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Lightlike hypersurfaces in Lorentz-Minkowski space
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1 Introduction

The study of the extrinsic differential geometry of submanifolds in Lorentz-Minkowski
space is of special interest in Relativity Theory. In particular, lightlike hypersurfaces,
which can be constructed as ruled hypersurfaces over spacelike submanifolds of codimen-
sion 2, provide good models for the study of different horizon types ([2, 3, 13]). Singularity
theory tools have proven to be useful in the description, of geometrical properties of sub-
manifolds immersed in different ambient spaces, from both the local and global viewpoint
[11, 4, 5, 6, 7, 8, 9]. The natural connection between geometry and singularities relies
on the basic fact that the contacts of a submanifold with the models (invariant under
the action of a suitable transformation group) of the ambient space can be described by
means of the analysis of the singularities of appropriate families of contact functions, or
equivalently, of their associated Legendrian maps ([1, 14]). When working in Lorentz-
Minkowski space, the properties associated to the contacts of a given submanifold with
lightlcones have a special relevance. In [7] it has been constructed the Lorentz invariant of
spacelike submanifolds of codimension two in Lorentz-Minkowski space concerning their
contacts with lightlike hyperplanes. Here we give a brief survey on these results in §2 and
§3. In the case for Lorentz-Minkowski 4-space, which is the most important case from the
view point of Relativity theory, it has been already investigated the lightlike hypersurfaces
along a spacelike surface by using the Cartan’s framework([7]. The framework constructed
in [9] is slightly different from the framework in [7] but it is much more geometric than
the framework in [7]. In this paper, we investigate singularities of lightlike hypersurfaces
along spacelike submanifolds of codimension two in Lorentz-Minkowski space with general
dimension by using the framework in [9]. The main techniques are given by the theory of
Legendrian singularities. ‘

We include in §2 the basic notions in Lorentz-Minkowski space that shall be used
throughout the paper. In §3 we review the lightcone Gauss-Kronecker curvature which
plays a principal role in this theory. The §4 is devoted to the study of the lightlike
hypersurface. We review in §6 the classification result of singularities of generic lightlike
hypersurfaces in Lorentz-Minkowski 4-space in [7]. Finally, we include the appendix
containing the basic definitions and results on Legendrian singularities that shall be used
in the paper.
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2 Basic facts and notations on Lorentz-Minkowski
space

We introduce in this section some basic notions on Lorentz-Minkowski n + 1-space and
spacelike submanifolds of codimension two. For basic concepts and properties, see [15].

Let R*™*! = {(zo,z1,...,2n) | 2 € R (i = 0,1,...,n) } be an n + 1-dimensional
cartesian space. For any & = (z¢,%1,...,Zn), ¥ = (Y0,%1,---,Yn) € R the pseudo
scalar product of x and y is defined by

(x,y) = —zoyo + Z ZYi-
i=1
We call (R™*1,(,)) Lorentz-Minkowski n + 1-space. We write RT*! instead of (R"*1,(,)).
We say that a non-zero vector & € R is spacelike, lightlike or timelike if (zx,z) > 0,
(z,x) = 0or (x,x) < Orespectively. The norm of the vector € R7*! is defined by ||z| =
v/ |{x, z)|. We have the canonical projection 7 : R}*' — R" defined by 7(zo, 71, ..., Z,) =
(z1,...,Zn). Here we identify {0} x R™ with R™ and it is considered as Euclidean n-space
whose scalar product is induced from the pseudo scalar product (, ). For a vector v € R?“
and a real number ¢, we define a hyperplane with pseudo normal v by

HP(v,c) = {z e R} | {z,v) = ¢ }.

We call HP(v, c) a spacelike hyperplane, a timelike hyperplane or a, lightlike hyperplane if
v is timelike, spacelike or lightlike respectively.

We now define Hyperbolic n-space by
H(-1) = {z € R}*"'|(z,z) = —1, 10 > 0}
and de Sitter n-space by
= {z e R}*|(z,z) =1 }.
We define
LC‘ = {a! = (1,‘0,:1:1, .. ,:l:n) € R?+1 |.’B0 # 0’ <m’m) = O}

and we call it the (open) lightcone at the origin. Then we call the future lightcone to the
subset

LC} = {x € LC" |z, > 0}.

If € = (o, 1, ...,z2) is a non-zero lightlike vector, then zo # 0. Therefore we have

T = (1,ﬂ,,-z‘2) ES_?_—I ={m=(x0,x1,...,xn) ' ((B,:l:) =0, .’I)o=1}
ofy) I

We call S77! the lightcone (or, spacelike) unit n — 1-sphere.

