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1 lntroduction
Let $X$ be a set and $f$ : $XxXarrow \mathbb{R}$ . The equilibrium problem for $f$ is to find a

point $x\in X$ such that
$f(x, y)\geq 0$ for all $y\in X$ ,

and the set of its solutions is denoted by $EP(f)$ . It is known that the equilibrium
problem includes many kinds of important problems in various fields of applied math-
ematics such as minimization problems, saddle point problems, Nash equilibria in
noncooperative games, fixed point problems, and others; see [4].

The existence of the solution for equilibrium problem has been discussed; for in-
stance, see Fan [7], Takahashi [16], Blum and Oettli [4], Iusem and Sosa [11], and
others. On the other hand, various types of approximating the solution has been
proposed; see Flam and Antipin [8], Combettes and Hirstaga [6], Iiduka and Taka-
hashi [10], Tada and Takahashi [15], and others.

In this paper, we deal with a sequence of functions as an approximate of the function
appearing in the original equilibrium problem. We assume convergence of a sequence
of corresponding sets of solutions of equilibrium problems in the sense of Mosco.
We obtain weak and strong convergence of a sequence of resolvents to a generalized
projection onto the original set of solutions under certain conditions. Our main results
are a generalized version of the results discussed in [12].

2 Preliminaries
Throughout this paper, we always deal with a real Banach space and denote it by

$E$ . We denote its norm by $\Vert\cdot\Vert$ , its dual space by $E^{*}$ , and for $x^{*}\in E^{*}$ , the value of $x^{*}$
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at $x\in E$ by $\langle x,$ $x^{*}\rangle$ . The norm of $E^{*}$ is also denoted by $\Vert\cdot\Vert$ .
A Banach space $E$ is said to be strictly convex if $\Vert x+y\Vert/2<1$ for every $x,$ $y\in E$

with $\Vert x\Vert=\Vert y\Vert=1$ and $x\neq y$ . The norm of $E$ is said to be G\^ateaux differentiable
if for each $x,$ $y\in E$ satisfying that $\Vert x\Vert=\Vert y\Vert=1$ , it holds that $(\Vert x+ty\Vert-\Vert x\Vert)/t$

converges as $tarrow 0$ , and in this case $E$ is said to be smooth. $E$ is said to have
the Kadec-Klee property if a weakly convergent sequence $\{x_{n}\}$ of $E$ with a limit $x_{0}$

converges strongly to $x_{0}$ whenever $\{\Vert x_{n}\Vert\}$ converges to 11 $x_{0}\Vert$ . For more details, see
[9, 17].

The normalized duality mapping $J:E\supset E^{*}$ is defined by

$Jx=\{x^{*}\in E^{*}:\langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}$

for $x\in E$ . We know that $J$ is single-valued if $E$ is smooth. In this case, $J$ : $Earrow E^{*}$

is norm-to-weak* continuous. Moreover, if $E$ is reflexive and strictly convex, then $J$

is a bijection from $E$ onto $E^{*}$ .
Let $\{C_{n}\}$ be a sequence of nonempty closed convex subsets of a reflexive Banach

space $E$ . We define two subsets $s- Li_{n}C_{n}$ and $w- Ls_{n}C_{n}$ as follows: $x\in s- Li_{n}C_{n}$ if
and only if there exists $\{x_{n}\}\subset E$ such that $\{x_{n}\}$ converges strongly to $x$ and that
$x_{n}\in C_{n}$ for all $n\in \mathbb{N}$ . Similarly, $y\in w- Ls_{n}C_{n}$ if and only if there exist a subsequence
$\{C_{n_{i}}\}$ of $\{C_{n}\}$ and a sequence $\{y_{i}\}\subset E$ such that $\{y_{i}\}$ converges weakly to $y$ and
that $yi\in C_{n_{i}}$ for all $n\in \mathbb{N}$ . We define the Mosco convergence [13] of $\{C_{n}\}$ as follows:
If $C_{0}$ satisfies that

$C_{0}=$ s-Li $C_{n}$

n
$=$ w-Ls $C_{n}$

n’

it is said that $\{C_{n}\}$ converges to $C_{0}$ in the sense of Mosco and we write $C_{0}=$

$M-\lim_{narrow\infty}C_{n}$ . For more details, see [3].
Let $C$ be a nonempty closed convex subset of a smooth, reflexive and strictly convex

