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1 How to investigate $T\mathcal{A}(f)$ and $T\mathcal{L}(f)$

In singularity theory of differentiable mappings, the $\mathcal{A}$-equivalence relation
is the most important equivalence relation and the $\mathcal{L}$-equivalence relation
is also important if we want to deal with the images of map-germs rather
than map-germs themselves, but investigating them are not easy in general.
The main reason why it is not easy is in the fact that we have to deal
with mixed homomorphisms of finite type over $f^{*}$ defined in [12], where
$f$ : $(R^{7\iota}, 0)arrow(R^{p}, 0)$ is a given map-germ. For instance, the standard
filtration $\mathcal{E}_{n}=m_{n}^{0}\supset m_{n}^{1}\supset m_{n}^{2}\supset$ . . . $\supset m_{1}^{\infty}\supset\{0\}$ of $\mathcal{E}_{n}$ is not well
compatible with mixed homomorphisms of finite type over $f^{*}$ . However, if
we replace the filtration $\mathcal{E}_{n}=m_{n}^{0}\supset m_{n}^{1}\supset m_{71}^{2}\supset\cdots\supset m_{n}^{\infty}\supset\{0\}$ of $\mathcal{E}_{n}$ with
the filtration $\mathcal{E}_{n}=f^{*}m_{p}^{0}\mathcal{E}_{n}\supset f^{*}m_{p}^{1}\mathcal{E}_{n}\supset f^{*}m_{p}^{2}\mathcal{E}_{n}\supset\cdots\supset f^{*}m_{p}^{\infty}\mathcal{E}_{n}\supset\{0\}$

of $\mathcal{E}_{n}$ , then we can deal with everything easily by just one time using of
Malgrange preparation theorem, which is the key of our method.

More precisely, for any $i,$ $j$
)

$k$ (resp. $i,$ $k$ ) $\in\{0,1, \cdots, \infty\}$ in general it is
impossible to obtain the inclusion $m_{n}^{i}\theta_{S}(f)\subset tf(m_{n}^{j}\theta_{S}(n))+\omega f(m_{p}^{k}\theta_{\{0\}}(p))$

$($ resp. $m_{n}^{i}\theta_{S}(f)\subset\omega f(m_{p}^{k}\theta_{\{0\}}(p)))$ from the only one inclusion $m_{n}^{i}\theta_{S}(f)\subset$
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$tf(m_{n}^{j}\theta_{S}(n))+\omega f(m_{p}^{k}\theta_{\{0\}}(p))+m_{n}^{i+1}\theta_{S}(f)$ (resp. $m_{n}^{i}\theta_{S}(f)\subset\omega f(m_{p}^{k}\theta_{\{0\}}(p))+$

$rn_{n}^{i+1}\theta_{S}(f))$ . As the map-germ with one variable

$f(x)=(x^{i}, x^{i+1}, \cdots)x^{2i-1},0,$
$\cdots,$ $0)$ $(2\leq i\leq p)$ ,

which appears naturally as a singularity of pedal curve produced by a non-
singular dual curve ([16]), suggests, in order to obtain the desired inclusion
$m_{n}^{i}\theta_{S}(f)\subset tf(\theta_{S}(n))+\omega f(\theta_{\{0\}}(p))$ from the inclusion $m_{n}^{i}\theta_{S}(f)\subset tf(\theta_{S}(n))+$

$\omega f(\theta_{\{0\}}(p))+m_{n}^{i+1}\theta_{S}(f)$ , we need in general i-tuples successive inclusions
$m_{n}^{k}\theta_{S}(f)\subset tf(m_{n}^{r}\theta_{S}(n))+\omega f(m_{p}^{\ell}\theta_{\{0\}}(p))+m_{n}^{k+1}\theta_{S}(f)(k=i,$$i+1,$ $\cdots,$ $2i-$
1 $)$ . (for details on this topic, for instance see [8], [22]). For the definition of
$\theta_{S}(f),$ $\theta_{S}(n),$ $\theta_{\{0\}}(p),$ $tf$ and $\omega f$ , see \S 3.

On the other hand, if we replace $m_{n}^{i}\theta_{S}(f)$ with $f^{*}m_{p}^{i}\theta_{S}(f)$ , then we have
the following proposition 1, which is a special case of Mather’s lemma on
mixed homomorphisms of finite type over $f^{*}:\mathcal{E}_{p}arrow \mathcal{E}_{n}\cross\cdots x\mathcal{E}_{n}$ (see, (1.12)
of [12] $)$ .

Throughout this note, let $S=\{s_{1}, \cdots, s_{r}\}$ be a finite subset of $R^{n}$ with
$r$ elements, $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ be a germ of a $C^{\infty}$ mapping at $S$ such that
$f(S)=0$ and for any $i(1\leq i\leq r)$ let $f_{i}$ be the restricticn of $f$ to $(R^{n}, s_{t})$

(called a branch of $f$ ). The integer $r$ is called the number of branches of
$f$ . Let $\mathcal{E}_{n}$ (resp. $\mathcal{E}_{p}$ ) be the R-algebra of $C^{\infty}$ function-germs at the origin
in $(R^{n}, 0)$ (resp. $(R^{p},$ $0)$ ) with usual operations, and let $m_{n}$ (resp. $m_{p}$ ) be
the unique maximal ideal of $\mathcal{E}_{n}$ (resp. $\mathcal{E}_{p}$ ). We define $m_{q}^{0}=\mathcal{E}_{q}$ . For a given
map-germ $f$ : $(R^{n}, S)arrow(R,0)$ and a non-negative integer $i$ we put

$iQ(f)^{n}$ $=$ $\frac{f^{*}m_{p}^{i}\theta_{S}(n)}{f^{*}m_{p}^{i+1}\theta_{S}(n)}$

$iQ(f)^{p}$ $=$ $\frac{f^{*}m_{!}^{i},\theta_{S}(f)}{f^{*}rn_{p}^{i+1}\theta_{S}(f)}$ .

Then, $iQ(f)^{q}$ is an $\mathcal{E}_{n}$-module.

