THE ENRICHED RIEMANN SPHERE AND STABILITY

TZEE-CHAR KUO AND LAURENTIU PAUNESCU

In this presentation we will discuss a few suggestive examples, indicating our new approach to Singularity Theory (more details will appear elsewhere).

A general principle which we believe in is that the study of analytic function germs in n+1 variables is *Global Analysis* of polynomials in n variables.

This is illustrated here in the case n=1. Loosely speaking, the classical Morse Stability Theorem in one variable, properly formulated, is "transplanted" into Algebraic Geometry as theorems on equi-singularities in \mathbb{C}^2 (equivalence of singularities); it also suggests a *stronger* definition for "equi-singular deformation".

For example, in contemporary Algebraic Geometry, the following deformations

$$Q(x,y;t) := x^4 - t^2 x^2 y^2 + y^4, \quad P(x,y;t) := x^3 - y^4 - 3t^2 x y^k, \ k \ge 3, \tag{0.1}$$

are equi-singular, because their zero sets are topologically trivial (Milnor μ -constant).

However, Q is not equi-singular from our point of view. The hypothesis of our Equi-singularity Theorem is not satisfied. The associated family of polynomials $x^4 - t^2x^2 + 1$ is not Morse stable (x = 0) splits into three critical points when $t \neq 0$.

On the other hand, the Pham family P is equi-singular in our sense. (Even though the "polar" $\partial P/\partial x$ splits into distinct factors $x \pm ty^d$ if k = 2d.) The associated family $x^3 - 1$, being independent of t, is obviously Morse stable. By our Equi-singularity Theorem, P itself, not merely the zero set, admits a trivialization.

1. Morse Stability

When does a given family F(x, y; t), like Q, P above, admit a trivialization, and of what kind? This is answered in our Equi-singularity Theorem, modelled on the classical Morse Theorem. The Morse Stability Theorem over \mathbb{F} is also geometrized.

Definition 1.1. Given $p_t(x) := a_0(t)x^n + \cdots + a_n(t) \in \mathbb{K}\{t\}[x]$, as a deformation of $p_0(x)$, $a_0(t) \neq 0$, $t \in I_{\mathbb{K}}$, where $\mathbb{K} := \mathbb{C}$ or \mathbb{R} . A critical point $c \in \mathbb{K}$ of $p_0(x)$ is stable if it admits a continuous deformation $c_t \in \mathbb{K}$, a critical point of $p_t(x)$, with $m_{crit}(c_t) = m_{crit}(c)$. (See Example (1.2).)

The deformation $\{p_t\}$ is Morse stable if the following hold.

(1) Every critical point $c \in \mathbb{K}$ of $p_0(x)$ is stable;

Date: June 12, 2008.

T.-C. KUO AND L. PAUNESCU

(2) If $p_0(c) = p_0(c')$, c, c' critical points of $p_0(z)$, then $p_t(c_t) = p_t(c'_t)$, $t \in I_{\mathbb{K}}$;

(3) If $p_0(c) = p_0'(c) = 0$, i.e., c is a multiple root of $p_0(z)$, then $p_t(c_t) = 0$, $t \in I_{\mathbb{K}}$.

Conditions (1), (2) come from Morse Theory; (3) is new, needed for Algebraic Geometry. A version of the classical Morse Stability Theorem is the following.

The Morse Theorem. Suppose $\{p_t(x)\}$ is Morse stable. There exist t-level preserving homeomorphisms $\mathcal{D}: \mathbb{K} \times I_{\mathbb{K}} \to \mathbb{K} \times I_{\mathbb{K}}$, and $\delta: \mathbb{K} \times I_{\mathbb{K}} \to \mathbb{K} \times I_{\mathbb{K}}$,

$$\mathcal{D}: (x,t) \mapsto (D_t(x),t); \quad \delta: (v,t) \mapsto (d_t(v),t), \quad d_t(0) = 0, \tag{1.1}$$

where $D_0(x) = x$, $d_0(v) = v$, such that $p_t(D_t(x)) = d_t(p_0(x))$, and c is a critical point of p_0 iff $D_t(c)$ is one of p_t . (Note that $p_0(a) = 0$ iff $p_t(D_t(a)) = 0$.)