For any x!,z2,...,z" € R}*!, we define a vector ! Ax2 A --- A" by
—€p €3 €n
Ty T z,
2 2 2
' AZ*A A = T 2Y Ty
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where €o, €1, .. ., €, is the canonical basis of R}*! and o' = (z}, zi,...,z}). We can easily
check that

(, ' AT A AZ™) = det(x, x?, . .. ,x™),
so that &' Ax? A--- A x" is pseudo orthogonal to any z* (i = 1,...,n).

3 Local differential geometry on spacelike submani-
folds of codimension two

We review the results in [9] which constructed the basic geometrical tools for the study of
spacelike submanifolds of codimension two in Lorentz-Minkowski (7 + 1)-space. Consider
the orientation of Rf** provided by the volume form Iy A - - - Al,,, where {;}7, is the dual
basis of the canonical basis {e;}1,. We also give R*! a timelike orientation by choosing
ep = (1,0,...,0) as future timelike vector field. We consider a spacelilke embedding
X : U — R7*! from an open subset U C R"*"'. We write M = X (U) and identify M and
U through the embedding X . We say that X is spacelikeif X, i =1,...,n—1 are always
spacelike vectors. Therefore, the tangent space T,M of M at p is a spacelike subspace
(i.e., consists of spacelike vectors) for any point p € M. In this case, the pseudo-normal
space N, M is a timelike plane (i.e., Lorentz plane) (cf.,[15]). We denote by N(M) the
pseudo-normal bundle over M. Since this is a trivial bundle, we can arbitrarily choose a
future directed unit timelike normal section nT(u) € N,(M), where p = X (u). Here, we
say that n” is future directed if (nT, ey) < 0. Therefore we can construct a spacelike unit
normal section n®(u) € N,(M) by

nT(u) A X, (WA AX, ()

S —
W) = @ A K@) A A X @]

and we have (nT,nT) = -1, (nT,n’) =0, (n® n°) = 1. Although we could also choose
—n5(u) as a spacelike unit normal section with the above properties, we fix the direction
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n°(u) throughout this paper. We call (n”,n%) a future directed normal frame along -

M = X (U). Clearly, the vectors n”(u) £ n5(u) are lightlike. Here we choose nT 4+ n’ as
a lightlike normal vector field along M. Since {X,, (u),..., X,,_,(u)} is a basis of T,M,
the system {n7(u), n5(u), Xy, (v),..., Xu,_,(v)} provides a basis for T,R?***. In [9] we
have shown the following basic fact:

Lemma 3.1 Given two future directed unit timelike normal sections nT(u),nT(u) €
N,(M), the corresponding lightlike normal sections n”(u) + nS(u), n7 (u) + AS(u) are
parallel.

Under the identification of M and U through X, we have the linear mapping provided
by the derivative of the lightcone normal vector field n” + n’ at each point p € M,

dp(n” + 1) T,M — T,R™! = T,M & N,(M).

Consider the orthogonal projections n* : T,M @& N,(M) — T,(M) and 7" : T,(M) &
Np(M) — N,(M). We define

dp(nT + n5)t = 7t 0 dy(nT + nY)
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and
dp(nT + n®)" = 1" 0 dp(nT + nS).

We respectively call the linear transformations Sy(n”, n%) = ~d,(n” +n’)! and d,(n7 +
nS)" of T,M, the (n”,n5)-shape operator of M = X (U) at p = X (u) and the normal
connection with respect to (nT,n%) of M at p.

The eigenvalues of S,(n”T, n’), denoted by {x:(nT,n%)(p)}7=!, are called the lightcone
principal curvatures with respect to (nT,n%) at p. Then the lightcone Gauss-Kronecker
curvature with respect to (n7,n°) at p is defined as

Ki(nT,n%)(p) = detS,(nT,n%).

We say that a point p is a (n7,nS)-umbilic point if all the principal curvatures coincide
at p and thus S,(n”,n%) = k(n”,n")(p)lg,m, for some function k. We say that M is
totally (nT,nS)-umbilic if all points on M are (nT, n%)-umbilic.