Proposition 1 Let $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ be a $C^{\infty}$ map-germ such that the
dimension of $Q(f)$ is finite and let $i$ be a non-negative integer. Suppose that

$iQ(f)^{p}=\{[g]\in_{i}Q(f)^{p}|g\in tf(m_{n}^{j}\theta_{S}(n))+\omega f(m_{p}^{k}\theta_{\{0\}}(p))\}$

for some $j,$ $k\in\{0,1, \cdots, \infty\}$ . Then, we have

$f^{*}m_{p}^{i}\theta_{S}(f)\subset tf(m_{n}^{j}\theta_{S}(n))+\omega f(m_{p}^{k}\theta_{\{0\}}(p))$ .
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For the definition of $Q(f)$ , see \S 3. We have the same inclusion as propo-
sition 1 for $\omega f(m_{p}^{k}\theta_{\{0\}}(p))$ if we replace $tf(m_{n}^{j}\theta_{S}(n))+\omega f(m_{p}^{k}\theta_{\{0\}}(p))$ with
$\omega f(m_{p}^{k}\theta_{\{0\}}(p))$ . Since the assumption of proposition 1 is equivalent to say
the following:

$f^{*}m_{P}^{i}\theta_{S}(f)\subset tf(m_{n}^{j}\theta_{S}(n))+\omega f(m_{p}^{k}\theta_{\{0\}}(p))+f^{*}m_{p}^{i+1}\theta_{S}(f)$,

we see that $f^{*}m_{p}^{i}\theta_{S}(f)$ is easier to deal with than $m_{n}^{i}\theta_{S}(f)$ .
From these results, we see that the following method seems to be useful.

For $\mathcal{G}=\mathcal{R}$ or $\mathcal{A}$ or $\mathcal{L}$ , put

$iQ(f, \mathcal{G})^{p}=\{[g]\in_{i}Q(f)^{p}|g\in T\mathcal{G}(f)\}$ ,

where $[g]=g+f^{*}m_{p}^{i+1}\theta_{S}(f)$ . We see that $iQ(f)^{p}$ is finite dimensional if $Q(f)$

is finite dimensional. Thus, in the case that $\dim_{R}Q(f)<\infty_{i}Q(f)^{p}$ can be
decomposed in the following way:

$tQ(f)^{p}=iQ(f, \mathcal{G})^{p}+V$,

where $V$ is a finite dimensional vector subspace of $\{Q(f)^{p}$ .
The method which we would like to propose in this note is to obtain the
smallest $i$ such that $iQ(f)^{p}=iQ(f, \mathcal{G})^{p}$ . By our method, we can expect to
improve the situations of calculations in many cases. For instance, consider
the following fencing curves due to Arnold ([1]):

$f_{a,b}(x)=(x^{5}, x^{6}+ax^{8}+bx^{9}, x^{7})$ $(a, b\in R)$ .

We see easily that

(1) $2Q(f_{a,b})^{3}=\{[g]\in 2Q(f_{a,b})^{3}|g\in\omega f_{a_{\dagger}b}(m_{p}^{2}\theta_{\{0\}}(p))\}$ .

Thus, we have that $2Q(f_{a,b})^{3}=2Q(f_{a_{1}b}, \mathcal{L})^{3}$ . On the other hand, it is easily
seen that $1Q(f_{a,b})^{3}\neq 1Q(f_{a,b}\rangle \mathcal{L})^{3}$ . Threfore, 2 is the smallest $i$ such that
$iQ(f_{a,b})^{3}=iQ(f_{a,b}, \mathcal{L})^{3}$ , and we see that $f_{a,b}$ is $9- \mathcal{L}$-determined for any $a,$ $b\in$

$R$ and it suffices to calculate only inside the 15 dimensional vector space
generated by monomials $x^{5},$

$\cdots,$
$x^{9}$ to calculate

$\dim_{R}\frac{TC(f_{a,b})}{T\mathcal{L}(f_{a,b})}=6$ ,

and to obtain the property that

$\dim_{R}\frac{T\mathcal{K}(f_{a,b})}{T\mathcal{A}(f_{ab}|)}=1$

(2) $( \alpha x^{8}+\beta x^{9})\frac{\partial}{\partial Y}\not\in T\mathcal{A}(f_{a,b})$ for any $a,$ $b,$ $\alpha,$
$\beta$ such that 2 $a\beta\neq 3b\alpha$ .
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By (2) we see that $f_{a,b}$ is not $8- \mathcal{A}$-determined if $a\neq 0$ .

Our method works well also in complex holomorphic category. Hence, all
results in this note hold also in complex holomorphic category.

This not $e$ is organized in the following way. In \S 2, we gather results
obtained so far by using our method introduced in this section. In \S 3, we
prepare several notions and notations. For theorem 1 stated in \S 2, a sketch
of proof is given in \S 4. For theorem 2 and proposition 2 (resp. theorem 3
and corollary 1) stated in \S 2, a sketch of proofs is given in \S 5 (resp. \S 6). \S 7
is devoted to give a proof of proposition 3 stated in \S 2. Propositons 4 and 5
stated in \S 2 are proved sketchily in \S 8. Finally, in \S 9 we give a short proof
of assertion 1 stated in \S 2.

2 Applications

In this section, we gather results obtained so far by using our method intro-
duced in \S 1.

Theorem 1 ([17]) Any $a- \mathcal{A}$ -determined singular curve-germ $f$ ; $(R, 0)arrow$

$(R^{p}, 0)(p\geq 2)$ is $(4a^{2}+2a-1)rightarrow \mathcal{L}$ -determined.

For the definition of order of $\mathcal{G}$-determinacy $(\mathcal{G}=\mathcal{A} or \mathcal{L})$ , see \S 3.
Theorem 1 is a partial answer to the problem of Wall which asks to obtain

a function $\ell(p, n, a)$ such that $a- \mathcal{A}$-determinacy implies $\ell- \mathcal{L}$-determinacy for
a map-germ $f$ with $p\geq 2n$ (p. 512 of [22]). Note that our estimate in
theorem 1 is not effective in general since for instance the example $f(x)=$
$(x^{i}, x^{i+1}, \cdots, x^{2i-1},0, \cdots, 0)(2\leq i\leq p)$ given in \S 1 is $(2i-1)- \mathcal{G}$-determined
but not $(2i-2)- \mathcal{G}$-determined for both of $\mathcal{G}=\mathcal{A}$ and $\mathcal{G}=\mathcal{L}$ . On the other
hand, note also that our function $\ell(p, 1, a)$ in theorem 1 does not depend on
$p$ . The author does not know whether or not this is a particular phenomenon
which occurs only when $n=1$ .

Theorem 2 ([18]) Let $f$ : $(R^{n}, S)arrow(R^{p}, 0)(n\leq p, np\neq 1)$ be an $\mathcal{A}-$

simple map-germ with corank at most one. Then, the following inequality
holds:

$\dim_{R}Q(f)\leq\frac{p^{2}+(n-1)r}{n(p-n)+(n-1)}$ .