Banach space $E$ . We consider a function $\phi:ExEarrow \mathbb{R}$ defined as

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$

for $x,$ $y\in E$ . It is easy to show that $\phi(x, y)\geq 0$ for all $x,$ $y\in E$ . From strict convexity
of $E$ , the function $\phi(\cdot, y)$ is a strictly convex function for every $y\in E$ . Therefore,
for arbitrarily fixed $y\in E$ , a function $\phi(\cdot, y)|c$ has a unique minimizer, say $x_{y}\in C$ .
Using this point, we define the generalized projection $\Pi_{C}$ such that $\Pi_{C}y=x_{y}$ for an
$y\in E$ . Notice that if $E$ is a Hilbert space, $\Pi_{C}$ coincides with the metric projection
onto $C$ since $\phi(x, y)=\Vert x-y\Vert^{2}$ for all $x,$ $y\in E$ in this case. For more details, see, for
example, $[$ 1, 5, 14$]$ .

3 Convergence of resolvents for a sequence of functions
Let $E$ be a real Banach space and $C$ a nonempty convex subset of $E$ . We assume

that a function $f$ : $C\cross Carrow \mathbb{R}$ satisfies the following conditions:
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(El) $f(x, x)=0$ for every $x\in C$ ;
(E2) $f(x, y)+f(y, x)\leq 0$ for every $x,$ $y\in C$ ;
(E3) $f(x, \cdot)$ is convex and lower semicontinuous for every $x\in C$ .
In [12], we assume the following condition which is called upper hemicontinuity of

$f$ with respect to the first variable;

(E4) $\lim\sup_{t\downarrow 0}f(ty+(1-t)x, y)\leq f(x, y)$ for every $x,$ $y\in C$ .
We shall assume the maximal monotonicity [4, 2] of $f$ instead of (E4) as follows:

(E5) for each $x\in C$ and $x^{*}\in E^{*}$ , if $\langle z-x,$ $x^{*}\rangle-f(z, x)\geq 0$ for all $z\in C$ , then
$\langle y-x,$ $x^{*}\rangle+f(x, y)\geq 0$ for all $y\in C$ .

Theorem 1 (Aoyama-Kimura-Takahashi [2]). Let $E$ be a $oeflex\prime ive$ , smooth, and
strictly convex Banach space and $C$ a nonempty closed convex subset of E. Let $f$ :
$CxCarrow \mathbb{R}$ satisfy the conditions (El), (E2), (E3), and (E5). Then for every $x\in E$ ,
there exists a unique $u\in C$ such that

$0\leq f(u, y)+\langle y-u,$ $Ju-Jx\rangle$

for all $y\in C$ .
This theorem guarantees that a resolvent $T_{rf}$ for $f:C\cross Carrow \mathbb{R}$ and $r>0$ defined

by
$T_{rf}:E\ni x\mapsto\{u\in C : 0\leq rf(u, y)+\langle y-u, Ju-Jx\rangle, \forall y\in C\}\subset C$

is well defined as a single-valued mappinig of $E$ into $C$ . Namely, for every $x\in E,$ $T_{rf}x$

is a unique point of $C$ which satisfies that

$0\leq rf(T_{rf}x, y)+\langle y-T_{rf}x,$ $JT_{rf}x-Jx\rangle$

for all $y\in C$ .
On the other hand, it is easy to see that if $f$ satisfies the conditions (El), (E2),

(E3), and (E4), then $f$ also satisfies the condition (E5). Indeed, let $x\in C,$ $x^{*}\in E^{*}$ ,
and suppose that for $f$ satisfying (E5), $\langle z-x,$ $x^{*}\rangle-f(z, x)\geq 0$ for all $z\in C$ . Then,
for arbitrarily chosen $y\in C$ and $0<t<1$ , it follows that

$0=f(tx+(1-t)y,tx+(1-t)y)$
$\leq tf(tx+(1-t)y, x)+(1-t)f(tx+(1-t)y, y)$

$\leq t\langle tx+(1-t)y-x,$ $x^{*}\rangle+(1-t)f(tx+(1-t)y, y)$

$=t(1-t)\langle y-x,$ $x^{*}\rangle+(1-t)f(tx+(1-t)y,y)$ ,

and thus $t\langle y-x,$ $x^{*}\rangle+f(tx+(1-t)y, y)\geq 0$ . Tending $tarrow 1$ , we have that

$\langle y-x,$ $x^{*}\rangle+f(x, y)\geq 0$
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by using (E4). Hence $f$ satisfies (E5).
Therefore, we obtain the following results, which generalize the results shown by

the author in [12]. The proofs are the same as in [12].