We deduce now the lightcone Weingarten formula. Since X, (i = 1,...n — 1) are
spacelike vectors, we have a Riemannian metric (the hyperbolic first fundamental form )
on M defined by ds® = Y77} gijduidu;, where g;(u) = (X, (u), Xy, (u)) for any v € U.
We also have a lightcone second fundamental invariant with respect to the normal vector
field (nT,n%) defined by hi;(n”,nS)(u) = (—(nT + n%),,(v), X, (u)) for any u € U. In
[9] we have shown the following lightcone Weingarten formula with respect to (nT,n5):

(a) (n” +n¥)y, = (n%,nl)(n" +n%) - T3} K (n",n%) X,

(b) 7t o (nT + nS),, = = Y07 hl(n7,n%)X,,,.
Here (hl(nT,n®)) = (ha(nT,n®)) (¢") and (¢*) = (gx;) "

These formulae induce an explicit expression of the lightcone curvature in terms of the
Riemannian metric and the lightcone second fundamental invariant as follows:

det (hi;(nT,n"))
K(nT,n®) = =
l( ) det (gaﬁ)

Since (—(nT + nS)(u), X, (u)) = 0, we have

hii(n”, n%)(w) = (nT(u) + 1% (u), Xy, (u)).

Therefore the lightcone second fundamental invariant at a point ps = X (up) depends
only on the values, n”(ug) + n5(uo) and X, (uo), respectively assumed by the vector
fields nT + n® and X wu; at the point py. And thus, the lightcone curvature depends
only on n7(u) + n5(up), X, () and X uwu; (Uo) too, independently of the choice of the
normal vector fields nT and nS. We write K,(nJ,nj)(uo) as the lightcone curvature at
po with respect to (nd,ns) = (n7(uo),n5(up)). We might also say that a point pq is
(nd,n§)-umbilic because the lightcone (n7,nS)-shape operator at pp only depends on
the normal vectors (nl, n§). Analogously, we say that the point pg is a (nd, n§)-parabolic
point of M if Ky(nl,n§)(up) = 0. And we say that po is a (nd,ng)-flat point if it is
(nd, n§)-umbilic and K,(nf,n§)(ug) = 0.

For any spacelike embedding X : U — R}*! from an open subset U ¢ R"*"!, we con-
sider a future directed unit timelike normal section n7 (u) € N,(M) and the corresponding
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spacelike unit normal section n°(u) € N,(M) constructed in the previous section, where
p = X(u). By Lemma 3.1, if we choose another future directed unit timelike normal

section n7 (u), then we have (nms)(u) = (ﬁms)(u) € ST1. Therefore we define
the lightcone Gauss map of M = X (U) as

L: U — Si:_l_\/
(u) — (nT +nS)(u).

This induces a linear mapping dﬁ:,, : T,M — T,R?*! under the identification of U and M,
where p = X (u). We have the following normalized lightcone Weingarten formula:

mtol,, = — Z eo?’“«) hg(nT, nS)Xuj,
i=1
where L(u) = (bo(u), &1 (u), ..., fn(u)).

We call the linear transformation S, = —=t o d]i:,, the normalized lightcone shape
operator of M at p. The eigenvalues {K;(p)}?=! of S, are called normalized lightcone
principal curvatures. By the above proposition, we have &;(p) = (1/4o)x:(nT,n%)(p). The
normalized lightcone Gauss-Kronecker curvature of M is defined to be Ky(u) = det gp.
Then we have the following relation between the normalized lightcone Gauss-Kronecker
curvature and the lightcone Gauss-Kronecker curvature:

Ky(u) = (ﬁﬁ) " K(nT,n5)(v).

It is clear from the corresponding definitions that the lightcone Gauss map, the normalized
lightcone principal curvatures and the normalized lightcone Gauss-Kronecker curvatures
are independent on the choice of of the normal frame (n7,n%).

We say that a point u € U or p = X (u) is a lightlike umbilical point if :S’;, = K(p)1lt, M-
By the above proposition, p is a lightlike umbilic point if and only if it is a (nT,n%)-
umbilic point for any (nT,nS). We say that M is totally lightlike umbilic if all points
on M are lightlike umbilic, as usual. We also say that p is a lightlike parabolic point if
Ky(u) = 0. Moreover, p is called a lightlike flat point if p is both lightlike umbilic and
parabolic. The spacelike submanifold M is called totally lightlike flat provided every point
of M is lightlike flat.

4 Lightlike hypersurfaces

We define a hypersurface
LHpy : U x R — R

by

LHpy(p,t) = LH x (u,t) = X (u) + t(nT + nS)(u),
where p = X (u). We call LH), the lightlike hypersurface along M. We remark that we
can also define LHy(p,t) = X (u) + t(n”T — nS)(u) as another lightlike hypersurface.
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However, the properties of LH;; is the same as the properties of LH )y, so that we only
consider LH ;.