For the definition of $Q(f)$ , see \S 3.
Note that there are no upper bounds for $\dim_{R}Q(f)$ in the case that

$n=p=1$ since for any positive integer $\delta$ the map-germ $f(x)=x^{\delta}$ is $\mathcal{A}-$

simple and of corank at most one.
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Theorem 3 ([18]) Let $f$ : $(R^{n}, S)arrow(R^{p}, 0),$ $(n<p)$ be a $C^{\infty}$ map-germ.
Suppose that $f$ is $\mathcal{A}$ -simple. Then, the nurnber of branches $r$ is restricted in
the following way:

$r< \frac{p^{2}}{n(p-n)}$ .

For the definitions of an $\mathcal{A}$-simple map-germ and a map-germ with corank
at most one, see \S 3.

Note that there are no upper bounds for $r$ in the case that $n=p$ since
for any positive integer $r$ a smooth finite covering with $r$ fibers gives an
example of $\mathcal{A}$-simple map-germ in the case that $n=p$ . Note also that
since $r\leq\dim_{R}Q(f)$ the inequality $r \leq\frac{p^{2}}{n(p-n)}$ for an $\mathcal{A}$-simple map-germ
with corank at most one can be obtained from theorem 2 as an immediate
corollary. Thus, the point of theorem 3 is the sharpness of the inequality.

Since the left hand side of the inequality in theorem 3 is an integer while
the right hand side is a rational number, the sharp inequality in theorem 3
suggests that there exists some special restrictions for the number of branches

$number\frac{mpP^{1e}}{n(p-n)}canbeanintegeronlywhenp=2nandinthecaseitattainsofan\mathcal{A}- simap- germwhentherighthandsideisaninteger.Therational$

its minimal value 4. Thus, we may guess that the classical cross ratio and
the symplectic cross ratio ([19]) are the very invariants of special restrictions
for the number of branches of an $\mathcal{A}$-simple map-germ.

It seems interesting also to compare theorem 2 with theorem 3 when
the right hand side of the inequality in theorem 3 is an integer. The rational
number $\frac{p^{2}+(n-1)r}{n(p-n)+(n-1)}$ for $p=2n,$ $r<4$ can be an integer only when $n=1$ and
in this case it attains its maximal value 4. Although there are no $\mathcal{A}$-simple
map-germs $\int:(R^{n}, S)arrow(R^{2n}, 0)$ with $r=4$ by theorem 3, for instance
map-germs $x\mapsto(x^{4}, x^{5}+x^{7})$ (taken from [3]), $\{x\mapsto(x, 0), x\mapsto(x^{3}, x^{4})\}$

and $\{x\mapsto(x, 0), x\mapsto(O, x), x\mapsto(x^{2}, x^{3})\}$ (these two are taken from [10])
give examples of $\mathcal{A}$-simple map-germs satisfying $\dim_{R}Q(f)=4$ in the case
that $(n,p)=(1,2)$ . In particular, we can not expect the sharpness for the
inequality of theorem 2.

Not only in the case above, the upper bound for $\dim_{R}Q(f)$ given in
theorem 1 is the best possible bound in the classification results of $\mathcal{A}$-simple
map-germs listed here ([5], [6], [7], [9], $[10|,$ $[11],$ $[15],$ $[20],$ $[23])$ , and the
upper bound for $r$ is also the best possible bound in the classification results
([6], [10], [23]). However, if $n=r=1$ and $p$ is greater than 5, then the upper
bound in theorem 1 is not the best estimate since the effect of $\mathcal{A}$-moduli sets
in $\mathcal{K}$-simple orbits can not be disregarded as shown in [1].

For corresponding results on $\mathcal{L}$-simple singularities, we have the following
which can be obtained easily.
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Proposition 2 ([18]) Let $f$ : $(R^{n}, S)arrow(R^{p_{1}}0)(n\leq p, np\neq 1)$ be an
$\mathcal{L}$ -simple map-germ with $cor\cdot ank$ at most one. Then, the following inequality
holds:

$\dim_{R}Q(f)\leq\frac{p}{n}$ .

Corollary 1 ([18]) Let $f$ : $(R^{n}, S)arrow(R^{p}, 0)\}(n\leq p)$ be a $C^{\infty}$ map-germ.
Suppose that $f$ is $\mathcal{L}$ -simple. Then, the number of branches $r$ is restricted in
the following way;

$r \leq\frac{p}{n}$ ,

Proposition 2 shows that if $n\leq p<2n$ then any $\mathcal{L}$-simple map-germ with
corank at most one must be an immersive mono-germ (i.e. an immersion
germ with only one branches), and we can not expect to improve corollary 1
to hold the sharp inequality $r<Rn$ . FUrthermore, if $p=2n$ then for instance
the map-germ with three branches $\{f_{1)}f_{2}, f_{3}\}$ given by the following is not
$\mathcal{L}$-simple though it is $\mathcal{A}$-simple (for the property that this map-germ is $\mathcal{A}-$

simple, see proposition 5 below).

$f_{1}(x_{1}, \cdots, x_{n})$ $=$ $(x_{1}, \cdots, x_{n}, 0_{7}\cdots, 0)$ ,
$f_{2}(x_{1}, \cdots, x_{n})$ $=$ $(0, \cdots , 0, x_{1}, \cdots, x_{n})$ ,
$f_{3}(x_{1}, \cdots , x_{n})$ $=$ $(x_{1)}\cdots, x_{n}, a_{1}x_{1}, \cdots, a_{n}x_{n})$ $(a_{1}\cdots a_{n}\neq 0)$ .

Thus we see that $\mathcal{L}$-simple singularities are quite restricted although $\mathcal{A}$-simple
singularities are not so.

Fkom the calcurations in \S 1 by using our method, for the Arnold’s fencing
curves $f_{a,b}$ we can see easily the following.

Proposition 3 For any $g$ : $(R, 0)arrow(R^{p}, 0)(p\geq 3)$ with $\dim_{R}Q(g)\geq 7_{f}$

we see that $g$ is adjacent to the set $\bigcup_{(a,b)\neq(0_{t}0)}\mathcal{A}(f_{a,b})$ .

By proposition 3 we can say that the union $U_{(a,b)\neq(0,0)b}\mathcal{A}(f.,)$ dominates the
set of singular curve-germs with multiplicities $\geq 7$ .

Next, we would like to investigate the exsistence of an $\mathcal{A}$-simple map-germ
which is not $\mathcal{L}$-simple.

Proposition 4 ([18]) Let $p$ be an integer greater than 1 and let $f$ : $(R, S)arrow$

$(R^{p}, 0)$ be an immersion such that $\sum_{i=1}^{r}j^{1}f_{i}(s_{i})(R)=R_{f}^{p}$ where the l-jet
$j^{1}f_{i}(s_{i})$ is regarded as a linear mapping. Then, we have the following:

1. Suppose that $r=p$ . Then, $f$ is $\mathcal{L}$ -simple.

2. Suppose that $r=p+1$ . Then, $f$ is $\mathcal{A}$ -simple.
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3. Suppose that $r\geq p+2$ . Then, $f$ is not $\mathcal{A}$ -simple.

