S$ in $\Lambda I_{2}$ . Then the pair is symplectomorphic to the standard
one: $\Lambda’I_{1}=\{p_{1}=0\}$ and $M_{2}=\{q_{1}=0\}$ .

$M_{1}$ and $A/I_{2}$ are said to be glancing at a point in $S$ if the both
characteristic curve through the point is tangent to $S$ in the
second order [16]. Generically $hI_{1}$ and $NI_{2}$ are glancing along a
smooth curve in $S$ and at isolated points the tangency becomes
of higher order.

Melrose [16] showed that any glancing pair is $C^{\infty}$ symplecto-
morphic to the pair $\{p_{1}=p_{2}^{2}\}$ and $\{q_{2}=0\}$ . On the other hand,
in [19], Oshima gave a counter example to the uniqueness result
for the analytic classification. (A counter example to Sato’s
conjecture [18] $)$ . In fact it is known that the analytic symplectic
classification of glancing pairs has a functional moduli.

Actually we announce the following result:

Theorem 11 For a generic pair $(f, \omega)$ of a $C^{\infty}$ mapping $f$ :
$\mathbb{R}^{3}arrow \mathbb{R}^{4}$ and a $C^{\infty}$ symplectic form $\omega$ , at any singular point
$a\in \mathbb{R}^{3}$ of $f,$ $(f, \omega)$ is symplectomorphic to the normal form

$\omega_{1}=dp_{1}\wedge dq_{1}+dp2^{\wedge d(q2^{-q_{1})}}$ ,
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or to
$\omega_{2}=dp_{1}\wedge dq_{1}+dp_{2}\wedge d(q_{2}-q_{1}p_{2}-\varphi(q_{1}^{2}))$ ,

for a functional moduli $\varphi,$ $(\varphi(0)=\varphi’(0)=0)$ with the normal
form $(u, v, w)\mapsto(p_{1}, q_{1},p_{2}, q_{2})=(uv, u^{2}, w, v)$ .

Note that, for the normal forms in Theorem 11, the pull-back
form turns out to be

$d(w- \frac{2}{3}u^{3})\wedge d(v-u^{2})$ , or $d(w- \frac{2}{3}u^{3})\wedge d(v-u^{2}w+\frac{2}{5}u^{5}-\varphi(u^{2}))$ ,

Remark 12 There appears a difference between $C^{\infty}$ and an-
alytic classification in Theorem 11 arising from the conjugate
classification of map-germs $(\mathbb{R}^{2},0)arrow(\mathbb{R}^{2},0)$ with 3-jets of type
$(u, w)arrow(u, w+u^{3})$ : In the sense of Voronin, the $\mathcal{B}_{3}$ -classification
problem arises. In fact the composition $\eta(f)\circ\tau(f)$ : $D(f)arrow$

$D(f)$ is of this form. Remark that the symplectic classification
of swallowtails corresponds to the $\mathcal{B}_{5}$ -classification problem.

Remark 13 The above classification is also regarded as the
classification of coisotropic pairs. A pair $(f, \omega)$ of a map-germ
$f$ : $(\mathbb{R}^{m}, 0)arrow \mathbb{R}^{2n}$ and a symplectic form-germ $\omega$ on $\mathbb{R}^{2n}$ ,
$(m\geq n)$ , is called coisotropic if $f$ lifts to an isotropic map-
germ $\tilde{f}:(\mathbb{R}^{m}, 0)arrow(\mathbb{R}^{2m}, 0)=(\mathbb{R}^{2n}, 0)\cross(\mathbb{R}^{2(m-n)}, 0)$ with a
symplectic form $\pi_{1}^{*}\omega-\pi_{2}^{*}\mu$ .

Any coisotropic immersion $(\mathbb{R}^{m}, 0)arrow(\mathbb{R}^{2n})0)$ for any sym-
plectic form, in the ordinary sense, $\omega$ lifts to an Lagrangian
immersion into $\mathbb{R}^{2m}$ , so coisotropic in the above sense.

Then we define the symplectic codimension of coisotropic pair
$(f, \omega)$ by

sp-codim$(f,\omega)$ $:=\dim_{\mathbb{R}}\mathcal{R}_{f}/(f^{*}\mathcal{O}_{2n}+g^{*}\mathcal{O}_{2(m-n)})$ .
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For normal forms we have

sp-codim $(f, \omega_{1})=0$

and
sp-codim $(f, \omega_{2})=\infty$ .
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