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Abstract

In this paper, we introduce an iterative scheme by hybrid method for finding a common element of the
set of fixed points of a countable family of nonexpansive mappings and the set of solutions of an equilibrium
problem in a Hilbert space. We show that the iterative sequence converges strongly to a common element
of the above two sets under some parameters controlling conditions.
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1 Introduction

Let $C$ be a closed convex subset of a real Hilbert space $H$ and let $P_{C}$ be the metric projection of $H$ onto $C$ .
Let $F$ be a bifunction from $CxC$ into $\mathbb{R}$ , where $\mathbb{R}$ is the set of real numbers. The equilibrium problem for
$F:CxCarrow \mathbb{R}$ is to find $x\in C$ such that

$F(x, y)\geq 0$ for all $y\in C$. (1.1)

The set of solution of (1.1) is denoted by $EP(F)$ . Numerous problems in physics, optimization, and economics
reduce to find a solution of (1.1). Some methods have been proposed to solve the equilibrium problem (see; [2, 4,
11, 18] $)$ . In 2005, Combettes and Hirstoaga [3] introduced an iterative scheme of finding the best approximation
to the initial data when $EP(F)$ is nonempty and they also proved a strong convergence theorem. A mapping
$S:Carrow C$ is said to be nonexpansive if

$\Vert Sx-Sy||\leq||x-y\Vert$ ,

for all $x,y\in C$ . We denote by $F(S)$ the set of fixed points of $S$ . If $C$ is bounded closed convex and $S$ is a
nonexpansive mapping from $C$ into itself, then $F(S)$ is nonempty (see; [8]). We write $x_{n}arrow x$ ($x_{n}arrow x$ , resp.)
if $\{x_{n}\}$ converges (weakly, resp.) to $x$ .

In 1953, Mann [9] introduced the iteration as follows: a sequence $\{x_{n}\}$ defined by

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Sx_{n}$ (1.2)
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where the initial guess element $x_{0}\in C$ is arbitrary and $\{\alpha_{n}\}$ is a real sequence in $[0,1]$ . Mann iteration has
been extensively investigated for nonexpansive mappings. One of the fundamental convergence results is proved
by Reich [14]. In an infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence [5].
Attempts to modify the Mann iteration method (1.2) so that strong convergence is guaranteed have recently
been made. Nakajo and Takahashi [12] proposed the following modification of Mam iteration method (1.2):

$\{\begin{array}{l}x_{0}\in C is arbitrary,y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})Sx_{n},C_{n}=\{z\in C:\Vert y_{n}-z||\leq||x_{n}-z\Vert\},Q_{n}=\{z\in C:\langle x_{n}-z,x_{0}-x_{n}\rangle\geq 0\},x_{n+1}=P_{C.\cap Q}.x_{0}, n=0,1,2\ldots,\end{array}$ (1.3)

For finding an element of $EP(F)\cap F(S)$ , Tada and Takahashi [20] introduced the following iterative scheme
by the hybrid method in a Hilbert space: $x_{0}=x\in H$ and let

$\{\begin{array}{l}u_{n}\in C such that F(u_{n}, y)+\frac{1}{r_{n}}\langle y-u_{n}, u_{n}-x_{n}\rangle\geq 0, \forall y\in C,w_{n}=(1-\alpha_{n})x_{n}+\alpha_{n}Su_{n},C_{n}=\{z\in H:\Vert w_{n}-z\Vert\leq\Vert x_{n}-z||\})Q_{n}=\{z\in C:\langle x_{n}-z,x_{0}-x_{n}\rangle\geq 0\},x_{n+1}=P_{C_{n}\cap Q_{n}}x_{0}, n=0,1,2\ldots ,\end{array}$

for every $n\in N$ , where $\{\alpha_{\mathfrak{n}}\}$ is a sequence in $[0,1]$ where $\{\alpha_{n}\}\subset[a, b]$ for some $a,$ $b\in(O, 1)$ and $\{r_{n}\}\subset(0, \infty)$

satisfies $\lim\inf_{narrow\infty}r_{n}>0$ . Further, they proved $\{x_{n}\}$ and $\{u_{n}\}$ converge strongly to $z\in F(S)\cap EP(F)$ , where
$z=P_{F(S)\cap EP(F)^{X}1}$ .