Theorem 2. Let $E$ be a reflexive, smooth, and strictly convex Banach space and $C$

a nonempty closed convex subset of E. Let $\{r_{n}\}$ be a positive real sequence such that
$\lim_{narrow\infty}r_{n}=\infty$ . Let $\{f_{n}\}$ be a sequence of functions of $CxC$ into $\mathbb{R}$ satisfying the
conditions (El), (E2), (E3), and (E5). Let $C_{0}$ be a nonempty closed convex subset of
$C$ satisfying the following conditions:

(i) $C_{0}\subset s- Li_{n}EP(f_{n})$ ;
(ii) $w- Ls_{n}EP(f_{n}+g_{u_{n}^{r}})\subset C_{0}$ for every $\{u_{n}^{*}\}\subset E^{*}$ converging strongly to $0$ ,

where $g_{u}*:CxCarrow \mathbb{R}$ is defined by $g_{u^{r}}(x, y)=\langle y-x,$ $u^{*}\rangle$ for $x,$ $y\in C.$ Then, $a$

sequence of resolvents $\{T_{r_{n}f_{n}}x\}$ converges weakly to $\Pi_{C_{0}}x\in C_{0}$ for every $x\in C$ .
Theorem 3. Let $E$ be a reflexive, smooth, and strictly convex Banach space having
the Kadec-Klee property. Let $C,$ $\{r_{n}\}_{f}\{f_{n}\}$ be the same as Theorem 2. Then, $a$

sequence of resolvents $\{T_{r_{n}f_{n}}x\}$ converges strongly to $\Pi_{C_{0}}x\in C_{0}$ for every $x\in C$ .
Letting $f_{n}=f$ for an $n\in \mathbb{N}$ , we deduce the following corollary.

Corollary 1. Let $E$ be a $re\sqrt exive$, smooth, and strictly convex Banach space and $C$

a nonempty closed convex subset of E. Let $\{r_{n}\}$ be a positive real sequence such that
$\lim_{narrow\infty}r_{n}=\infty$ . Let $f$ be a function of $CxC$ into $\mathbb{R}$ satisfying the conditions (El),
(E2), (E3), and (E5). Then, a sequence of resolvents $\{T_{r_{n}f}x\}$ converges weakly to
$\Pi_{EP(f)}x\in EP(f)$ for every $x\in C$ . Moreover, if $E$ has the Kadec-Klee property, then
$\{T_{r_{n}f}x\}$ converges strongly to $\Pi_{EP(f)}x\in EP(f)$ for every $x\in C$ .
Proof. Let $f_{n}=f$ for all $n\in \mathbb{N}$ and $C_{0}=EP(f)$ . Then, it is obvious that the condi-
tion (i) in Theorem 2 is satisfied. For (ii), Let $\{u_{n}^{*}\}$ be a sequence of $E^{*}$ converging
strongly to $0$ and $v\in w- Ls_{n}EP(f+g_{u_{n}^{*}})$ . Then, there exist a subsequence $\{n_{i}\}$ of $\mathbb{N}$

and a sequence $\{v_{i}\}\subset E$ such that $v_{i}\in EP(f+g_{u_{n_{i}}^{*}})$ and that $\{v_{i}\}$ converges weakly
to $v$ . Then, we have that

$f(v_{i}, z)+g_{u_{n}^{*}}(v_{i}, z)=f(v_{i}, z)+\langle z-v_{i},$ $u_{ni}^{*}\rangle\geq 0$

:

for all $z\in C$ . By (E2), it follows that $\langle z-v_{i},$ $u_{n}^{*}:\rangle-f(z, v_{i})\geq 0$ for $z\in C$ and using
(E5), we obtain that

$\langle y-v_{i},$ $u_{n:}^{*}\rangle+f(v_{i}, y)\geq 0$

for $an_{y}\in C$ . As $iarrow\infty$ , we have that

$f(v, y)=\langle y-v,$ $0\rangle+f(v, y)\geq 0$

for all $y\in C$ and hence $v\in EP(f)$ . Therefore $w- Ls_{n}EP(f+g_{u_{n}^{s}})\subset EP(f)=C0$

and (ii) holds. Using Theorems 2 and 3, we obtain the desired result. $\square$
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