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A strong convergence theorem by hybrid method for a
countable family of nonexpansive mappings and an
equilibrium problem
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Abstract

In this paper, we introduce an iterative scheme by hybrid method for finding a common element of the
set of fixed points of a countable family of nonexpansive mappings and the set of solutions of an equilibrium
problem in a Hilbert space. We show that the iterative sequence converges strongly to a common element
of the above two sets under some parameters controlling conditions.
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1 Introduction

Let C be a closed convex subset of a real Hilbert space H and let Po be the metric projection of H onto C.
Let F be a bifunction from C x C into R, where R is the set of real numbers. The equilibrium problem for
F:C xC — Ris to find x € C such that

F(z,y) 20 forall yeC. (1.1)

The set of solution of (1.1) is denoted by EP(F). Numerous problems in physics, optimization, and economics
reduce to find a solution of (1.1). Some methods have been proposed to solve the equilibrium problem (see; (2, 4,
11, 18]). In 2005, Combettes and Hirstoaga (3] introduced an iterative scheme of finding the best approximation
to the initial data when E'P(F) is nonempty and they also proved a strong convergence theorem. A mapping
S : C — C is said to be nonezpansive if

ISz — Syll < llz - vl

for all z,y € C. We denote by F(S) the set of fixed points of S. If C is bounded closed convex and S is a
nonexpansive mapping from C into itself, then F(S) is nonempty (see; (8]). We write z, — z (z, — z, resp.)
if {z,} converges (weakly, resp.) to z.

In 1953, Mann [9] introduced the iteration as follows: a sequence {z,} defined by

Tnil = QpTp + (1 - an)SIn (1.2)

*Corresponding author. Tel.:+66 55261000 ext. 3102; fax:+66 55261025.
Email addresses: somyotp@nu.ac.th(Somyot Plubtieng) and g47060127@nu.ac.th (Kasamsuk Ungchittrakool).
tSupported by The Royal Golden Jubilee Project grant No. PHD/0086/2547, Thailand.



43

S. Plubtieng and K. Ungchittrakool

where the initial guess element zo € C is arbitrary and {a,} is a real sequence in [0,1]. Mann iteration has
been extensively investigated for nonexpansive mappings. One of the fundamental convergence results is proved
by Reich [14]. In an infinite-dimensional Hilbert space, Mann iteration can conclude only weak convergence [5].
Attempts to modify the Mann iteration method (1.2) so that strong convergence is guasranteed have recently
been made. Nakajo and Takahashi [12] proposed the following modification of Mann iteration method (1.2):

zg € C is arbitrary,

Yn = nZp + (1 — an)Szy,

Cn={2€C:|lyn —z|| < |lzn — 2|}, (1.3)
Qn={z€C: (zn— 2,29 — zs) =0},

Tny1 = Po,n@azo, n=0,1,2...,

For finding an element of EP(F)N F(S), Tada and Takahashi [20] introduced the following iterative scheme
by the hybrid method in a Hilbert space: o = z € H and let

f 1

un € C such that F(un,y) + ;—(y —Up,Up —Tp) >0, Vyel,
n

wyp = (1 = ap)zy + anSuy,

Con={2€H:|lwp,—z| <llzn — 2},

Qn={2€C:{(zn— 2,20 — ) = 0},

\ Zn+1 = Po,n@, %0, n=0,1,2...,

for every n € N, where {a,} is a sequence in [0, 1] where {a,} C [a,b] for some a,b € (0,1) and {r,} C (0, c0)
satisfies liminf,,.co rn, > 0. Further, they proved {z,} and {u,} converge strongly to z € F(S)NEP(F), where
z = Pp(s)nEP(F)T1-

Recently, Takahashi et al. [17] proved a strong convergence theorem by the hybrid method for a family of
nonexpansive mappings in Hilbert spaces: xo € H, C; = C and 71 = Pg,z¢ and let

Yn = QpTn + (1 - a’n)Tnxru
Crnt1={2€Cp: llyn — 2|l < llTn — 2|},
Tn+1 = Po,,, 20, mEN,

where 0 € an € a <1 foralln €N and {T,,} a sequence of nonexpansive mappings of C into itself such that
N1 F(Tn) = @ and satisfy some appropriate conditions. Then, {x,} converges strongly to Pnx=_| r(T,)Zo-

In this paper, motivated and inspired by the above results, we introduce a new following iterative scheme:

