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THE ENRICHED RIEMANN SPHERE AND STABILITY

TZEE-CHAR KUO AND LAURENTIU PAUNESCU

In this presentation we will discuss a few suggestive examples, indicating our new approach
to Singularity Theory (more details will appear elsewhere).

A general principle which we believe in is that the study of analytic function germs in
n + 1 variables is Global Analysis of polynomials in n variables.

This is illustrated here in the case n = 1. Loosely speaking, the classical Morse Stability
Theorem in one variable, properly formulated, is “transplanted” into Algebraic Geometry as
theorems on equi-singularities in C? (equivalence of singularities); it also suggests a stronger
definition for “equi-singular deformation”.

For example, in contemporary Algebraic Geometry, the following deformations

Qz,y;t):=x* — ?2%% +y*, P(z,y;t):= 2% - y* — 3t°zy*, k > 3, (0.1)
are equi-singular, because their zero sets are topologically trivial (Milnor p-constant).

However, @ is not equi-singular from our point of view. The hypothesis of our Equi-
singularity Theorem is not satisfied. The associated family of polynomials z4 — t222 + 1 is
not Morse stable (z = 0 splits into three critical points when ¢ # 0).

On the other hand, the Pham family P is equi-singular in our sense . (Even though the
“polar” 0P/0x splits into distinct factors = + ty? if k = 2d.) The associated family z3 — 1,
being independent of ¢, is obviously Morse stable. By our Equi-singularity Theorem, P itself,
not merely the zero set, admits a trivialization.

1. MORSE STABILITY

When does a given family F(z,y;t), like Q, P above, admit a trivialization, and of what
kind? This is answered in our Equi-singularity Theorem, modelled on the classical Morse
Theorem. The Morse Stability Theorem over F is also geometrized.

Definition 1.1. Given py(z):= ao(t)z" + -+ + an(t) € K{t}[z], as a deformation of py(z),
ao(t) # 0, t € Ix, where K:= C or R. A critical point ¢ € K of po(z) is stable if it admits
a continuous deformation ¢, € K, a critical point of p,(z), with mei(c;) = mau(c). (See
Example (1.2).)

The deformation {p,} is Morse stable if the following hold.

(1) Every critical point ¢ € K of po(z) is stable ;
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(2) If po(c) = po(c), ¢, ¢ critical points of po(z), then p:(c;) = pi(c}), t € Ik;
(3) If po(c) = po(c) =0, i.e., c is a multiple root of py(z), then py(c;) = 0, t € Ix.

Conditions (1), (2) come from Morse Theory; (3) is new, needed for Algebraic Geometry.
A version of the classical Morse Stability Theorem is the following.

The Morse Theorem. Suppose {p,(z)} is Morse stable. There exist t-level preserving

homeomorphisms D : K x Ix - K x I, and § : K x Ix — K x I,

D: (l‘,t) — (Dt(r)vt)7 5 : (’U,t) — (dt(v)9t)7 dt(o) = 01 (11)
where Do(x) = z, do(v) = v, such that p;(Dy(z)) = di(po(x)), and c is a critical point of po
iff Dy(c) is one of p,. (Note that po(a) = 0 iff p,(D,(a)) =0.)

Ii={teR||t| <€}, Ic:={teC||t| <€}, Irp:=={teD|t]<e},1>>e>0. (1.2

Here K = R, C or the Newton-Puiseux field F. The “disk” I C F is described in the next

section.

Ezample 1.2. Take K = R. For p,(z) = z%(z* + t*) € R[z], 0 is a critical point of py which

splits into 3 critical points in C, one remains in R. Thus 0 admits a unique continuous
deformation ¢, = 0 in R. But mei;(c;) is not constant, 0 is unstable.

2. THE ENRICHED RIEMANN SPHERE

The Riemann sphere CP! is “enriched” to CP} with “infinitesimals”, which are irreducible

curve germs; and C enriched to C.. The Newton-Puiseux field F provides coordinate systems,
in terms of which several structures are defined.

The Cauchy Integral Theorem, Taylor expansions, critical points, stability, etc., are gen-

eralized to IF; and so is the classical Morse Stability Theorem.

Take a holomorphic map germ A : (C,0) — (C2,0), A(z) # 0 if z # 0. The image set
germ, Im(.A), or the geometric locus of A, has a well-defined tangent line, T'(A), at 0. We
call Im(.A) an infinitesimal at T(A) € CP'. The set of infinitesimals is denoted by CP..
The geometric locus of z — (az, bz) is identified with [a : b] € CP!; hence CP! ¢ CPL.
For example, the curve germ z? — y® = 0, as the geometric locus of z — (23, 2%), is an
infinitesimal at [0 : 1]. It is “closer” to [0 : 1] than any [a: 1], a # 0.
As in Projective Geometry, CP} is a union CP! = C, U C,, where