Recently, Takahashi et al. [17] proved a strong convergence theorem by the hybrid method for a family of
nonexpansive mappings in Hilbert spaces: $x_{0}\in H,$ $C_{1}=C$ and $x_{1}=P_{C_{1}}x_{0}$ and let

$\{\begin{array}{l}y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{n}x_{n},C_{n+1}=\{z\in C_{n}:||y_{n}-z||\leq||x_{n}-z\Vert\},x_{n+1}=P_{C_{n+1}}x_{0}, n\in N,\end{array}$

where $0\leq\alpha_{n}\leq a<1$ for all $n\in N$ and $\{T_{n}\}$ a sequence of nonexpansive mappings of $C$ into itself such that
$\bigcap_{n=1}^{\infty}F(T_{n})=\emptyset$ and satisfy some appropriate conditions. Then, $\{x_{n}\}$ converges strongly to $P_{\bigcap_{n=1}^{\infty}F(T_{n})}x_{0}$ .

In this paper, motivated and inspired by the above results, we introduce a new following iterative scheme:

$\{\begin{array}{l}x_{0}\in H, and C_{0}=C,u_{n}\in C such that F(u_{n}, y)+\frac{1}{r_{n}}\langle y-u_{n}, u_{n}-x_{n}\rangle\geq 0, \forall y\in C,y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})S_{n}u_{n},C_{n+1}=\{z\in C_{n}:||y_{n}-z\Vert\leq||x_{n}-z\Vert\},x_{n+1}=P_{C_{n+1}}x_{0}, n=0,1,2\ldots,\end{array}$

for finding a common element of the set of fixed points of a countable family of nonexpansive mappings and
the set of solutions of an equilibrium problem. Moreover, we show that $\{x_{n}\}$ and $\{u_{n}\}$ converge strongly to
$P_{\bigcap_{n\sim 1}^{\infty}F(S_{n})\cap EP(F)}x_{0}$ by the hybrid method in mathematical programming.

43



A strong convergence theorem by hvbrid method for a nonexpansive mappings and an equilibrium problem

2 Preliminaries

Let $H$ be a real Hilbert space. Then

$\Vert x-y\Vert^{2}=\Vert x\Vert^{2}-\Vert y||^{2}-2\langle x-y,$ $y\rangle$ (2.1)

and

$||\lambda x+(1-\lambda)y\Vert^{2}=\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)\Vert x-y\Vert^{2}$ (2.2)

for all $x,$ $y\in H$ and $\lambda\in[0,1]$ . It is also known that $H$ satisfies the Opial’s $\omega ndition[13]$ , that is, for any
sequence $\{x_{n}\}$ with $x_{n}arrow x$ , the inequality

$\lim_{narrow}\inf_{\infty}||x_{n}-x||<\lim_{narrow}\inf_{\infty}||x_{n}-y||$

holds for every $y\in H$ with $y\neq x$ . Hilbert space $H$ , satisfies the Kadec-Klee property [6, 19], that is, for any
sequence $\{x_{n}\}$ with $x_{n}arrow x$ and $||x_{n}\Vertarrow||x||$ together imply $\Vert x_{n}-x\Vertarrow 0$ .

Let $C$ be a closed convex subset of $H$ . For every point $x\in H$ , there exists a unique nearest point in $C$ ,
denoted by $P_{C}x$ , such that

$\Vert x-P_{C}x\Vert\leq||x-y||$ for all $y\in C$ .
$P_{C}$ is called the metrec $p\Gamma OJ^{ection}$ of $H$ onto $C$. It is well known that $P_{C}$ is a nonexpansive mapping of $H$ onto
$C$ and satisfies

$(x-y,$ $P_{C}x-P_{C}y\rangle\geq||P_{C}x-P_{C}y\Vert^{2}$ (2.3)

for every $x,$ $y\in H$ . Moreover, $P_{C}x$ is characterized by the following properties: $P_{C}x\in C$ and

$\langle x-P_{C}x,y-P_{C}x\rangle\leq 0$ , (2.4)

$\Vert x-y\Vert^{2}\geq||x-P_{C}x\Vert^{2}+\Vert y-P_{C}x\Vert^{2}$ (2.5)

for all $x\in H,$ $y\in C$ .