$$I_{\mathbb{R}} := \{ t \in \mathbb{R} \mid |t| < \epsilon \}, \quad I_{\mathbb{C}} := \{ t \in \mathbb{C} \mid |t| < \epsilon \}, \quad I_{\mathbb{F}} := \{ t \in \mathbb{D} \mid |t| < \epsilon \}, \quad 1 >> \epsilon > 0.$$
 (1.2)

Here $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or the Newton-Puiseux field \mathbb{F} . The "disk" $\mathbb{D} \subset \mathbb{F}$ is described in the next section.

Example 1.2. Take $\mathbb{K} = \mathbb{R}$. For $p_t(x) = x^2(x^2 + t^2) \in \mathbb{R}[x]$, 0 is a critical point of p_0 which splits into 3 critical points in \mathbb{C} , one remains in \mathbb{R} . Thus 0 admits a unique continuous deformation $c_t \equiv 0$ in \mathbb{R} . But $m_{crit}(c_t)$ is not constant, 0 is unstable.

2. THE ENRICHED RIEMANN SPHERE

The Riemann sphere $\mathbb{C}P^1$ is "enriched" to $\mathbb{C}P^1_*$ with "infinitesimals", which are irreducible curve germs; and \mathbb{C} enriched to \mathbb{C}_* . The Newton-Puiseux field \mathbb{F} provides coordinate systems, in terms of which several structures are defined.

The Cauchy Integral Theorem, Taylor expansions, critical points, stability, etc., are gen-

eralized to \mathbb{F} ; and so is the classical Morse Stability Theorem. Take a holomorphic map germ $\mathcal{A}:(\mathbb{C},0)\to(\mathbb{C}^2,0),\ \mathcal{A}(z)\neq0$ if $z\neq0$. The image set germ, Im(A), or the geometric locus of A, has a well-defined tangent line, T(A), at 0. We call $Im(\mathcal{A})$ an infinitesimal at $T(\mathcal{A}) \in \mathbb{C}P^1$. The set of infinitesimals is denoted by $\mathbb{C}P^1$.

The geometric locus of $z \mapsto (az, bz)$ is identified with $[a:b] \in \mathbb{C}P^1$; hence $\mathbb{C}P^1 \subset \mathbb{C}P^1$. For example, the curve germ $x^2 - y^3 = 0$, as the geometric locus of $z \mapsto (z^3, z^2)$, is an infinitesimal at [0:1]. It is "closer" to [0:1] than any [a:1], $a \neq 0$.

As in Projective Geometry, $\mathbb{C}P^1_*$ is a union $\mathbb{C}P^1_* = \mathbb{C}_* \cup \mathbb{C}'_*$, where

$$\mathbb{C}_* := \{ Im(\mathcal{A}) \mid T(\mathcal{A}) \neq [1:0] \}, \quad \mathbb{C}'_* := \{ Im(\mathcal{A}) \mid T(\mathcal{A}) \neq [0:1] \}.$$

The classical Newton-Puiseux Theorem asserts that the field F of convergent fractional power series in an indeterminate y is algebraically closed.

Recall that a non-zero element of F is a (finite or infinite) convergent series

$$\alpha: \ \alpha(y) = a_0 y^{n_0/N} + a_1 y^{n_1/N} + \cdots, \quad a_i \neq 0, \quad n_0 < n_1 < \cdots,$$
 (2.1)

THE ENRICHED RIEMANN SPHERE AND STABILITY

where $n_i \in \mathbb{Z}$, $N \in \mathbb{Z}^+$, $a_i \in \mathbb{C}$. The order of α is $O_{\nu}(\alpha) := n_0/N$; $O_{\nu}(0) := +\infty$. We can assume $GCD(N, n_0, n_1, ...) = 1$. The Puiseux multiplicity of α is $m_{puis}(\alpha) := N$. The conjugates of α are $\alpha_{conj}^{(k)}(y) := \sum a_i \theta^{kn_i} y^{n_i/N}, \ 0 \le k \le N-1$, where $\theta := e^{2\pi i/N}$.