In general, a hypersurface H C R7"! is called a lightlike hypersurface if it is tangent
to a lightcone at any point. It is known that any lightlike hypersurface is given by the
construction above at least locally (cf. [10] ).

We introduce the notion of Lorentzian distance-squared functions on spacelike sub-
manifold of codimention two, which is useful for the study of singularities of lightlike
hypersurfaces.

First we define a family of functions G : M x R7*! — R on a spacelike submanifold
M = X (U) of codimension two by

G, A) = G(u,A) = (X (u) — A, X (u) = A),

where p = X (u). We call G the Lorentzian distance-squared function on the spacelike
submanifold M. For any fixed A\g € R}, we write g(p) = G, (p) = G(p, Ao) and have
the following proposition.

Proposition 4.1 Let M be a spacelike submanifold of codimension two and G : M x
R}t — R the Lorentzian distance-squared function on M. Suppose that py # Ao. Then

we have the following:
(1) g(po) = 89/0ui(po) =0 (i =1,...,n—1) if and only if po — Ag = p(nT = nS)(po)
for some p € R\ {0}.

(2) 9(po) = 8g/Oui(po) = detH(g)(po) =0 (i = 1,...,n — 1) ( where detH(g)(po) is
the determinant of the Hessian matriz) if and only if

Po — Ao = p(nT = nS)(po)

for some p € R\ {0} such that 1/u is one of the non-zero normalized lightcone principal
curvatures K; (po), i =1,...,n —1).

Proof. (1) The condition g(p) = (X (u)—Ao, X (u)—No) = 0 means that X (u)—Xo € LC.
We can observe that dg(p) = (dX (u), X (u) — Ag) = 0 if and only if X (u) — Ag € N, M.
Hence g(po) = dg(po) = 0 if and only if py — Ao € Ny,M N LCp. This is equivalent to the
condition that po — Ao = u(nT + nS)(p,) for some p € R \ {0}.

(2) We can calculate that

dg
e 2(X 4, X — Xo)
and
&g = 2{Xuu;» X = Ao) + (X, Xu,)}
auiauj Uiuj ) 0 Ug uj .
Under the condition pg — Ag = u(nms )(po) that we have

o’ s
Ou;Ou; 2 {X"*’“J”“’(n +n5)(po)) + g,-,-(u)} .
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Therefore, we have
dg ke 7i i
(M) (#*) = (2{-uki +53}).
It follows that detH(g)(po) = 0 if and only if 1/u is an eigenvalue of (E; (p)). o

Thus Proposition 4.1 means that the discriminant set of the Lorentzian distance-
squared function G is given by

Dy = {)\ ‘ A= X(p) +u(nT £n5)(p), p e M,u€R }

which is the image of the lightlike hypersurface alorﬁ\]\é Therefore a singular point of the
lightlike hypersurface is a point Ag = X (po) +uo(n”™ £ n5)(po) at which ug = —1/£F (py),
i=1,2.

We now explain the reason why such a correspondence exists from the point of view
of contact geometry. Let m : PT*(R}*') — R} be the projective cotangent bundle
with its canonical contact structure. We next review the geometric properties of this
bundle. Consider the tangent bundle 7 : TPT*(R}t) — PT*(R}*™!) and the differential
map dr : TPT*(R}*!) — TR} of 7. For any X € TPT*(R?*!), there exists an element
o € T*(RT*! such that 7(X) = [a]. For an element V & T,,(R}+?), the property o(V) =0
does not depend on the choice of representative of the class {«@]. Thus we can define the
canonical contact structure on P7*(R}*!) by

K = {X € TPT*[R™) | 7(X)(dr(X)) = 0}.

Via the coordinates (vg,v1,...,vn), we have the trivialization PT*(R7*™!) = R?*! x
P"(R)*, and call
((vﬂ’vly s )vn)’ [60 : §1 ol {n])

homogeneous coordinates of PT*(R7*!), where [¢, : & : --- : &,] are the homogeneous
coordinates of the dual projective space P™(R)*.

