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1 Introduction

Let X be aset and f : X x X — R. The equilibrium problem for f is to find a
point x € X such that .
f(x,y) 20 forallye X,

and the set of its solutions is denoted by EP(f). It is known that the equilibrium
problem includes many kinds of important problems in various fields of applied math-
ematics such as minimization problems, saddle point problems, Nash equilibria in
noncooperative games, fixed point problems, and others; see [4].

The existence of the solution for equilibrium problem has been discussed; for in-
stance, see Fan [7], Takahashi [16], Blum and Oettli [4], Iusem and Sosa [11], and
others. On the other hand, various types of approximating the solution has been
proposed; see Flam and Antipin [8], Combettes and Hirstaga [6], liduka and Taka-
hashi [10], Tada and Takahashi [15], and others.

In this paper, we deal with a sequence of functions as an approximate of the function
appearing in the original equilibrium problem. We assume convergence of a sequence
of corresponding sets of solutions of equilibrium problems in the sense of Mosco.
We obtain weak and strong convergence of a sequence of resolvents to a generalized
projection onto the original set of solutions under certain conditions. Our main results
are a generalized version of the results discussed in [12].

2 Preliminaries

Throughout this paper, we always deal with a real Banach space and denote it by
E. We denote its norm by |||, its dual space by E*, and for =* € E*, the value of =*
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at ¢ € E by (z,z*). The norm of E* is also denoted by ||-||.

A Banach space E is said to be strictly convex if ||z + y||/2 < 1 for every z,y € E
with ||z|| = |lyll = 1 and x # y. The norm of F is said to be Gateaux differentiable
if for each z,y € E satisfying that |lz]| = |ly| = 1, it holds that (||z + ty|| - |lz||)/¢
converges as t — 0, and in this case E is said to be smooth. FE is said to have
the Kadec-Klee property if a weakly convergent sequence {z,} of E with a limit xg
converges strongly to zo whenever {||z,||} converges to |zo||. For more details, see
[9, 17].

The normalized duality mapping J : E =3 E* is defined by

Jz = {z* € B* : (z,2") = ||z||” = ||=*||*}

for x € E. We know that J is single-valued if E is smooth. In this case, J: E — E*
is norm-to-weak* continuous. Moreover, if E is reflexive and strictly convex, then J
is a bijection from E onto E™*.

Let {C,} be a sequence of nonempty closed convex subsets of a reflexive Banach
space E. We define two subsets s-Li, C,, and w-Ls, C, as follows: =z € s-Li, C, if
and only if there exists {z,} C E such that {z,} converges strongly to z and that
z, € Cp, for all n € N. Similarly, y € w-Ls,, C,, if and only if there exist a subsequence
{Cpn,} of {Cr} and a sequence {y;} C FE such that {y;} converges weakly to y and
that y; € Cy,, for all n € N. We define the Mosco convergence [13] of {C,, } as follows:
If Cy satisfies that

Co = s-LiC, = w—I:ls Chn,

it is said that {C,} converges to Cp in the sense of Mosco and we write Co =
M-lim,, o, C,,. For more details, see [3].

Let C be a nonempty closed convex subset of a smooth, reflexive and strictly convex
Banach space E. We consider a function ¢ : E x E — R defined as

¢(z,y) = l|zl|* — 2 (=, Jy) + lyll”

for x,y € E. It is easy to show that ¢(z,y) > 0 for all z,y € E. From strict convexity
of E, the function ¢(-,y) is a strictly convex function for every y € E. Therefore,
for arbitrarily fixed y € E, a function ¢(-,y)|c has a unique minimizer, say z, € C.
Using this point, we define the generalized projection IT¢ such that IIcy = z, for all
y € E. Notice that if E is a Hilbert space, II¢ coincides with the metric projection
onto C since ¢(z,y) = ||z — y)|* for all z,y € E in this case. For more details, see, for
example, [1, 5, 14].

3 Convergence of resolvents for a sequence of functions

Let E be a real Banach space and C a nonempty convex subset of E. We assume
that a function f : C x C — R satisfies the following conditions:
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(E1) f(z,z) =0 for every z € C;
(E2) f(x,y)+ f(y,z) <0 for every z,y € C;
(E3) f(z,-) is convex and lower semicontinuous for every z € C.

In [12], we assume the following condition which is called upper hemicontinuity of
f with respect to the first variable;

(E4) limsup,o f(ty + (1 —t)x,y) < f(z,y) for every x,y € C.
We shall assume the maximal monotonicity [4, 2] of f instead of (E4) as follows:

(E5) for each z € C and z* € E*, if (z —z,z*) — f(2,2) = 0 for all z € C, then
(y—z,z*)+ f(z,y) > 0forally € C.