'wQEH, and Co=C,

1
up, € C such that F(un,y) + ;—(y —Up,Un —Zp) 20, Vyel,
n

Yn = QnTn + (1 — Qn)Snln,
Cnv1={2€Cyp:llyn — 2|l < |lzn — 2|},
\zn+1=PCn+1z0’ n=0,1,2...,

for finding a common element of the set of fixed points of a countable family of nonexpansive mappings and
the set of solutions of an equilibrium problem. Moreover, we show that {z,} and {un} converge strongly to
Pp=_, F(8,)nEP(F)Z0 by the hybrid method in mathematical programming.
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2 Preliminaries

Let H be a real Hilbert space. Then

e = yli* = lle® = {lyll* - 2(z — v, y) 2.1
and

Az + (1 = Nglf® = Mlzl® + (1 = Myl = A2 = N)llz -y (2.2)

for all z,y € H and X € [0,1]. It is also known that H satisfies the Opial’s condition [13], that is, for any
sequence {z,} with z, — z, the inequality

lim inf [|zn ~ 2|| < liminf [lz, — y||

holds for every y € H with y # z. Hilbert space H, satisfies the Kadec-Klee property [6, 19}, that is, for any
sequence {z,} with z, — z and ||z,|| — ||z|| together imply ||z, — z|| — 0.

Let C be a closed convex subset of H. For every point z € H, there exists a unique nearest point in C,
denoted by Pcx, such that

lz — Pez|| < ||z —y|| forallyeC.

P is called the metric projection of H onto C. It is well known that P¢ is a nonexpansive mapping of H onto
C and satisfies

(x — y, Pz — Poy) > ||Poz — Poyll? (2.3)
for every =,y € H. Moreover, Poz is characterized by the following properties: Pocz € C and

(z — Pcz,y — Pcz) <0, (2.4)

e - ylI* 2 llz - Pez||® + |ly — Poz|l? (2.5)
foralz e HyeC.

For solving the equilibrium problem, let us assume that the bifunction F satisfies the following conditions

(see [2]):
(Al) F(z,z)=0forallz € C;
(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for any z,y € C;
(A3) F is upper-hemicontinuous, i.e., for each z,y,2 € C,

limsup F(tz + (1 — t)z,y) < F(z,y);
t—0+

{Ad) F(z,-) is convex and lower semicontinuous for each z € C.

The following lemma appears implicitly in [2]

Lemma 2.1. [2] Let C be a nonempty closed convez subset of H and let F be a bifunction of C x C into R
satisfying (A1)-(A4). Let v > 0 and x € H. Then, there erists 2 € C such that

F(z,y) + %(y~z,z—z) >0 forallyeC.
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The following lemma was also given in [3].

Lemma 2.2. [3] Assume that F : C x C — R satisfies (A1)-(A4). Forr > 0 and x € H, define a mapping
T, : H — C as follows:

To@) = {z € C: F(z,9) + +(y ~ 2,2 ~2) 2 0,7y € C}
for all z € H. Then, the following hold:

1. T, 1is single- valued;

2. Ty is firmly nonezpansive,i.e..for any x,y € H, |Trz — Try||? < (Trzx — Try,z — ¥);
3. F(T,) = EP(F);

4. EP(F) is closed and conver.

Let C be a subset of a Banach space E and let {S,} be a family of mappings from C into E. For a subset
B of C, we say that ({S,.}, B) satisfies condition AKTT if

o
> sup{|Sn12 ~ Suzll : z € B} < .
n=1
Aoyama et al. {1, Lemma 3.2}, prove the following result which is very useful in our main result.

Lemma 2.3. Let C be a nonempty closed subset of a Banach space E and let {S,} be a sequence of mappings
from C into E. Let B be a subset of C with ({Sy,}, B) satisfies condition AKTT, then there erists a mapping
S : B — E such that

Sy=nlggoSny Vy€ B

and limp_.oc sup {||Snz — Sz|| : z € B} = 0.

3 Main result

In this section, we show a strong convergence theorem which solves the problem of finding a common element
of the set of fixed points of a nonexpansive mapping and the set of solutions of an equilibrium problem in a
Hilbert space.

Theorem 3.1. Let C be a nonempty closed convez subset of a real Hilbert space H. Let F be a bifunction from
C x C into R satisfying (A1) — (A4). Let {S,} be a sequence of nonezpansive mappings from C into H such
that Nwo F(Sn) NEP(F) # @. Let {zn} and {un} be sequences generated by

’zoGH, and Cyp=C,
1
up € C such that F(un,y) + ;—-(y — Up,Un —Tpn) 20, VyeC,

Yn = QnZn + (1 — an)Sntn,
Crnr1={2€C:|lyn — 2| < llzn ~ 2|},
;xn+1=PC,.+1307 n=0,12...,

with the following restrictions:
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(i) 0 € an <1 for alln € NU {0} and limsup,,_,, an <1,
(i) T >0 for alln € NU {0} and liminf, o7y > 0.