For solving the equilibrium problem, let us assume that the bifunction $F$ satisfies the following conditions
(see [2]):

$(\Lambda 1)F(x,x)=0$ for all $x\in C$ ;

(A2) $F$ is monotone, i.e., $F(x, y)+F(y, x)\leq 0$ for any $x,$ $y\in C$ ;

(A3) $F$ is upper-hemicontinuous, i.e., for each $x,$ $y,$ $z\in C$ ,

$\lim_{tarrow}\sup_{0+}F(tz+(1-t)x,y)\leq F(x, y)$ ;

(A4) $F(x, \cdot)$ is convex and lower semicontinuous for each $x\in C$ .

The following lemma appears implicitly in [2]

Lemma 2.1. [2] Let $C$ be a nonempty closed $\omega nvex$ subset of $H$ and let $F$ be a bifunction of $C\cross C$ into $R$

satisfying $(A 1)-(A4)$ . Let $r>0$ and $x\in H$ . Then, there $ex’ stsz\in C$ such that

$F(z, y)+ \frac{1}{r}\langle y-z,$ $z-x)\geq 0$ for all $y\in C$ .
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The following lemma was also given in [3].

Lemma 2.2. [3] Assume that $F$ : $CxCarrow R$ satisfies $(A1)-(A4)$ . For $r>0$ and $x\in H$ , define a mapping
$T_{r}:Harrow C$ as follows:

$T_{f}(x)= \{z\in C : F(z,y)+\frac{1}{r}\langle y-z, z-x\rangle\geq 0,\forall y\in C\}$

for all $z\in H$ . Then, the following hold:

1. $T_{r}$ is single- valued,

2. $T_{r}$ is firmly nonexpansive, $i.e$ .,for any $x,$ $y\in H,$ $||T_{r}x-T_{r}y||^{2}\leq\langle T_{r}x-T_{r}y,$ $x-y\rangle$ ;

3. $F(T_{r})=EP(F)$ ;

4. $EP(F)$ is closed and convex.

Let $C$ be a subset of a Banach space $E$ and let $\{S_{n}\}$ be a family of mappings $komC$ into $E$ . For a subset
$B$ of $C$ , we say that $(\{S_{n}\}, B)$ satisfies condition AKTT if

$\sum_{n=1}^{\infty}\sup\{||S_{n+1}z-S_{n}z\Vert:z\in B\}<\infty$ .

Aoyama et al. [1, Lemma 3.2], prove the following result which is very useful in our main result.

Lemma 2.3. Let $C$ be a nonempty closed subset of a Banach space $E$ and let $\{S_{n}\}$ be a sequence of mappings
from $C$ rnto E. Let $B$ be a subset of $C$ with $(\{S_{n}\}, B)$ satisfies condition AKTT, then there eststs a mapping
$S:Barrow E$ such that

$Sy= \lim_{narrow\infty}S_{n}y$ $\forall y\in B$

and $\lim_{narrow\infty}\sup\{||S_{n}z-Sz|| : z\in B\}=0$ .

3 Main result

In this section, we show a strong convergence theorem which solves the problem of finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem in a
Hilbert space.

Theorem 3.1. Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let $F$ be a biftZnction frvm
$CxC$ into $\mathbb{R}$ satishing $(A1)-(A4)$ . Let $\{S_{n}\}$ be a sequence of nonexpansive mappings from $C$ into $H$ such
that $\bigcap_{n=0}^{\infty}F(S_{n})\cap EP(F)\neq\emptyset$ . Let $\{x_{n}\}$ and $\{u_{n}\}$ be sequences generated by

$\{\begin{array}{l}x_{0}\in H, and C_{0}=C,u_{n}\in C such that F(u_{n}, y)+\frac{1}{r_{n}}\langle y-u_{n},t4_{n}-x_{n}\rangle\geq 0, \forall y\in C,y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})S_{n}u_{n},C_{n+1}=\{z\in C_{n}:||y_{n}-z||\leq||x_{n}-z||\},x_{n+1}=P_{C_{\mathfrak{n}+1}}x_{0}, n=0,1,2\ldots,\end{array}$

with the following restnctions:
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$(\dot{\iota})0\leq\alpha_{n}<1$ for all $n\in N\cup\{0\}$ and $\lim\sup_{narrow\infty}\alpha_{n}<1$ ,

(ii) $r_{n}>0$ for all $n\in N\cup\{0\}$ and $\lim\inf_{narrow\infty}r_{n}>0$ .