Note that under the situation of proposition 4, $f$ is not $\mathcal{L}$-simple if $r=p+1$
by corollary 1 and thus an $f$ given in proposition 4 in the cas$e$ that $r=p+1$
is an $\mathcal{A}$-simple map-germ which is not $\mathcal{L}$-simple.

Proposition 5 ([18]) Let $f$ : $(R^{n}, S)arrow(R^{2n}, 0)$ be an immersion such
that $f_{i}$ is transverselly intersecting with $f_{j}$ for any $i,$ $j(1\leq i,j\leq r, i\neq j)$ .

1. Suppose that $r=2$ . Then, $f$ is $\mathcal{L}$ -simple.

2. Suppose that $r=3$ . Then, $f$ is $\mathcal{A}$-simple.

3. Suppose that $r\geq 4$ . Then, $f$ is not $\mathcal{A}$-simple.

Note that under the situation of proposition 5, $f$ is not $\mathcal{L}$-simple if $r=3$ by
corollary 1 and thus an $f$ given in proposition 5 in the case that $r=3$ is an
$\mathcal{A}$-simple map-germ which is not $\mathcal{L}$-simple.
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$C\subset \mathcal{A}+MC\Rightarrow C\subset \mathcal{A}$ .

3 Notions and notations
Most notions and notations introduced in this section are due to Mather ([12],
[13] $)$ and already common in singularity theory of differentiable mappings.
For details of them, we recommend an excellent survey [22] to the readers.

For a $C^{\infty}$ map-germ $g:(R^{n}, S)arrow(R^{p}, T)$ , where $S$ (resp. $T$) is a finite
subset of $R^{n}$ (resp. $R^{p}$ ), let $\theta_{S}(g)$ be the $\mathcal{E}_{n}$-module of germs of vector fields
along $g$ . We may identify $\theta_{S}(g)$ with $\underline{\mathcal{E}_{n}^{\rho}x\cdots x\mathcal{E}_{n}^{p}}$

. We put $\theta_{S}(n)=\theta_{S}(id_{R^{n}})$

$r$ tuples
and $\theta_{T}(p)=\theta_{T}(id_{R^{p}})$ , where $id_{R^{n}}$ is the identity map-germ of $(R^{n}, S)$ and
$id_{R^{p}}$ is the identity map-germ of $(R^{p}, T)$ . For any $k\in\{0,1, \cdots, \infty\}$ , an
element of $m_{n}^{k}\theta_{S}(n)$ or $m_{p}^{k}\theta_{\{0\}}(p)$ is a map-germ such that the the Taylor
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polynomial of degree $(k-1)$ is zero. For a given $C^{\infty}$ map-germ $f$ : $(R^{n}, S)arrow$

$(R^{p}, 0)$ , Mather’s two homomorphisms $tf$ ( $tf$ is an $\mathcal{E}_{n}$-homomorphism) and
$\omega f$ ( $\omega f$ is an $\mathcal{E}_{p}$-homomorphism via $\int^{*}$ ) is defined as follows.

$tf:\theta_{S}(n)arrow\theta_{S}(f)$ , $tf(a)=df\circ a$ ,
$\omega f:\theta_{\{0\}}(p)arrow\theta_{S}(f)$ , $\omega f(b)=b\circ f$ ,

where $df$ is the differential of $f$ . We put

$T\mathcal{R}(f)$ $=tf(m_{n}\theta_{S}(n))$ ,
$T\mathcal{L}(f)$ $=\omega f(m_{p}\theta_{\{0\}}(p))$ ,
$TC(f)$ $=$ $f^{*}m_{p}\theta_{S}(f)$ ,

$T\mathcal{A}(f)$ $=tf(m_{n}\theta_{S}(n))+\omega f(m_{p}\theta_{\{0\}}(p))$ ,
$T\mathcal{K}(f)$ $=tf(m_{n}\theta_{S}(n))+f^{*}m_{p}\theta_{S}(f)$ .

For a given $C^{\infty}$ map-germ $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ we define

$Q(f)= \frac{\mathcal{E}_{n}}{f_{1}^{*}n\tau_{p}\mathcal{E}_{n}}\cross$ $\cdot\cdot\cdot$ $\cross\frac{\mathcal{E}_{n}}{f_{r}^{*}m_{p}\mathcal{E}_{n}}$ ,

whre recall that $f_{i}$ is the restriction of $f$ to $(R^{n}, s_{i})$ and $S=\{s_{1}, \cdots, s_{r}\}$ .
The dimension $\dim_{R}Q(f)$ is called the multiplicity of $f$ and denoted by $\delta(f)$ .
Note that $Q(f)^{n}$ (resp. $Q(f)^{p}$ ) may be identified with $\theta_{S}(n)/f^{*}m_{p}\theta_{S}(n)$

$($resp. $\theta_{S}(f)/f^{*}m_{p}\theta_{S}(f))$ . For a given map-germ $f$ such that $\delta(f)<\infty$ ,
Wall’s homomorphism of $Q(f)$ -modules ([22]) is the following:

$\overline{t}f:Q(f)^{n}arrow Q(f)^{p}$ , $\overline{t}f([g])=[tf(g)]$ ,

where $[g]=g+f^{*}m_{p}\theta_{S}(n)$ and $[tf(g)]=g+f^{*}m_{p}\theta_{S}(f)$ . Let $\gamma(f)$ be the
dimension of the kernel of $\overline{t}f$ .

For a given $C^{\infty}$ map-germ $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ such that $\delta(f)<\infty$ , we
put $i \delta(f)=\frac{1}{p}\dim_{Ri}Q(f)^{p}$ . Note that $i\delta(f)$ must be an integer. Let $i\gamma(f)$ be
the dimension of the kernel of the following homomorphism of $Q(f)$ -modules.

$i\overline{t}f:_{i}Q(f)^{n}arrow iQ(f)^{p}$ , $i\overline{t}f([g])=[tf(g)]$ .

Then, we see easily that $\delta(f)\leq i\delta(f)\leq p^{i}\delta(f)$ , and thus $i\delta(f)<\infty$ if $\delta(f)<$

$\infty$ . Similarly $\gamma(f)\leq i\gamma(f)\leq p^{i}\gamma(f)$ . Note that $iQ(f)$ is not isomorphic to
$iQ(F)$ , where $F$ is an unfolding of $f$ . However, we see easily that $1\delta(F)=$

$(1+q)_{1}\delta(f)$ and $1\gamma(F)=(1+q)_{1}\gamma(f)$ , where $q$ is the number of parameters
for the unfolding $F$ .
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The Taylor polynomials of degree $k$ at all points of $S$ for a map-germ
$f$ : $(R^{n}, S)arrow(R^{p}, 0)$ is called $k$ jet of $f$ at $S$ and is denoted by $j^{k}f(S)$ . We
put

$J^{k}(n,p)=\{j^{k}f(0)|f : (R^{n}, 0)arrow(R^{p}, 0)\}$ .