It is easy to show that X € K, if and only if > & = 0, where dii(X) =
Yo 4i0/0v;. An immersion i : L — PT*(R?*!) is said to be a Legendrian immersion
if dimL = n and di,(T,L) C Kjq for any ¢ € L. The map 7 o i is also called the
Legendrian map and the set W (i) = image~ o i, the wave front of i. Moreover, i (or,
the image of 7) is called the Legendrian lift of W (i). In the appendix, we give a quick
survey of the theory of Legendrian singularities . For additional definitions and basic
results on generating families, we refer to ([1], Chapter 21). By the preceding arguments,
the lightlike hypersurface LH}; is the discriminant set of the Lorentzian distance-squared
function G. We have the following proposition (See the appendix for the definition of a
Morse family).

Proposition 4.2 Let G be the Lorentzian distance-squared function on M. For any point
(u, A) € G7Y(0), G is a Morse family around (u, \).

Proof. We denote that

X (u) = (Xo(w), X1(1), . .., Xn(w)) and A = (Ao, Ars - .., An)-
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By definition, we have
Gu,A) = —(Xo(u) = 20)* + (X1 (u) = M) + - - + (Xa(u) — M)
We now prove that the mapping

. oG oG
A G - (G, a_’lll" s ey 6_%:)
is non-singular at (u, A) € G~1(0). Indeed, the Jacobian matrix of A*G is given by
2(Xo— o) —2(X1—X1) -+ =2(Xn—An)
2 Xou, —2X14, e —2Xnu,
2Xou, _, 22Xy, 0 ~2Xpe._,
where A is the following matrix:
2(X - A X)) 2(X - X, )
2(<Xu17Xu1)+<X_'A’Xu1u1>) 2(<Xu1aX’u.'n_1)+(X_A3Xu1uﬂ_1>)

2(<Xun—nxtu) + (X - A: Xun—xm)) o 2((Xun~1axun—1> + (X - A’Xun—-lun—l>)

Since X is an immersion, the rank of the matrix

2Xou, —2X14, 0 —2Xo
2Xou,.y —2Xup., 0 —2Xpu,,
is equal to n — 1. Moreover, X — A is lightlike, so that it is linearly independent of tangent -
vectors Xy,,...,Xy,_,. This means that the rank of the matrix
2(Xo—Ao) —2(Xi—-A1) - =2(Xn— M)
2 Xou, —2X 14, e —2X 4,
2Xou,_, —2X14,, - —2X .y

is equal to n. Therefore the Jacobi matrix of A*G is non-singular at (u,A) € G™1(0). O

Since G is a Morse family, we have the Legendrian immersion
LE : .(G) — PT*(RT ™)
by
LE(u,A) = (A [(Xo(w) = Xo) : (M = X1 (W) : -+ (An — Xa(w)))]),
where
.(G) = (A*G)71(0) = {(u,A) | A = LHE (u,t) for some t € R}.

We observe that G is a generating family of the Legendrian immersion LE whose wave
front is LH, (cf. the appendix). Therefore we might say that the Lorentzian distance-
squared function G on M gives a Lorentz-Minkowski-canonical generating family for the
Legendrian lift of LHY,.
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5 Contact with lightcones

In this section we describe Montaldi’s characterization of submanifolds contact in terms
of K-equivalence. It is then adapted to lightlike hypersurfaces and their indicatrices. We
begin with the following basic observations.

Proposition 5.1 Let \g € R?“Li and M a spacelike submanifold of codimension two
without umbilic points satisfying K, # 0. Then M C LC,, if and only if X\o is an isolated
singular value of the lightlike hypersurface LHY, and LHE (U x R) C LC,,.

Proof. In the first place, we remark that K, ¢(u) # 0 if and only if
{(nT £n5), (T £15),,,...,(nT £n5),,_,}
is linearly independent at u € U. By definition, M C LC,, if and only if g),(u) = 0 for

any u € U, where gy,(u) = G(u, Ag) is the Lorentzian distance-squared function on M. It
follows from Proposition 4.1 that there exists a smooth function p : U — R such that

X (1) = Ao + p(u)(nT £ nS)(u).

Therefore we have o
LHE (u,t) = Xo + (t + p(w))(nT £ ns)(u).

Hence we have LH¥;(U x R) C LC,,. Moreover, it follows that

:‘: e
aLasz = ('n.T + ns)(u),
+ N el
ang = Huy ('u,)(nT + nS)(u) + (t + N(u))(nT + ns)ui (u)’

from which we obtain

OLHE OLHE SLHE
( ot A 6u1 Ao A 3’un_1

= (t + p(w))"(nT £ nd) A (nT £ 1), A--- A (T £ )

Un—1"

By the assumption, we have
X — Ao = p(u)(nT £ nS)(u).