Let $\sum_{n=0}^{\infty}\sup\{||S_{n+1}z-S_{n}z\Vert : z\in B\}<\infty$ for any bounded subset $B$ of $C$ and $S$ be a mapping from $C$ into
$H$ defined by $Sz= \lim_{narrow\infty}S_{n}z$ for all $z\in C$ and suppose that $F(S)= \bigcap_{n=0}^{\infty}F(S_{n})$ . Then $\{x_{n}\}$ and $\{u_{n}\}$

converge strongly to $P_{F(S)\cap EP(F)}x_{0}$ .

$Pro$of. We first show by induction that $F(S)\cap EP(F)\subset C_{n}$ for all $n\in N\cup\{0\}$ . $F(S)\cap EP(F)\subset C=C_{0}$ is
obvious. Suppose that $F(S)\cap EP(F)\subset C_{k}$ for some $k\in N\cup\{0\}$ . Then, we have, for $p\in F(S)\cap EP(F)\subset C_{k}$

$\Vert yk-p||$ $=$ $||\alpha_{k}x_{k}+(1-\alpha_{k})S_{k}u_{k}-p\Vert\leq\alpha_{k}\Vert x_{k}-p\Vert+(1-\alpha_{k})\Vert S_{k}u_{k}-p\Vert$

$=$ $\alpha_{k}\Vert x_{k}-p||+(1-\alpha k)\Vert S_{k}T_{r_{k}}x_{k}-p\Vert\leq\Vert x_{k}-p\Vert$

and hence $p\in C_{k+1}$ . This implies that $F(S)\cap EP(F)\subset C_{n}$ for all $n\in$ NU $\{0\}$ . Next, we show that $C_{n}$

is closed and convex for all $n\in N\cup\{0\}$ . It is obvious that $C_{0}=C$ is closed and convex. Suppose that $C_{k}$

is closed and convex for some $k\in$ NU $\{0\}$ . For $z\in C_{k}$ , we know that 1 $yk-z\Vert\leq||x_{k}-z||$ is equivalent to
$||yk-x_{k}\Vert^{2}+2\langle yk-x_{k}\rangle x_{k}-z\rangle\geq 0$ . So, $C_{k+1}$ is closed and convex. Then, for any $n\in N\cup\{0\},$ $C_{n}$ is closed
and convex. This implies that $\{x_{n}\}$ is well-defined. Since $x_{n}=P_{C}.x_{0}$ , we have $\langle x_{0}-x_{n},$ $x_{n}-y\rangle\geq 0$ for all
$y\in C_{n}$ . In particular, we also have

$\langle x_{0}-x_{n},$ $x_{n}-p\rangle\geq 0$ for all $p\in F(S)\cap EP(F)$ and $n\in N\cup\{0\}$ .

So, we have

$0\leq\langle x_{0}-x_{n},$ $x_{\mathfrak{n}}-p\rangle=\langle x_{0}-x_{n},$ $x_{n}-x_{0}+x_{0}-p\rangle\leq-\Vert x_{0}-x_{n}\Vert^{2}+\Vert x_{0}-x_{n}\Vert\Vert x_{0}-p\Vert$.

This implies that

$\Vert x_{0}-x_{n}||\leq||x_{0}-p\Vert$ for all $p\in F(S)\cap EP(F)$ and $n\in N\cup\{0\}$ . (3.1)

Since $x_{n+1}=P_{C_{n+1}}x_{0}\in C_{n+1}\subset C_{n}$ , we also have

$(x_{0}-x_{n},$ $x_{n}-x_{n+1}\rangle\geq 0$ . (3.2)

So, we have

$0\leq\langle x_{0}-x_{n},x_{n}-x_{n+1}\rangle=\langle x_{0}-x_{n},x_{n}-x_{0}+x_{0}-x_{n+1}\rangle\leq-||x_{0}-x_{n}||^{2}+||x_{0}-x_{n}||||x_{0}-x_{n+1}||$ .

and hence

$||x_{0}-x_{n}\Vert\leq||x_{0}-x_{n+1}||$ .