Two map-germs $f,$ $g$ : $(R^{n}\rangle S)arrow(R^{p}, 0)$ are said to be $\mathcal{A}$-equivalent if there
exist germs of $C^{\infty}$ diffeomorfisms $\varphi$ : $(R^{n}, S)arrow(R^{n}, S)$ such that $\varphi(s_{j})=s_{J}$

for $S=\{s_{1}, \cdots, s_{k}\}$ $(s_{i}\neq s_{j} if i\neq j)$ and $\psi$ : $(R^{p}, 0)arrow(R^{p}, 0)$ such that
$f=\psi\circ g\circ\varphi^{-1}$ . For a $C^{\infty}$ map-germ $f\mathcal{A}$-equivalence class of it is denoted by
$\mathcal{A}(f)$ . Two map-germs $f,$ $g:(R^{n}, S)arrow(R^{p}, 0)$ are said to be $\mathcal{L}$-equivalent
if there exists a germ of $C^{\infty}$ diffeomorfism $\psi$ : $(R^{p}, 0)arrow(R^{p}, 0)$ such that
$f=\psi\circ g$ . For a $C^{\infty}$ map-germ $f\mathcal{L}$-equivalence class of it is denoted by
$\mathcal{L}(f)$ . A $C^{\infty}$ map-germ $f$ : $(R^{n})S)arrow(R^{p}, 0)$ is said to be $k- \mathcal{A}$-determined
(resp. $k- \mathcal{L}$-determined) if $f$ is $\mathcal{A}$-equivalent (resp. $\mathcal{L}$-equivalent) to any $g$

with $j^{k}f(0)=j^{k}g(0)$ .
Next we define jet space suitable for multi-germs $(R^{n})S)arrow(R^{p}, 0)$ and

their equivalence classes, which is the following multi-jet space:

$rJ^{k}(n,p)=\{(j^{k}f_{1}(s_{1}), \cdots, j^{k}f_{r}(s_{r}))|f_{1}(s_{1})=\cdots=f_{r}(s_{r}), s_{i}\neq s_{j} if i\neq j\}$ .

For a $C^{\infty}$ map-germ $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ where $S=\{s_{1}, \cdots, s_{r}\}(s_{i}\neq s_{j}$ if
$i\neq j)$ , the quotient space $\frac{m_{n}\theta_{S}(f)}{m_{n}^{k+1}\theta_{S}(f)}$ can be identified with the multi-jet space
$rJ^{k}(n,p)$ . Under this identification we put

$T\mathcal{R}^{k}(j^{k}f(S))$ $=$ $\{[g]\in_{r}J^{k}(n,p)|g\in T\mathcal{R}(f)\}$ ,
$T\mathcal{L}^{k}(j^{k}f(S))$ $=$ $\{[g]\in_{r}J^{k}(n,p)|g\in T\mathcal{L}(f)\}$ ,
$TC^{k}(j^{k}f(S))$ $=$ $\{[g]\in_{r}J^{k}(n,p)|g\in TC(f)\}$ ,

$T\mathcal{A}^{k}(j^{k}f(S))$ $=$ $\{[g]\in_{r}J^{k}(n,p)|g\in T\mathcal{A}(f)\})$

$T\mathcal{K}^{k}(j^{k}f(S))$ $=$ $\{[g]\in_{r}J^{k}(n,p)|g\in T\mathcal{K}(f)\}$ ,

where $[g]=g+m_{n}^{k+1}\theta_{S}(f)$ . These are tangent spaces to orbits of actions of
well-defined Lie groups corresponding to Mather’s groups $\mathcal{R},$ $\mathcal{L},$ $C,$ $\mathcal{A}$ and $\mathcal{K}$ .
(for details, see [22]).

We recall the definitions of $\mathcal{A}$-simple map-germ and $\mathcal{L}$-simple map-germ.
A map-germ $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ is said to be $\mathcal{A}$-simple (resp. $\mathcal{L}$-simple)
if there exists a finite number of $\mathcal{A}$-equivalence classes (resp. $\mathcal{L}$-equivalence
classes) such that for any positive integer $d$ and any $C^{\infty}$ mapping $F:Uarrow V$

where $U\subset R^{n}\cross R^{d}$ is a neighbourhood of $S\cross 0,$ $V\subset R^{p}\cross R^{d}$ is a
neighbourhood of $(0,0),$ $F(x, \lambda)=(f_{\lambda}(x), \lambda)$ and the germ of $f_{0}$ at $S$ is $f$ ,
there exists a sufficiently small neighbourhood $W_{i}\subset U$ of $(s_{i}, 0)(1\leq i\leq r)$

such that for every $\{(x_{1}, \lambda), \cdots, (x_{r}, \lambda)\}$ with $(x_{i}, \lambda)\in W_{i}$ and $F(x_{1}, \lambda)=$
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$=F(x_{r}, \lambda)$ the niap-germ $f_{\lambda}$ : $(R^{n}, \{x_{1)}\cdots, x_{r}\})arrow(R^{p}\}f_{\lambda}(x_{i}))$ lies in
one of these finit $e\mathcal{A}$-equivalence classes.

Finally, a $C^{\infty}$ map-germ $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ is said to be of corank
at most one if $m_{c}\gamma x\{n$ –rank$Jf_{i}(s_{i})|1\leq i\leq r\}\leq 1$ holds, where recall
that $S=\{s_{1}, \cdots, s_{r}\}$ $(s_{i}\neq s_{j} if i\neq j)$ is a finite set of $R^{n}$ , and $f_{i}$ is the
restriction of $f$ to $(R^{n}, s_{i})$ and $Jf_{i}(s_{i})$ is the Jacobian matrix of $f_{i}$ at $s_{i}$ .

4 Sketch of proof of theorem 1
In this section, we give a sketch of proof of theorem 1 given in [17]. Since
theorem 1 concerns only a mono-germ (that is to say, a map-germ such that
the number of branches $r$ is 1), for the sake of clearness in this section we
use the simplified notations $\theta(f),$ $\theta(n)$ and $\theta(p)$ instead of $\theta_{S}(f),$ $\theta_{S}(n)$ and
$\theta_{\{0\}}(f)$ .