Coi={Im(A) | T(A) #[1:0]}, C.:={Im(A)|T(A)#[0:1]}.
The classical Newton-Puiseux Theorem asserts that the field F of convergent fractional
power serics in an indeterminate y is algebraically closed.
Recall that a non-zero element of F is a (finite or infinite) convergent series

a: aly) =a0y"°/N+a1y”‘/N+ ey 8;F#0, mg<<m <., (2.1)
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wherc n; € Z, N € Z*, a; € C. The order of a is Oy(a):= no/N; 0,(0):= +o0.
We can assume GCD(N,ng,n,...) = 1. The Puiseuz multiplicity of a is mpuis(a) := N.
The conjugates of a are o'*) (y):= > a;0*y™/N 0 < k < N -1, where §:= 2"/,

conj

The following D is an integral domain with quotient field F and maximal ideal M,
D:= {o € F| Oy(a) 2 0}, M:= {a| Oy(a) > 0}, M;:= {a]| Oy(c) > 1};

M, is an ideal. Define |a|:= 3 27"/N|qa;|(1 + |a:|) 7}, d(a, B) := |a — B| is a metric on D.
Thus, lim,—e Y a;(m)y™/~ = 0 iff each a;(m) — 0, the point-wise convergence.
Given o € My, let A(z):= (a(zV),2V), N:= mpu,(a). We define a, := 7.(a) := Im(A),
and use 7, : M} — C,, a many-to-one surjective mapping, as a coordinate system on C,.
A coordinate system on C, is 7, : M} — C,, a..:= 7,(a):= Im(A), A(z):= (2", a(z")).

Let C, (resp.C,) be furnished with the quotient topology of m, (resp.n’). As for the
transition function in the overlap C. N C,, take z = a(y), no/N = 1, we then “solve y in
terms of z”, obtaining y = B(z):= box + biz™/N + ..., agby = 1, each b; is a polynomial in
finitely many of ({/ag)™!, a1/ae, az/ao, .... Hence the topologies coincide in C, N C..

The quotient topology on CP! is well-defined. :

Next, let X, Y C R" be germs of sub-analytic sets at 0, X NY = {0}, X # {0} #Y. The
contact order O(X,Y) is, by definition, the smallest number L (the Lojasiewicz exponent)
such that d(z,y) > al|(z,y)||*, wherez € X,y € Y, ||z|| = ||y]l, @ > O a constant.

Hence O(a., 8.) is well-defined, O(a., a,) := co. (Example: for a, 8 € M, O(m.(a), 7.(8)) =

maxk,j{Oy(a(k) - /Bg,ll])}) This is the contact order structure on CP}.

conj
The enriched Riemann Sphere is CP! furnished with the above structures; C, is the
enriched complex plane.

3. EQUI-SINGULARITY THEOREM
Given f(z,y) € C{z,y}, mini-regular in x of order m, i.e.,
f(z,y) = Hu(z,y) + Hunta(z,y) + -+, Hn(1,0) # 0, Hi(z,y) i-form.
Take a deformation F(z,y;t) = 3, ;5 ¢ij{t)z'y? € C{z,y,t}, F(z,y;0) = f(z,y).
Define ¢:(§):= F(&,y;t), £ € M, &:= {&}, t € Ic.
The Equi-singularity Theorem. Suppose ® is Morse stable. There exists a map germ
H:(C*xIc,0x Ig) = (C* x Ic,0 x I), ((z,y),t) — (n(z,y),1t), (3.1)

which is a homeomorphism, real bi-analytic outside {0} x Ic, such that
(1) F(n(z,y);t) = f(z,y), t € Ic, i.e., F(z,y;t) is “trivialized” by H;
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(2) H, : CP} x I¢ — CP} x I¢, (au,t) — (n(a.),t), is a homeomorphism, where M)
as a set germ is a point of CP, (we do not claim that if A is holomorphic then so is n, o A),

(3) The contact order is preserved: O(au, B.) = O(m(aw), 1 ((8.));

(4) The Puiseuz pairs is preserved: Xpuis(:(ow)) = Xpuis (Ox);

(5) There exists a constant € > 0, £ < ||n.(z, v)||/I(z, ¥)|| < 1/, t € Ic;

(6) If R : (R,0) — (C?%,0) is (real-)analytic then so is , o R, i.e., m, is arc-analytic.

The proof of the Equi-singularity Theorem above, uses a vector field F (z,y,t), (z,y,t) €
U x Ic.

There exists v(y) := v4(y) + -+, Fz(7(y),¥;0) = 0; i.e., Fy(z,y;0) vanishes on the curve
germ A:= m,(y) which is customarily called a “polar” of F(z,v;0).

Let A, denote the image of A at time ¢ in the flow. Note that the above does not imply
that A, is a polar of F(z,y;t).

The set P(T) := {A € C,|O(A,T) > O(7,)} contains at least one polar of F(z,y;0).
Hence we call P(T") a blurred polar, and T its canonical representative.

As we shall prove, the flow preserves the contact order, hence induces a bijection between
P(I') and P(T',). The flow only carries one blurred polar to another.

The Pham family P(z,y;t) in (0.1), k¥ = 2d, has two polars when ¢t # 0, but only one
blurred polar. The blurred polar is invariant under the flow; the polars are not. Nevertheless
this suffices for showing the triviality of the Pham family.
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