The following D is an integral domain with quotient field F and maximal ideal M,

$$\mathbb{D} := \{ \alpha \in \mathbb{F} \mid O_{\nu}(\alpha) \ge 0 \}, \ \mathbb{M} := \{ \alpha \mid O_{\nu}(\alpha) > 0 \}, \ \mathbb{M}_1 := \{ \alpha \mid O_{\nu}(\alpha) \ge 1 \};$$

 \mathbb{M}_1 is an ideal. Define $|\alpha| := \sum_{i=1}^{n_i/N} |a_i| (1+|a_i|)^{-1}$, $d(\alpha,\beta) := |\alpha-\beta|$ is a metric on \mathbb{D} . Thus, $\lim_{m\to\infty} \sum_{i=1}^{n_i/N} a_i(m)y^{n_i/N} = 0$ iff each $a_i(m)\to 0$, the point-wise convergence.

Given $\alpha \in \mathbb{M}_1$, let $\mathcal{A}(z) := (\alpha(z^N), z^N)$, $N := m_{puis}(\alpha)$. We define $\alpha_* := \pi_*(\alpha) := Im(\mathcal{A})$, and use $\pi_*: \mathbb{M}_1 \to \mathbb{C}_*$, a many-to-one surjective mapping, as a *coordinate system* on \mathbb{C}_* . A coordinate system on \mathbb{C}'_{\star} is $\pi'_{\star}: \mathbb{M}_1 \to \mathbb{C}'_{\star}$, $\alpha_{\star}:=\pi'_{\star}(\alpha):=Im(\mathcal{A}), \mathcal{A}(z):=(z^N,\alpha(z^N)).$

Let \mathbb{C}_* (resp. \mathbb{C}'_*) be furnished with the quotient topology of π_* (resp. π'_*). As for the transition function in the overlap $\mathbb{C}_* \cap \mathbb{C}'_*$, take $x = \alpha(y)$, $n_0/N = 1$, we then "solve y in terms of x", obtaining $y = \beta(x) := b_0 x + b_1 x^{n'_1/N'} + \cdots$, $a_0 b_0 = 1$, each b_i is a polynomial in finitely many of $(\sqrt[N]{a_0})^{-1}$, a_1/a_0 , a_2/a_0 , ... Hence the topologies coincide in $\mathbb{C}_* \cap \mathbb{C}'_*$.

The quotient topology on $\mathbb{C}P^1_*$ is well-defined.

Next, let $X, Y \subset \mathbb{R}^n$ be germs of sub-analytic sets at $0, X \cap Y = \{0\}, X \neq \{0\} \neq Y$. The contact order O(X,Y) is, by definition, the smallest number L (the Lojasiewicz exponent)

such that $d(x,y) \ge a\|(x,y)\|^L$, where $x \in X$, $y \in Y$, $\|x\| = \|y\|$, a > 0 a constant. Hence $O(\alpha_*, \beta_*)$ is well-defined, $O(\alpha_*, \alpha_*) := \infty$. (Example: for $\alpha, \beta \in M_1$, $O(\pi_*(\alpha), \pi_*(\beta)) = \max_{k,j} \{O_y(\alpha_{conj}^{(k)} - \beta_{conj}^{(j)})\}$.) This is the contact order structure on $\mathbb{C}P_*^1$.

The enriched Riemann Sphere is $\mathbb{C}P^1_*$ furnished with the above structures; \mathbb{C}_* is the enriched complex plane.

3. Equi-singularity Theorem

Given $f(x,y) \in \mathbb{C}\{x,y\}$, mini-regular in x of order m, i.e.,

$$f(x,y) = H_m(x,y) + H_{m+1}(x,y) + \cdots, H_m(1,0) \neq 0, H_i(x,y)$$
 i-form.