Let 302 o 8up {||Sn+12 — Snz| : 2 € B} < 0o for any bounded subset B of C and S be a mapping from C into
H defined by Sz = lim,—oc Snz for all z € C and suppose that F(S) = ;oo F(Sn). Then {z,.} and {un}
converge strongly to Pr(s)nep(F)To.

Proof. We first show by induction that F(S)NEP(F) C Cy, for alln € NU{0}. F(S)YNEP(F)CC =Cy is
obvious. Suppose that F(S) N EP(F) C Ci for some k € NU {0}. Then, we have, for p € F(S)NEP(F) C Cyi

llye = pll = lloxzk + (1 — ar)Skux — pl| < akllzr — pll + (1 — ax)||Skux — pl|
akllzk — pll + (1 — ar)|SkTr zk — pl| < ||z — Pl

i

and hence p € Ci4;. This implies that F(S) N EP(F) C C, for all n € NU {0}. Next, we show that C,
is closed and convex for all n € NU {0}. It is obvious that Co = C is closed and convex. Suppose that Cji
is closed and convex for some k € NU {0}. For z € Ci, we know that {lyx — z|| € ||zx — 2| is equivalent to
lye — zkl|® + 2 {yx — Tk, Tk — 2) > 0. So, Ciy41 is closed and convex. Then, for any n € NU {0}, C, is closed
and convex. This implies that {z,} is well-defined. Since z, = Pc_ zo, we have (zg — Zn,Z, —y) 2 0 for all
y € Cy,. In particular, we also have

{(To — Tp,zn —p) 20 forall pe F(S)N EP(F) and n € NU{0}.
So, we have

0 < (%o — Tny Zn — P) = (To — Tn, Tn — To + Zo — P) < — |20 — Za||* + [|z0 — Zalll|zo — plI.
This implies that

lzo — znll € |lzo —pl| for all p€ F(S)NEP(F) and n € NU {0}. 3.1)
Since Tn4+1 = Pc,,,Zo € Cny1 C Cp, we also have

(o — Ty, Tpn — Tny1) = 0. (3.2)
So, we have

0 < (0 — &y Bn = ntt) = (@0 = Ty @n = T0 + T0 = Tns1) < —ll70 = a1 + 150 = Tallizo — Tarall
and hence

lzo — zall < llzo ~ Tn4all-

Since {||zn — zo||} is bounded, lim, o {|Tn — zo|| exists. Next, we show that ||z, — Z,+1]| — 0. In fact, from
(3.2) we have

lZn = Tns1ll? lzn — 2o + Zo — Tn41ll? = l|Zn — ol + 2 (zn — To, To — Tn+1) + lITo — Tnrll®

lZn — Zol|? + 2 (Tn — T0y Zo = T + Tn — Tns1) + [[T0 = Tn41]|?

~|lzn — 270“2 +2(ZTn — Z0,Tn — Tn+1) + |ITo — zn+1”2

VAN

llxo ~ ZTn4+1 “2 - llzo — zn”2~
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Since limp oo ||Tn — Zo|| exists, we have that ||z, — Zn+1]| — 0. On the other hand zp41 € Cpt1 C Cyp implies
that |lyn — Tn+1ll € llzn — ZTns1l] — 0 and then

lzn = ynll < llTn — Tatill + [Tns1 — ynll — O (3.3)
Further, since ||y, — Zn|| = (1 — an)||Sntn — 2| and (3), we obtain
nll‘ngo {|Sntn — znl| = 0. (3.4)

For p € F(S) N EP(F), we have, from Lemma 2.2,

”Trnmﬂ - T’np”2 < <Trnzn e Tr,-.pv Tn — P) = (un =Dy Tn — P)
1
= 2 {““n —p|[2 + flTy — P“2 ~ ||zn ~ un(l2} )

llun — pIi?

hence |lun — p||? < ||Zn — p||?> = |l&n — un||2. Therefore, by the convexity of || - ||2, we have

llyn = pII? = lan(zn —p) + (1 = 0n)(Sntn — P)|I? < enllzn — plI2 + (1 — @) [|Saun — pl|?
< anllzn - P”2 + (1 - an)llun — P“2 < anllzn — P“2 + (1 —an) {“wn "9”2 = ||zn - u,,”2}

= |lzn— IJ”2 - (1~ an)llzn — “n”2’

and then

ln = wnll® < 7= (I2n = Bl = ltm = PI) < 7=l — vl (12 = Pl + 1 = PI) -
By (i) and (3.3), we obtain

nanéo lzn — un]| = 0. (3.5)
From (3.4) and (3.5), we obtain also

lun = Sntinll = |lun — zn|| + lTn ~ Spunl] — 0. (3.6)

And then

lun = Sunll € l[un = Sntn|l + ||Sntin — Su,|l < tn — Sptnll + sup{||Spz — Sz|| : z € {us}} — 0.