Since $\{\Vert x_{n}-x_{0}||\}$ is bounded, $\lim_{narrow\infty}\Vert x_{n}-x_{0}||$ exists. Next, we show that $||x_{n}-x_{n+1}\Vertarrow 0$ . In fact, $kom$

(3.2) we have

$||x_{n}-x_{n+1}||^{2}$ $=$ $||x_{n}-x_{0}+x_{0}-x_{n+1}\Vert^{2}=\Vert x_{n}-x_{0}\Vert^{2}+2\langle x_{n}-x_{0},x_{0}-x_{n+1})+||x_{0}-x_{n+1}||^{2}$

$=$ $\Vert x_{n}-x_{0}||^{2}+2\langle x_{n}-x_{0},$ $x_{0}-x_{n}+x_{n}-x_{n+1}\rangle+||x_{0}-x_{n+1}||^{2}$

$=$ $-||x_{n}-x_{0}\Vert^{2}+2\langle x_{n}-x_{0},x_{n}-x_{n+1}\rangle+||x_{0}-x_{n+1}||^{2}$

$\leq$ $||x_{0}-x_{n+1}\Vert^{2}-||x_{0}-x_{n}||^{2}$.
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Since $\lim_{narrow\infty}\Vert x_{n}-x_{0}\Vert$ exists, we have that $\Vert x_{n}-x_{n+1}\Vertarrow 0$. On the other hand $x_{n+1}\in C_{n+1}\subset C_{n}$ implies
that $\Vert y_{n}-x_{n+1}\Vert\leq\Vert x_{n}-x_{n+1}||arrow 0$ and then

$\Vert x_{n}-y_{n}||\leq||x_{n}-x_{n+1}||+||x_{n+1}-y_{n}||arrow 0$ . (3.3)

Further, since $\Vert y_{n}-x_{n}||=(1-\alpha_{n})\Vert S_{n}u_{n}-x_{n}\Vert$ and (i), we obtain

$\lim_{narrow\infty}||S_{n}u_{n}-x_{n}\Vert=0$ . (3.4)

For $p\in F(S)\cap EP(F)$ , we have, from Lemma 2.2,

$\Vert u_{n}-p\Vert^{2}$ $=$ $||T_{r_{\hslash}}x_{n}-T_{r_{n}}p\Vert^{2}\leq\langle T_{r_{n}}x_{n}-T_{r_{n}}p,$ $x_{n}-p\rangle=\langle u_{n}-p\rangle x_{\mathfrak{n}}-p\rangle$

$=$ $\frac{1}{2}(\Vert u_{n}-p||^{2}+\Vert x_{n}-p\Vert^{2}-||x_{n}-u_{n}\Vert^{2}\}$ ,

hence $||u_{n}-p\Vert^{2}\leq\Vert x_{n}-p\Vert^{2}-\Vert x_{n}-u_{n}\Vert^{2}$ . Therefore, by the convexity of $\Vert\cdot\Vert^{2}$ , we have

$|1y_{n}-p\Vert^{2}=\Vert\alpha_{n}(x_{n}-p)+(1-\alpha_{n})(S_{n}u_{n}-p)\Vert^{2}\leq\alpha_{n}\Vert x_{n}-p\Vert^{2}+(1-\alpha_{n})||S_{n}u_{n}-p||^{2}$

$=\leq\alpha_{n}||x_{n}-p||^{2}+(1-\alpha_{n})||u_{n}-p||^{2}\leq\alpha_{n}||x_{n}-p\Vert^{2}+(1-\alpha_{n})\{||x_{n}-p||^{2}-||x_{n}-u_{n}\Vert^{2}\}||x_{n}-p||^{2}-(1-\alpha_{n})||x_{n}-u_{n}||^{2}$

,

and then

$||x_{n}-u_{n} \Vert^{2}\leq\frac{1}{1-\alpha_{n}}(||x_{n}-p||^{2}-\Vert y_{n}-p||^{2})\leq\frac{1}{1-\alpha_{n}}\Vert x_{n}-y_{n}||(\Vert x_{n}-p\Vert+||y_{n}-p||)$.