Take a deformation $F(x, y; t) = \sum_{i+j > m} c_{ij}(t) x^i y^j \in \mathbb{C}\{x, y, t\}, F(x, y; 0) = f(x, y).$

Define
$$\phi_t(\xi) := F(\xi, y; t), \ \xi \in \mathbb{M}_1, \ \Phi := \{\phi_t\}, \ t \in I_{\mathbb{C}}.$$

The Equi-singularity Theorem. Suppose Φ is Morse stable. There exists a map germ

$$H: (\mathbb{C}^2 \times I_{\mathbb{C}}, 0 \times I_{\mathbb{C}}) \to (\mathbb{C}^2 \times I_{\mathbb{C}}, 0 \times I_{\mathbb{C}}), \quad ((x, y), t) \mapsto (\eta_t(x, y), t), \tag{3.1}$$

which is a homeomorphism, real bi-analytic outside $\{0\} \times I_{\mathbb{C}}$, such that

(1)
$$F(\eta_t(x,y);t) = f(x,y), t \in I_{\mathbb{C}}, i.e., F(x,y;t)$$
 is "trivialized" by H;

T.-C. KUO AND L. PAUNESCU

- (2) $H_*: \mathbb{C}P^1_* \times I_{\mathbb{C}} \to \mathbb{C}P^1_* \times I_{\mathbb{C}}, \ (\alpha_*, t) \mapsto (\eta_t(\alpha_*), t), \ is \ a \ homeomorphism, \ where \ \eta_t(\alpha_*)$ as a set germ is a point of $\mathbb{C}P^1_*$ (we do not claim that if $\mathcal A$ is holomorphic then so is $\eta_t \circ \mathcal A$);
 - (3) The contact order is preserved: $O(\alpha_*, \beta_*) = O(\eta_t(\alpha_*), \eta_t((\beta_*));$
 - (4) The Puiseux pairs is preserved: $\chi_{puis}(\eta_t(\alpha_*)) = \chi_{puis}(\alpha_*);$
 - (5) There exists a constant $\varepsilon > 0$, $\varepsilon \leq ||\eta_t(x,y)||/||(x,y)|| \leq 1/\varepsilon$, $t \in I_{\mathbb{C}}$;
 - (6) If $\mathcal{R}: (\mathbb{R}, 0) \to (\mathbb{C}^2, 0)$ is (real-)analytic then so is $\eta_t \circ \mathcal{R}$, i.e., η_t is arc-analytic.

The proof of the Equi-singularity Theorem above, uses a vector field $\vec{\mathcal{F}}(x,y,t)$, $(x,y,t) \in U \times I_{\mathbb{C}}$.

There exists $\gamma(y) := \gamma_{\phi}(y) + \cdots$, $F_x(\gamma(y), y; 0) = 0$; i.e., $F_x(x, y; 0)$ vanishes on the curve germ $\Delta := \pi_*(\gamma)$ which is customarily called a "polar" of F(x, y; 0).

Let Δ_t denote the image of Δ at time t in the flow. Note that the above does not imply that Δ_t is a polar of F(x, y; t).

The set $\mathcal{P}(\Gamma) := \{ \Delta \in \mathbb{C}_* | O(\Delta, \Gamma) > O(\gamma_\phi) \}$ contains at least one polar of F(x, y; 0). Hence we call $\mathcal{P}(\Gamma)$ a blurred polar, and Γ its canonical representative.

As we shall prove, the flow preserves the contact order, hence induces a bijection between $\mathcal{P}(\Gamma)$ and $\mathcal{P}(\Gamma_t)$. The flow only carries one blurred polar to another.

The Pham family P(x, y; t) in (0.1), k = 2d, has two polars when $t \neq 0$, but only one blurred polar. The blurred polar is invariant under the flow; the polars are not. Nevertheless this suffices for showing the triviality of the Pham family.

SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, SYDNEY, NSW, 2006, AUSTRALIA

E-mail address: tck@maths.usyd.edu.au; laurent@maths.usyd.edu.au