Since X — A is lightlike and X, ,(: = 1,...,n—1) are spacelike, X — g, Xy, - .-, Xu,_,
are linearly independent. Therefore we have

0# (X ~A)AX A AXy,_, = p(u)*(nT £ nS)A(nT £ nS), A---A(nT £ nS)

Un—1’

so that

8LHY OLHE OLHy\
( ot " owm N Bun, ) =0
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if and only if ¢ + u(u) = 0 under the assumption that K, # 0. This means that Ay is an
isolated singularity of LH};. The converse assertion is trivial. O

Motivated by the proposition above, we now consider the contact of spacelike sub-
manifolds of codimension two with lightcones in view of Montaldi’s theorem [14]. Let X;
and Y;, ¢ = 1,2, be submanifolds of R™ with dim X; = dim X, and dimY; = dim Y,. We
say that the contact of X, and Y] at y, is same type as the contact of X; and Y at y,
if there is a diffeomorphism germ ® : (R*,y;) — (R™,y,) such that &(X;) = X, and
®(Y1) = Yz. In this case we write K(X1,Y1;31) = K(X2,Y2;¥2). Since this definition of
contact is local, we can replace R™ by arbitrary n-manifold. Montaldi gives in [14] the
following characterization of contact by using K-equivalence.

Theorem 5.2 Let X; and Y;, i = 1,2, be submanifolds of R™ with dim X, = dim X, and
dimY; = dimY;. Let g; : (X;,z;) — (R™,y;) be immersion germs and f; : (R*, y;) —
(RP,0) be submersion germs with (Y;,y;) = (f71(0),v): Then
K(X1,Y1;91) = K(X2,Ys; Y2)
if and only if fi 0 g1 and f; 0 go are K-equivalent.
Turning to lightlike hypersurfaces, we now consider the function
G:RM xR — R

defined by G(x,A) = (x — A,z — X). Given Ay € R}*!, we denote g)\o(a:) = G(z, Ao),
SO that we have g5!(0) = LC),. For any uo € U, we take the point A¥ = X (up) +

to(nT + n9)(up) and have

G ©° X (uo)) =G o (X x idk’;“)(uo,Ag) = G(po, A7) = 0,

where po = X (ug) and to = —1/K} (up), i = 1,...,n — 1. We also have relations
O0g,: o X
;3—( up) = —((po),Ai) 0,i=1,...,n—1.

These imply that the lightcone g, (0) = LC,x is tangent to M = X (U) at po = X (uo).
In this case, we call each LC,# the tangent lightcone of M = X (U) at po = X (up).

We now describe the contacts of spacelike surfaces with lightcones. Let LH? M c
(U,w;)) — (LC%,v7), i = 1,2, be two lightlike hypersurface germs of spacelike sub-
manifold germs of cod1mens1on two X; : (U,w;) — (RT*!,p;), where o = . We say that
LHY,, and LHg;, are A-equivalent if there exist diffeomorphism germs ¢ : (U, u;) —
(U,u2)) and @ : (RF*',A]) — (R7*1,A9) such that ® o LHY,, = LM%, o ¢. If both
of the regular sets of LMf;; are dense in (U,u;), it follows from Proposition A.2 of
the appendix that LHj,, and LHg,, are A-equivalent if and only if the correspond-
ing Legendrian lift germs are Legendrian equivalent. This condition is also equivalent
to that two generating families G, and G, are P-K-equivalent by Theorem A.3, where

Gi: (U x R{, ((zi,%), A7)) — R denotes the Lorentzian distance-squared function germ
of X,'.
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On the other hand, if we denote g; xs (u) = G;(u, AY), then we have gipz(u) = gys o
;(u). By Theorem 5.2, K(X1(U), LCyg,A]) = K(x3(U), LCAg, A3) if and only if 3 »,
and g, ., are K-equivalent. Therefore, we can apply Proposition A.4 to our situation.
We denote by Q7(X,ug) the local ring of the function germ gxs ¢ (U,up) — R, where
Ag = LC%(uo,to). We remark that we can explicitly write the local ring as follows:

Cal)

(X (w),nT £ nS(uo)) — Dogw)

Qi(x1 U’O) =

where Cg2(U) is the local ring of function germs at uo.

Theorem 5.3 Let X, : (U,u;) — (RT, Xi(w)), i = 1,2, be spacelike surface germs
such that the corresponding Legendrian lift germs are Legendrian stable. For o = + or —,
the following conditions are equivalent:

(1) The lightlike hypersurface germs LH3, and LHY, are A-equivalent.
(2) G, and Gy are P-K-equivalent.