By (i) and (3.3), we obtain

$\lim_{narrow\infty}||x_{n}-u_{n}\Vert=0$ . (3.5)

From (3.4) and (3.5), we obtain also

$\Vert u_{n}-S_{n}u_{n}||=\Vert u_{n}-x_{n}||+\Vert x_{n}-S_{n}u_{n}||arrow 0$ . (3.6)

And then

$||u_{n}-Su_{n} \Vert\leq||u_{n}-S_{n}u_{n}||+||S_{n}u_{n}-Su_{n}||\leq||u_{n}-S_{n}u_{n}||+\sup\{\Vert S_{n}z-Sz|| : z\in\{u_{n}\}\}arrow 0$ .

As $\{x_{n}\}$ is bounded, there exists a subsequenoe $\{x_{n}.\}$ of $\{x_{n}\}$ such that $x_{n}$. $arrow w$ . From (3.5), we obtain
also that $u_{n_{i}}arrow w$ . Since $\{u_{n_{i}}\}\subset C$ and $C$ is closed and convex, we obtain $w\in C$ . We shall show $w\in EP(F)$ .
By $u_{n}=T_{r_{n}}x_{n}$ , we have

$F(u_{n},y)+ \frac{1}{r_{n}}\langle y-u_{n},$ $u_{n}-x_{n}\rangle\geq 0$ , for all $y\in C$ .

From the monotonicity of $F$ , we get

$\frac{1}{r_{n}}\langle y-u_{n},$ $u_{n}-x_{n})\geq F(y, u_{n})$ , for all $y\in C$ ;

hence,

$\langle y-u_{n}.\cdot,$ $\frac{u_{n_{*}}-x_{n_{\{}}}{r_{n}}\rangle\geq F(y, u_{n}:)$ , for all $y\in C$ .
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From (ii), (3.5) and condition $(A4)$ , we have $0\geq F(y, w)$ , for all $y\in C$ . Let $y\in C$ and set $x_{t}=ty+(1-t)w$ ,
for $t\in(O, 1]$ . Then, we have

$0=F(x_{t}, x_{t})\leq tF(x_{t}, y)+(1-t)F(x_{t}, w)\leq tF(x_{t}, y)$ .

or $F(x_{t}, y)\geq 0$ . Letting $t\downarrow 0$ and using $(A3)$ , we get

$F(w, y)\geq 0$ for all $y\in C$

and hence $w\in EP(F)$ . We next show that $w\in F(S)$ . Assume $w\not\in F(S)$ . Then, bom the Opial’s condition
and (3.6), we have

$\lim\inf|arrow\infty\Vert u_{n_{\}}-w\Vert$ $<$ $\lim\inf|arrow\infty||u_{n_{i}}-Sw\Vert\leq\lim\infarrow\infty\{||u_{n_{1}}-Su_{n_{i}}\Vert+||Su_{n_{i}}-Sw||\}$

$=$ $hm\inf_{arrow\infty}\{||u_{n_{\ell}}-Su_{n_{i}}||+\lim_{marrow\infty}\Vert S_{m}u_{n_{i}}-S_{m}w||\}\leq\lim\inf|arrow\infty||u_{n}$
$,$

$-w\Vert$ .

This is a contradiction. So, we get $w\in F(S)$ . Therefore, we obtain $w\in F(S)\cap EP(F)$ . Let $z=P_{F(S)\cap EP(F)}x_{0}$ ,
by (3.1) we observe that

$\Vert x_{0}-z\Vert\leq||x_{0}-w\Vert\leq\lim\inf|arrow\infty\Vert x_{0}-x_{n_{2}}||\leq\lim_{1arrow}\sup_{\infty}\Vert x_{0}-x_{n}.\Vert\leq\Vert x_{0}-z\Vert$ ,

hence, $\lim_{narrow\infty}||x_{0}-x_{n}||=||x_{0}-w||=||x_{0}-z\Vert$ . Since $H$ is a Hilbert space, we obtain $x_{n_{l}}arrow w=z$ .
Sinoe $z=P_{F(S)\cap EP(F)}x_{0}$ , we can conclude that $x_{n}arrow P_{F(S)\cap EP(F)}x_{0}$ . Moreover, $hom(3.5)$ we also have
$u_{n}arrow P_{F(S)\cap EP(F)^{X}0}$ . $\blacksquare$

Setting $S_{n}=S$ in Theorem 3.1, we have the following result.