As {z.} is bounded, there exists a subsequence {z,,} of {z,} such that z,, = w. From (3.5), we obtain
also that u,, — w. Since {u,,} C C and C is closed and convex, we obtain w € C. We shall show w € EP(F).
By up =Ty, zn, we have

1
F(un,y) + — (Y = Un,un —Tp) 20, forall yeC.
n
From the monotonicity of F', we get
1
=Y~ Un,Un = 2Zn) > Fy,un), forall yeC;
n

hence,

<y — Un,, E"—l;:—%> 2 F(y,un,), forall yeC.
ng
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From (ii), (3.5) and condition (A4), we have 0 > F(y,w), for ally € C. Let y € C and set z, =ty + (1 — t)w,
for t € (0,1]. Then, we have

0 = F(z¢,2¢) < tF(z4,y) + (1 — ) F(ze, w) < tF(ze,9).
or F(z¢,y) 2 0. Letting t | 0 and using (A3), we get
F(w,y) 20 forall yeC

and hence w € EP(F). We next show that w € F(S). Assume w ¢ F(S). Then, from the Opial’s condition
and (3.6), we have

liminf ||un, — w|| < liminf ||u,, — Sw|| < liminf {Jlu,, — Sug, || + |Sun, — Sw|}
3$—+00 1—OC 3—00

= liminf {|lun, — Sun,| + lim_[Smtn, — Smwll} < lim inf [|un, - wll.

This is a contradiction. So, we get w € F(S). Therefore, we obtain w € F(S)NEP(F). Let z = Pr(s)ngp(F)Zo,
by (3.1) we observe that

lzo — zll < llwo — wil < liminf ||xo — p,|| < limsup |lxo — Zp, || < [l — 2|f,
t—00 i—o00

hence, lim,—oo |z — Zn,l] = |lzo — w|| = llzo — 2||. Since H is a Hilbert space, we obtain =, — w = z.
Since z = Pp(s)neP(r)Zo, We can conclude that z, — Pr(s)nep(r)To. Moreover, from (3.5) we also have
Uy, — Pp(s)nEP(F)T0. .

Setting S, = S in Theorem 3.1, we have the following result.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from
C x C into R satisfying (A1) —(A4). Let S be a nonezpansive mapping from C into H such that F(S)NEP(F) #
@. Let {z,} and {un} be sequences generated by

'ZQEH, and Cy=C,

1
un € C such that F(un,y) + T—(y ~Up,Un —ZTn) 20, VyeC,
n

Yn = QnZp + (1 - an)Sum
Cn+1 = {2 € Cyp: |lyn — 2|l < llzn — 2|},
Tpn+1 = Pc, 20, n=0,1,2...,

with the following restrictions: .

(i) 0 < an <1 for alln € NU {0} and limsup,,_, ., on <1,

(ii) Tn > 0 for all n € NU {0} and liminf, oo mn > 0.
Then {z.} and {u,} converge strongly to Pr(synep(F)Zo-

As direct consequences of corollary 3.2 , we can obtain two corollaries.
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Corollary 3.3. Let C be a nonempty closed convex subset of H. Let F be a bifunction from C x C to R
satisfying (A1) — (A4) such that EP(F) # @. Let {zn} and {un} be sequences generated by
29 € H, and Cy=C,

1
uy, € C such that F(u,,y) + ;r—(y — Uy, Up —Ty) 20, VyeCl,

Cns1={2 € Cp : |lun — 2| < |lzn — 2},
Znt1 = Pe, %0, n=0,1,2...,

with r, > 0 for alln € NU {0} and liminf, .o T > 0. Then {z,} and {u,} converge strongly to Pgp(r)zo.
Proof. Putting § = I and @, = 0 in Theorem 3.1. ‘ n
Corollary 3.4. Let C be a nonempty closed conver subset of H and let S be a nonexpansive mapping from C
into H such that F(S) # @. Let {z,,} and {u,} be sequences generated by

z9 € H, and Co=C,

Uy, € C such that (y — un,u, —z,) 20, VyeC,

Yn = QnTn + (1 —~ Q) SUy,

Cns1={2€Cpn:|lyn — 2|l < |lzn — 2ll},

Tny1 = Pg, 79, n=0,1,2...,

with 0 € ap, < 1 for alln € NU{0} and limsup,,_,, an < 1. Then {z,} and {un} converge strongly to Pr(s)To.
Proof. Putting F(z,y) =0 for all z,y € C and 7, = 1 in Theorem 3.1. n
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