(3) 915, and go5, are K-equivalent.

(4) K(X1(U), LCxg, A7) = K(X(U), LOX, A3).

(6) Q7(X1,u1) and Q°(X2,u2) are isomorphic as R-algebras.

Proof. The preceding arguments shows that (3) and (4) are equivalent. The other
assertions follow from Proposition A 4. |

Given a spacelike submanifold germ of codimension two X : (U, ug) — (R, X (ug)),
we call (X '(LCy+),(uo)) the tangent lightcone indicatriz germ of X, where A\* =
X (uo) + to(nT £ n5)(uo) and to = —1/K7F (up), i = 1,2. As a corollary of Theorem 5.3,
we have

Corollary 5.4 Under the assumptions of Theorem 5.3, if the lightlike hypersurface germs
LHY; and LHj,, are A-equivalent, then tangent lightcone indicatriz germs

(XTH(LCx¢), (w1)) and (X3 (LCys), (u2))
are diffeomorphic as set germs.

Proof. Notice that the tangent lightcone indicatrix germ of X; is the zero level set of
9i ;- Since K-equivalence among function germs preserves the zero-level sets of function
germs, the assertion follows from Theorem 5.3. 0

6 Lightlike hypersurfaces in Lorentz-Minkowski
four-space
In [7] generic singularities of lightlike hypersurfaces in R have been classified. We consider

the space of spacelike embeddings Emby, (U, R$) with the Whitney C®-topology. We have
shown the following theorem.
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Theorem 6.1 There ezists an open dense subset O C Embg, (U, R%) such that for any
X € O, the germ of the Legendrian lift of the corresponding lightlike hypersurface LHE,
at each point is Legendrian stable.

By the classification results on stable Legendrian mappings, we have the following

Corollary 6.2 There ezists an open dense subset O C Embg, (U, RY) such that for any
X € O, the germ of the corresponding lightlike hypersurfaces LHY, at any point (z,y,u) €
U xR is A-equivalent to one of the map germs Ay (1 < k < 4) or Df : where, Ay, DE-map
germ f: (R3,0) — (R%,0) are given by

( ) f(ul,U.2,U3) - (Ul,U2,U3,0),

(AQ) ('U.l, Ug, U3) (311.1, 2'U,1 , Ug, U3),

(As) f(ur, uz,uz) = (4uf + 2urus, 3ui + upui, ug, us),

(As) flug,ug,ug) = (5uf + 3ugu? + 2uyus, 4ud + 2ugufd + ugu?, uy, uy),

(DI) f(ul, Uz, U3) = (Z(U% + u%) + U1U2U3, 3u% + UU3, 3u§ + uyug, U3),

(D7) flu1,uz,us) = (2(uf — wud) + (uf + uf)us, ud — 3uf — 2uyus, uruz — uyus, us).

By using the generic normal forms of generating families (i.e. Lorentzian distance
squared functions) and Corollary 4.4, we have the following

Corollary 6.3 There ezxists an open dense subset O C Emby, (U, R$) such that for any
X € O, the germ of the corresponding tangent lightcone indicatriz at any point (xo, yo) €
U is diffeomorphic to one of the germs in the following list:

(1) {(z,y) € (R%,0) | z° + y* = 0 } (ordinary cusp)

(2) {(z,y) € (R?%,0) | z* £ y* = 0 } (tachnode or point)
(3) {(z,y) € (R%,0) | z° + y*> = 0 } (rhamphoid cusp)
(4) {(z,y) € (R%,0) | z° — zy* = 0 } (three lines)

(5) {(z,y) € (R?,0) | 23+ =0} (line)

A Generating families
Here we give a quick survey on the theory of Legendrian singularities mainly developed

by Arnol’d-Zakalyukin [1, 16]. Let F : (R* x R*,0) — (R, 0) be a function germ. We
say that F' is a Morse family if the map germ

oF oF
A*F=(F,—,...,— ) : (R* x R*,0) — (R x R¥,0
(R e ) i ) — ( )
is submersive, where (g,z) = (¢1,...,qk; Z1,...,2Zn) € (R*¥ x R™, 0). In this case we have
a smooth (n — 1)-dimensional submanifold
oF oF
. F — k n = e I e e e 2= —— =
Z.(F) = {(3,7) € (R* x R",0) | F(g,2) = 5—(q,3) 5o (@) =0}

and the map germ ®f : (X,(F),0) — PT*R" defined by

or(0,2) = (2 [ Fo(@.2): 2 (@) )
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is a Legendrian immersion. Then we have the following fundamental theorem in the
theory of Legendrian singularities ([1] §20.7 [16], Page 27).