Theorem 1 (Aoyama-Kimura-Takahashi [2]). Let E be a reflexive, smooth, and
strictly convexr Banach space and C a nonempty closed convexr subset of E. Let f :
C x C — R satisfy the conditions (E1), (E2), (E3), and (E5). Then for every x € E,
there exists a unique u € C such that

0< flu,y)+(y —u,Ju — Jzx)

forally € C.

This theorem guarantees that a resolvent 175 for f : C' x C — R and r > 0 defined
by
T f:Esz—{ueC:0<rf(u,y)+(y—u,Ju—Jz), Vye C} CC

is well defined as a single-valued mapping of E into C. Namely, for every z € E, T\sx
is a unique point of C' which satisfies that

0 < rf(Trsz,y) + {y — Trfx, JT jx — Jx)

forall y € C.

On the other hand, it is easy to see that if f satisfies the conditions (E1), (E2),
(E3), and (E4), then f also satisfies the condition (E5). Indeed, let = € C, z* € E~,
and suppose that for f satisfying (E5), (z — z,z*) — f(z,x) = 0 for all z € C. Then,
for arbitrarily chosen y € C' and 0 < t < 1, it follows that

0= f(tz+ (1 —t)y,txz + (1 — t)y)
<tf(tz+ (1 -t)y,z) + (1 -t)f(tz+ (1 — )y, v)
<t{tr+(1-t)y—z, ")+ (1 -t)ftz+ (1 —1)y,y)
=t(l—t)(y—=z,z") + (1 =) f(tz + (1 - t)y,y),

and thus t (y — z,z*) + f(tz + (1 — t)y,y) = 0. Tending t — 1, we have that

(y—m’$*>+f($’y) _>_0
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by using (E4). Hence f satisfies (E5).
Therefore, we obtain the following results, which generalize the results shown by
the author in [12]. The proofs are the same as in [12].

Theorem 2. Let E be a reflerive, smooth, and strictly convexr Banach space and C
a nonempty closed convex subset of E. Let {r,} be a positive real sequence such that
limy, oo rn = 00. Let {fn} be a sequence of functions of C x C into R satisfying the
conditions (E1), (E2), (E3), and (E5). Let Cy be a nonempty closed convez subset of
C satisfying the following conditions:

(i) Co C s-Lin, EP(f,);
(i) w-Lsn EP(fn + gux) C Co for every {uy} C E* converging strongly to 0,

where gy» : C x C — R is defined by gy~ (x,y) = (y — z,u*) for z,y € C. Then, a
sequence of resolvents {T, s .z} converges weakly to Ilc,z € Cy for every x € C.

Theorem 3. Let E be a reflexive, smooth, and strictly convex Banach space having
the Kadec-Klee property. Let C, {rn}, {fn} be the same as Theorem 2. Then, a
sequence of resolvents {T,, s x} converges strongly to Ilc,x € Cp for every xz € C.

Letting f, = f for all n € N, we deduce the following corollary.

Corollary 1. Let E be a reflexive, smooth, and strictly convex Banach space and C
a nonempty closed convez subset of E. Let {r,} be a positive real sequence such that
limy, o0 7n = 00. Let f be a function of C x C into R satisfying the conditions (E1),
(E2), (E3), and (E5). Then, a sequence of resolvents {T;,¢x} converges weakly to
IIgpsyx € EP(f) for every x € C. Moreover, if E has the Kadec-Klee property, then
{T:. sz} converges strongly to Ilgpsyx € EP(f) for every x € C.

Proof. Let f, = f for all n € N and Cy = EP(f). Then, it is obvious that the condi-
tion (i) in Theorem 2 is satisfied. For (ii), Let {uy,} be a sequence of E* converging
strongly to 0 and v € w-Ls, EP(f + gux). Then, there exist a subsequence {n;} of N
and a sequence {v;} C E such that v; € EP(f+gu; ) and that {v;} converges weakly
to v. Then, we have that

flvg, 2) + Gus,, (vi, 2) = fvi, 2) + (z — vi, U:‘,,-> >0

for all z € C. By (E2), it follows that (z — vi,uk, ) — f(z,v;) >0 for z € C and using
(E5), we obtain that

<y—~'vi,u;‘h.> +f(viay) 2 0
for all y € C. As i — 0o, we have that
f(v,y) = (y——v,O) +f(v,y) = 0

for all y € C and hence v € EP(f). Therefore w-Lsn, EP(f + guz) C EP(f) = Cp
and (ii) holds. Using Theorems 2 and 3, we obtain the desired result. my
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