By using appropriate coordinate transformations, from the first we may
assume that $f$ has the following form:

$f(x)=(x^{\delta}, f_{2}(x), \cdots, f_{p}(x))$ ,

where $\delta=\delta(f)$ and $f_{j}(x)=o(x^{\delta})$ for $j=2,$ $\cdots,p$ . Since $f$ is $a- \mathcal{A}-$

determined, there exists a positive integer $k(k\geq 2)$ such that $a+1\leq$
$k\delta\leq a+\delta$ and

$T\mathcal{A}(f)\supset m_{1}^{k\delta}\theta(f)=f^{*}m_{p}^{k}\theta(f)$ .
By Sylvester’s duality on Erobenius number ([21], see also [1, 2]. for a com-
plete proof of Sylvester’s duality, see the comment to problem 1999-8 of [2] $)$

we see that for any integer $c\geq(k\delta-1)k\delta$ there exist non-negative integers
$p_{1},$ $p_{2}$ such that $c=\ell_{1}k\delta+\ell_{2}(k\delta+1)$ . Therefore, in the case that there exists
a $j(2\leq j\leq p)$ such that the order of $f_{j}(x)$ is $\delta+1$ , we have that

$(k\delta-1)kQ(f)^{p}=\{[g]|g\in\omega f(m_{p}^{2}\theta(p))\}$ .

Next, we consider the case that $f_{j}(x)=o(x^{\delta+1})$ for any $j(2\leq j\leq p)$ .

Lemma 1 If $f_{j}(x)=o(x^{\delta+1})$ for any $j(2\leq j\leq p)$ , then $kT\mathcal{R}(f)\subset V$,
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where $V$ is the vecto $7^{\cdot}$ subspace of $kQ(f)^{p}$ spanned by the following uectors;

$[x^{k\delta} \frac{\partial}{\partial X_{1}}],$ $[x^{k\delta+1} \frac{\partial}{\partial X_{1}}],$ $[x^{k\delta+2} \frac{\partial}{\partial X_{1}}],$

$\cdots,$
$[x^{k\delta+(\delta-1)} \frac{\partial}{\partial X_{1}}]$ ,

$[x^{k\delta} \frac{\partial}{\partial X_{2}}]$ , $[x^{k\delta+2} \frac{\partial}{\partial X_{2}}],$

$\cdots,$
$[x^{k\delta+(\delta-1)} \frac{\partial}{\partial X_{2}}]$ ,

:

$[x^{k\delta} \frac{\partial}{\partial X_{p}}]$ ,

. : ..

$[x^{k\delta+2} \frac{\partial}{\partial X_{p}}],$
$\cdots,$

$[x^{k\delta+(\delta-1)} \frac{\partial}{\partial X_{p}}]$ .

For the proof of lemma 1, see [17]. By lemma 1, even in the case that
$f_{j}(x)=o(x^{\delta+1})$ for any $j(2\leq j\leq p)$ we have

$(k\delta-1)kQ(f)^{p}=\{[g]|g\in\omega f(m_{p}^{2}\theta(p))\}$ .

Thus, we have

$\omega f(m_{p}^{2}\theta(p))\supset f^{*}m_{p}^{(k\delta-1)k}\theta(f)=m_{1}^{(k\delta-1)k\delta}\theta(f)$ .

Since $a+1\leq k\delta\leq a+\delta$ we have

$m_{1}^{(k\delta-1)k\delta}\theta(f)\supset m_{1}^{(a+\delta-1)(a+\delta)}\theta(f)$ .

We see easily that $\delta\leq a+1$ . Thus, we have

$\omega f(m_{p}^{2}\theta(f))\supset m_{1}^{2(a-1)(2a-1)}\theta(f)$ .

Put $\ell=2r(2r+1)-1=4r^{2}+2r-1$ and let $g$ be a $C^{\infty}$ map-germ such
that $j^{\ell}f(O)=j^{\ell}g(0)$ . Then, as in [4], since $(g-f)\in m_{1}^{\ell+1}\theta(f)$ , from the
above inclusion we see that there exists a germ of $C^{\infty}$ diffeomorphisms

$h:\square$

$(R^{p}, 0)arrow(R^{p}, 0)$ such that $g=h\circ f$ .

5 Sketch of proofs of theorem 2 and propo-
sition 2

In this section, we give a sketch of proofs of theorem 2 and proposition 2
given in [18].

Lemma 2 Let $f$ : $(R^{n}, S)arrow(R^{p}, 0)$ be a $C^{\infty}$ map-germ such that $\delta(f)<$

$\infty$ .
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1. Suppose that $TC(f)=T\mathcal{L}(f)$ . Then, the following inequality holds:

$1\delta(f)\leq p$ .

2. Suppose that $T\mathcal{K}(f)=T\mathcal{A}(f)$ . Then, the following inequality holds:

$(p-n)_{1}\delta(f)+1\gamma(f)-\gamma(f)\leq p^{2}$ .

For the proof of lemma 2, see [18].
[Sketch of proofs of theorem 2 and proposition 2] If $f$ is $\mathcal{A}$-simple (resp.

$\mathcal{L}$-simple), there must exist an $\mathcal{A}$-simple (resp. $\mathcal{L}$-simple) map-germ $g$ such
that both of $Q(f)\cong Q(g)$ $($ resp. $Q(f)=Q(g))$ and $T\mathcal{K}(g)=T\mathcal{A}(g)$ (resp.
$TC(g)=T\mathcal{L}(g))$ are satisfied. For the $g$ we see that $1\delta(g)=n\delta(g),$ $1\gamma(g)=$

$n\gamma(g)=n(\delta(g)-r)2$
.

and thus theorem 2 and proposition 2 follow from
$lemma\square$

6 Sketch of proofs of theorem 3 and corollary
1

In this section, we give a sketch of proofs of theorem 3 and corollary 1 given
in [18].

First, not$e$ that for an immersive map-germ $g$ : $(R^{n}, S)arrow(R^{p}, 0)$ the
following hold:

$\dim_{R}T\mathcal{R}^{1}(j^{1}g(S))$ $=n^{2}r$ ,
$\dim_{R}TC^{1}(j^{1}g(S))$ $=$ $npr$ ,

$\dim_{R}T\mathcal{K}^{1}(j^{1}g(S))$ $=npr$.