Proposition A.1 All Legendrian submanifold germs in PT*R™ are constructed by the
above method.

We call ' a generating family of ®F, and the corresponding wave front is W (® F)=
Tn(Zx(F)), where 7, : RF x R® — R" is the canonical projection.

We now introduce an equivalence relation among Legendrian immersion germs. Let i :
(L,p) C (PT*R™,p) and ¢’ : (I/,p’) C (PT*R™,p') be Legendrian immersion germs. Then
we say that ¢ and ¢’ are Legendrian equivalent if there exists a contact diffeomorphism germ
H : (PT*R",p) — (PT*R",p’) such that H preserves fibers of 7 and that H(L) = L.
A Legendrian immersion germ into PT*R™ at a point is said to be Legendrian stable if
for every map with the given germ there is a neighbourhood in the space of Legendrian
immersions (in the Whitney C'*° topology) and a neighbourhood of the original point such
that each Legendrian immersion belonging to the first neighbourhood has in the second
neighbourhood a point at which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lift i : (L,p) C (PT*R", p) is uniquely determined by the regular
part of the wave front W (i), we have the following simple but significant property of
Legendrian immersion germs:

Proposition A.2 Let i : (L,p) C (PT*R",p) and ¢’ : (L',p') c (PT*R",p’) be Legen-
drian immersion germs such that regular sets of m o4 and m o i' are dense respectively.
Then 4,7 are Legendrian equivalent if and only if wave front sets W (i), W (i) are diffeo-
morphic as set germs. Herew : PT*R™ — R" is the canonical projection of the projective
cotangent bundle.

This result has been firstly pointed out by Zakalyukin ([17], Assertion 1.1). In his
original assertion, he assume that the representatives of moi and o4’ are proper. However,
we remark that we can get rid of such an assumption. The assumption in the above
proposition is a generic condition for 7,7’. In particular, if ¢ and i’ are Legendrian stable,
then these satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.
We denote by £, the local ring of function germs (R",0) — R with the unique maximal
ideal M, = {h € &, | h(0) = 0 }. Let F,G : (RF x R?,0) — (R,0) be function
germs. We say that F' and G are P-K-eguivalent if there exists a diffeomorphism germ
¥ : (R* x R",0) — (R* x R",0) of the form ¥(z,u) = (¥1(q,x), ¥a(z)) for (g,z) €
(R* x R",0) such that W*((F)g,..) = (G)s,,,. Here W* : 41, —> Epin is the pull back
R-algebra isomorphism defined by ¥*(h) = ho ¥ .

" Let F : (RF x R",0) — (R, 0) be a function germ. We say that F is a K-versal
deformation of f = F|R* x {0} if

oF OF
& =T.(K)(f) + { =—|R* x {0},..., =—|RF x o> ,
o= TR)() + (RS {0}, 5 IR x {0} )
where

_Jaf  of
T()(f) = <5q;,. . -,&;,f>£k-
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(See [12].) The main result in the theory ([1], §20.8 and [16], THEOREM 2) is the
following:

Theorem A.3 Let F,G : (R* x R*,0) — (R, 0) be Morse families. Then
(1) @ and O¢ are Legendrian equivalent if and only if F, G are P-K-equivalent, and
(2) ®F is Legendrian stable if and only if F is a K-versal deformation of F | R* x {0}.

Since F' and G are function germs on the common space germ (R*¥ x R™,0), we do
not need the notion of stably P-K-equivalences under this situation (cf. [16], Page 27).
By the uniqueness result of the K-versal deformation of a function germ, we have the
following classification result of Legendrian stable germs (cf. [7]). For any map germ
f:(R",0) — (R?,0), we define the local ring of f by Q(f) = E./f*(9N,)En.

Proposition A.4 Let F and G : (R*¥ xR",0) — (R, 0) be Morse families. Suppose that
®r and ®¢ are Legendrian stable. The the following conditions are equivalent.

(1) (W(®F),0) and (W(®g),0) are diffeomorphic as germs.

(2) ®F and g are Legendrian equivalent.

(3) Q(f) and Q(g) are isomorphic as R-algebras,
where f = F|R* x {0}, g = G|R* x {0}.
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