Corollary 3.2. Let $C$ be a nonempty closed convex subset of a real Hilbert space H. Let $F$ be a bifunction from
$CxC$ into $\mathbb{R}$ satisfying $(A1)-(A4)$ . Let $S$ be a $none\eta ansive$ mapping from $C$ into $H$ such that $F(S)\cap EP(F)\neq$

$\emptyset$ . Let $\{x_{n}\}$ and $\{u_{n}\}$ be sequences generated by

$\{\begin{array}{l}x_{0}\in H, and C_{0}=C,u_{n}\in C such that F(u_{n}, y)+\frac{1}{r_{n}}\langle y-u_{n},u_{n}-x_{n})\geq0, \forall y\in C,y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})Su_{n},C_{n+1}=\{z\in C_{n}:||y_{n}-z||\leq||x_{n}-z\Vert\},x_{n+1}=P_{C_{n+1}}x_{0}, n=0,1,2\ldots,\end{array}$

with the following restnctions:

(i) $0\leq\alpha_{n}<1$ for all $n\in N\cup\{0\}$ and $\lim\sup_{narrow\infty}\alpha_{n}<1$ ,

(ii) $r_{n}>0$ for all $n\in N\cup\{0\}$ and $\lim\inf_{narrow\infty}r_{n}>0$ .

Then $\{x_{n}\}$ and $\{u_{\mathfrak{n}}\}$ converge strongly to $P_{F(S)\cap EP(F)}x_{0}$ .

As direct consequences of corollary 3.2, we can obtain two corollaries.
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Corollary 3.3. Let $C$ be a nonempty closed convex subset of H. Let $F$ be a bifunction from $CxC$ to $\mathbb{R}$

satisfying $(A1)-(A4)$ such that $EP(F)\neq\emptyset$ . Let $\{x_{n}\}$ and $\{u_{n}\}$ be sequences generated by

$\{\begin{array}{l}x_{0}\in H, and C_{0}=C,u_{n}\in Csuch that F(u_{n},y)+\frac{1}{r_{n}}\langle y-u_{n}, u_{n}-x_{n}\rangle\geq 0, \forall y\in C,C_{n+1}=\{z\in C_{n}: Iu_{n}-z||\leq\Vert x_{n}-z||\},x_{n+1}=P_{C_{n+1}}x_{0}, n=0,1,2\ldots,\end{array}$

with $r_{n}>0$ for $dln\in N\cup\{0\}$ and lim $infnarrow\infty^{\Gamma}n>0$ . Then $\{x_{n}\}$ and $\{u_{n}\}$ converge strongly to $P_{EP(F)}x_{0}$ .

Proof. Putting $S=I$ and $a_{n}=0$ in Theorem 3.1. $\blacksquare$

Corollary 3.4. Let $C$ be a nonempty closed convex subset of $H$ and let $S$ be a nonexpansive mapping from $C$

into $H$ such that $F(S)\neq\emptyset$ . Let $\{x_{n}\}$ and $\{u_{n}\}$ be sequences generated by

$\{\begin{array}{l}x_{0}\in H, and C_{0}=C,u_{n}\in C such that \langle y-u_{n}, u_{n}-x_{n}\rangle\geq 0, \forall y\in C,y_{n}=\alpha_{n}x_{n}+(1-\alpha_{n})Su_{n},C_{n+1}=\{z\in C_{n}:\Vert y_{n}-z||\leq\Vert x_{n}-z||\},x_{n+1}=P_{C_{n+1}}x_{0}, n=0,1,2\ldots,\end{array}$

with $0\leq\alpha_{n}<1$ for all $n\in N\cup\{0\}$ and $\lim\sup.arrow\infty\alpha_{n}<1$ . Then $\{x_{n}\}$ and $\{u_{n}\}\omega nverge$ strongly to $P_{F(S)}x_{0}$ .

Proof. Putting $F(x,y)=0$ for all $x,$ $y\in C$ and $r_{n}=1$ in Theorem 3.1. $\blacksquare$
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