If $f$ is $\mathcal{A}$-simple (resp. $\mathcal{L}$-simple), near $f$ there must exist $g$ : $(R^{n}, S)arrow$

$(R^{p}, 0)$ which is immersive, $\mathcal{A}$-simple (resp. $\mathcal{L}$-simple) and satisfies the
equality $\dim_{R}T\mathcal{K}^{1}(j^{1}g(S))=\dim_{R}T\mathcal{A}^{1}(j^{1}g(S))$ (resp. $\dim_{R}TC’(j^{1}g(S))=$

$\dim_{R}T\mathcal{L}^{1}(j^{1}g(S)))$ . For the $\mathcal{L}$-simple $g$ , by proposition 2 we have $r\leq$

$p/n$ . Thus, corollary 1 holds. For the $\mathcal{A}$-simple $g$ , since we have that
$\dim_{R}T\mathcal{L}^{1}(j^{1}g(S))\leq p^{2}$ (equality holds if and only if $\sum_{i=1}^{r}j^{1}g_{i}(s_{i})(R^{n})=$

$R^{p_{f}}$ where $s_{i}\in S$ ) and the equality $\dim_{R}T\mathcal{K}^{1}(j^{1}g(S))=\dim_{R}T\mathcal{A}^{1}(j^{1}g(S))$

holds for the $g$ , we have $npr\leq n^{2}r+p^{2}$ . However, we see that the equality
does not hold for $\mathcal{A}$-simple map-germ $g$ since the scalar multiple operation
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gives a trivial 1-diniensional intersection of $T\mathcal{R}^{1}(j^{1}g(S))$ and $T\mathcal{L}^{1}(j^{1}g(S))$ .

Thus, theorem 3 holds. $\square$

Remark. We know phenomena similar as theorem 3 in several situations
where $\mathcal{K}^{2}$ -moduli sets occur naturally as investigated in [14]. For instance,
consider the following set:

$\Sigma_{4}^{2}(4,8)=\{j^{2}f(0)|f$ : $(R^{4},0)arrow(R^{8},0)$ corank$(f)=4\}$ .

We see that $\dim_{R}\Sigma_{4}^{2}(4,8)=80$ and the dimension of $T\mathcal{R}^{2}(j^{2}f(0))$ (resp.
$TC^{2}(j^{2}f(O))$ is less than or equal to 16 (resp. 64); and for a generic $f\in$

$\Sigma_{4}^{2}(4,8)$ the equality holds for each inequality. Thus, for a generic $f\in$

$\Sigma_{4}^{2}(4,8))$ we have that
$\dim_{R}\Sigma_{4}^{2}(4,8)=\dim_{R}T\mathcal{R}^{2}(j^{2}f(0))+\dim_{R}TC^{2}(j^{2}f(0))$ .

However, we see that
$\dim_{R}(T\mathcal{R}(j^{2}f(0)))\cap TC(j^{2}f(0)))>0$

by Euler’s relation $tf( \Sigma_{i=1}^{n}x_{i}\frac{\partial}{\partial x_{i}})=2\omega f(\Sigma_{J}^{p}=1X_{i}\frac{\partial}{\partial X_{j}}))$ . Thus, even for a
generic $f\in\Sigma_{4}^{2}(4,8)$ , we have that

$\dim_{R}\Sigma_{4}^{2}(4,8)>\dim_{R}T\mathcal{K}^{2}(j^{2}f(0))$ .

Not only for $\Sigma_{4}^{2}(4,8)$ we encounter the similar phenomina as theorem 3 but
also for $\Sigma_{3}^{2}(3,3)$ , which can be seen as follows. Put

$\Sigma_{3}^{2}(3,3)=\{j^{2}f(0)|f$ : $(R^{3},0)arrow(R^{3},0)$ corank$(f)=3\}$ .

We see that $\dim_{R}\Sigma_{3}^{2}(3,3)=18$ and each of the dimension of $T\mathcal{R}^{2}(j^{2}f(0))$

and $TC^{2}(j^{2}f(0))$ is less than or equal to 9; and for a generic $f\in\Sigma_{3}^{2}(3,3)$ the
equality holds for each inequality. Thus, for a generic $f\in\Sigma_{3}^{2}(3,3)$ , we have
that

$\dim_{R}\Sigma_{3}^{2}(3,3)=\dim_{R}T\mathcal{R}^{2}(j^{2}f(0))+\dim_{R}TC^{2}(j^{2}f(0))$ .

However, we see that

$\dim_{R}(T\mathcal{R}(j^{2}f(0)))\cap TC(j^{2}f(0)))>0$

again by Euler’s relation $tf( \Sigma_{i=1}^{n}x_{i}\frac{\partial}{\partial x_{l}})=2\omega f(\Sigma_{j=1}^{p}X_{j}\frac{\partial}{\partial X_{j}}))$ . Thus, even for
a generic $f\in\Sigma_{3}^{2}(3,3)$ , we have that

$\dim_{R}\Sigma_{3}^{2}(3,3)>\dim_{R}T\mathcal{K}^{2}(j^{2}f(0))$ .

The author does not know a reasonable explanation why such resembling
phenomena occur in diferent situations. Note that by the fact that $\Sigma_{4}^{2}(4,8)$

(resp. $\Sigma_{3}^{2}(3,3)$ ) is a $\mathcal{K}^{2}$ -moduli set we can calculate $\sigma_{4}^{2}(4,8)=32$ (resp.
$\sigma_{3}^{2}(3,3)=9)$ , which yields that $\sigma(n,p)=6(p-n)+8$ $(p-n\geq 4, n\geq 4)$

$($ resp. $\sigma(n,p)=6(p-n)+9$ $(p\geq n\geq 3))$ as shown in [14].
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7 Proof of proposition 3
By composing linear transformations of $R^{p}$ and germs of non-linear trans-
formations of $R$ if necessary, from the first we may assume that $g(x)=$
$(g_{1}(x), g_{2}(x)\cdots , g_{p}(x))$ has the following form:

$g_{1}(x)$ $=$ $a_{1}x^{9}+o(x^{9})$ ,
$g_{2}(x)$ $=$ $a_{2}x^{8}+o(x^{9})$ ,
$g_{3}(x)$ $=$ $a_{3}x^{7}+o(x^{9})$ ,
$g_{i}(x)$ $=$ $o(x^{9})$ $(i\geq 4)$ ,

where $a_{i}=1$ or $0$ .
Suppose that $a_{2}=0$ . Then, by (1) in \S 1 we see that for any sufficiently

small $t\neq 0$ there exist germs of $C^{\infty}$ diffeomorphisms $\varphi_{t}$ : $(R, 0)arrow(R, 0)$
and $\psi_{t}$ : $(R^{p}, 0)arrow(R^{p}, 0)$ such that $(g+tf_{(1,t)})\circ\varphi_{t}=\psi_{t}\circ f_{(1,t)}$ . Furthermore,
by (2) in \S 2 we see that

$\frac{\partial f_{(1,t)}}{\partial t}\not\in T\mathcal{A}(f_{(1,t)})$ .

Thus, proposition 3 holds in the case that $a_{2}=0$ .
Next, suppose that $a_{2}=1$ . Then, by (1) in \S 1 we see that for any

sufficiently small $t\neq 0$ there exist germs of $C^{\infty}$ diffeomorphisms $\varphi_{t}$ : $(R, 0)arrow$

$(R, 0)$ and $\psi_{t}$ : $(R^{p}, 0)arrow(R^{p}, 0)$ such that $(g+tf_{(0,1)})\circ\varphi_{t}=\psi_{t}\circ f_{(\frac{1}{t},1)}$ . By
(2) in \S 1, we see that

$\frac{\partial f_{(\frac{1}{tt},1)}}{\partial}\not\in T\mathcal{A}(f_{(\frac{1}{t},1)})$ .

Thus, proposition 3 holds in any case. $\square$

8 Sketch of proofs of propositions 4 and 5
Here, we give a sketch of proofs of propositions 4 and 5 given in [18].

We consider 1 of proposition 4 or 5. In the following in this section, we
are putting $n=1,$ $p\geq 3$ if we are considering 1 of proposition 4; and we
are putting $p=2n$ if we are considering 1 of proposition 5. By calculations
we see that $\dim_{R}TC^{1}(j^{1}f(S))=\dim_{R}T\mathcal{L}^{1}(j^{1}f(S))$ , which implies $1Q(f)^{p}=$

$1Q(f, \mathcal{L})^{p}$ . By proposition 1 for $\omega f(m_{p}\theta_{\{0\}}(f))$ , we see that $TC(f)=T\mathcal{L}(f)$ .
Note that the C-equivalence class of $f$ is the largest C-equivalence class in
the set $\{g:(R^{n}, S)arrow(R^{p}, 0)C^{\infty}\}$ for the given $S$ . Thus, there are no $\mathcal{L}-$

equivalence classes to which $f$ is adjacent, which implies that $f$ is $\mathcal{L}$-simple.
We can obtain 2 of propositions 4 and 5 similarly. By theorem 3, 3 of
propositions 4 and 5 are obtained immediately. $\square$
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9 Assertion 1の証明
$M$ は $\mathcal{E}_{n}$ の有限生成イデアルであるので, $fi,$ $\cdots$ , $f_{p}(p<\infty)$ で生成される
としてよい. 仮定より,

$\frac{C}{MC}=\frac{C}{f^{*}m_{p}C}=\{[g]\in\frac{C}{f^{*}m_{p}C}$ $g\in \mathcal{A}\}$

を得る. よって, マルグランジュの予備定理より $C\subset A$ を得る. 口

References
[1] V. I. Arnol’d, Simple singularities of curves, Proc. Steklov Inst. Math.,

226 (1999), 20-28.

[2] V. I. Arnol’d, Arnold’s problems, Springer-Verlag, Phasis, 2005.

[3] J. W. Bruce and T. J. Gaffney, Simple singularities of mappings C, $0arrow$

$C^{2},$ 0, J. London Math. Soc., 26(1982), 465-474.

[4] J. W. Bruce, T. Gaffney and A. A. du Plessis, On left equivalence of
map germs, Bull. London Math. Soc., 16(1984), 303-306.

[5] C. G. Gibson and C. A. Hobbs, Simple singularities of space curves,
Math. Proc. Cambridge Philos. Soc., 113(1993), 297-306.

[6] C. A. Hobbs and N. P. Kirk, On the classification and bifurcation of
multigerms of maps from surfaces to 3-space, Math. Scand., 89(2001),
57-96.

[7] K. Houston and N. P. Kirk, On the classification and geometry of co-rank
1 map-germs from three-space to four-space, Singularity theory (Liver-
poo11996), xxii, 325-351, London Math. Soc. Lecture Note Ser.. 263,
Cambridge Univ. Press, Cambridge, 1999.

[8] N. P. Kirk, Computational aspects of $classifi/ing$ singularities, LMS J.
Comput. Math., 3(2000), 207-228.

[9] C. Klotz, 0. Pop and J. Rieger, Real double-points of deformations of
$\mathcal{A}$-simple map-germs from $R^{n}$ to $R^{2n}$ , Math. Proc. Cambridge Philos.
Soc., 142(2007), 341-363.

[10] P. A. Kolgushkin and R. R. Sadykov, Simple singularities of multigerms
of curves, Rev. Mat. Complut., 14(2001), 311-344.

98



[11] W. L. Marar and F. Tari, On the geometry of simple germs of co-rank 1
maps from $R^{3}$ to $R^{3}$ , Math. Proc. Cambridge Philos. Soc., 119(1996),
469-481.

[12] J. Mather, Stability of $C^{\infty}$ mappings, III. Finitely determined map-
germs. Publ. Math. Inst. Hautes Etudes Sci., 35(1969),127-156.

[13] J. Mather, Stability of $C^{\infty}$ mappings, IV, Classification of stable
map-germs by R-algebras, Publ. Math. Inst. Hautes Etudes Sci.,
$37(1970),223- 248$ .

[14] J. Mather, Stability of $C^{\infty}$ -mappings VI. The nice dimensions, Lecture
Notes in Mathematics 192, Springer-Verlag, Berlin, (1971), 207-253.

[15] D. Mond, On classification of germs of maps from $R^{2}$ to $R^{3}$ , Proc.
London Math. Soc., 50(1985), 333-369.

[16] T. Nishimura, Normal forms for singularities of pedal curves produced by
non-singular dual curve germs in $S^{n}$ , Geom. Dedicata,133(2008), 59-66.

[17] T. Nishimura, Estimating the order of $\mathcal{L}$ -determinacy by the order of
A-determinacy for a singular curve germ, preprint.

[18] T. Nishimura, $\mathcal{A}$-simple multi-germ and $\mathcal{L}$ -simple multi-germ, preprint.

[19] V. Ovsienko, Lagrange schwarzian derivative and symplectic Sturm the-
ory, Ann. Fac. Sci. Toulouse Math. (6), 2(1993), 73-96.

[20] J. H. Rieger, Families of maps from the plane to the plane, J. London
Math. Soc., 36(1987), 351-369.

[21] J. J. Sylvester, Mathematical questions with their solutions, Education
Times, 41 (1884), 21.

[22] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London
Math. Soc., 13(1981), 481-539.

[23] R. Wik-Atique, On the classification of multigerms of maps from $C^{2}$ to
$C^{3}$ under $\mathcal{A}$ -equivalence, in Real and Complex Singularities (J. V. Bruce
and F. Tari, eds.), Proceedings of the 5th Workshop on Real and Com-
plex Singularities, (Sao Carlos, Brazil, 1998), 119-133. Chapman &
$Hal1/CRC$ Res. Notes Math., 412, Chapman &Hall/CRC, Boca Ra-
ton, FL, 2000.

99


