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Simplicial resolutions and their
applications

ESEEXRE WOMHF (Kohhei Yamaguchi)*

University of Electro-Communications

1 Introduction.

Since Arnold [2] used simplicial resolutions for computing the homology
of classical braid groups, it becomes clear that the concept of simplicial
resolutions is very powerful and useful in the area of algebraic topology.
However, although simplicial resolutions were already used in several pa-
pers (e.g. [3], [4], [7], [9], [10]), the properties of simplicial resolutions are
not well studied. In this note we shall study the properties of simplicial
resolutions and give several examples of the computations which are used.
First recall several notations and definitions.

Definition. (i) For a finite set x = {z}, -+ ,Zm} C RY, let o(x) be the
convex hull spanned by the points z, -+ , Tm:

m m
o(x) = {Ztka:k e RY . Zt’“ =1,t, > 0 for any k}.

k=1 k=1
If zo — 21,23 — 1, -+ ,Zm — T are linearly independent over R, we say
that the set x = {z1, -,z } is in general position. Note that x is in

general position if and only if o(x) is an (m — 1)-dimensional simplex.
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(i) Let A : X — ¥ be a surjective map such that h~!(y) is a finite set

for any y € X, and let 7 : X — R" be an embedding. Then we define the
the subspace X2 ¢ & x RY by

X2 = {(y,2) eT xRV : z€0(i(h'(y))} C = xR".

We also define the map h® : X2 — X by h®(y,2) = y for (y,2) € XA,
The pair (X2, h?) is called a simplicial resolution of (h,1).
(iii) A simplicial resolution (X2,h?) is a non-degenerate if for each

y € ¥ any k points of i(h~*(y)) span (k — 1)-dimensional affine subspace
of RV,

Remark. The space X can be regarded as the subspace of X% by
identifying z — (h(z), i(x)). Moreover, if we identify X C X* as above,
it is easy to see that h®|X = h:

X .3

| ||

xa oy

2 Properties of simplicial resolutions.

In this section we recall several basic properties of simplicial resolutions.

Theorem 2.1 (([7], [9]). Let h : X — X be a surjective map such that
h=(y) is a finite set for anyy € &, let i : X — R™ be an embedding, and
(X2, h2) be a simplicial resolution of (h,1).

(i) If X and ¥ are closed semi-algebraic spaces, and two maps h and i
are polynomial maps, h® : X» = ¥ is a homotopy equivalence.

(ii) Let i : X — RY be an embedding and let (X{, h{) be a simplicial
resolution of (h,#). If (X2, h?) and (X{,he) are non-degenerate,
there exists a homeomorphism & : X2 — X2 such that ®|X =
idx . O

Theorem 2.2 ([7]). Let h: X — T be a surjective map such that h=*(y)
is a finite set for any y € L. If X can be embedded into RN for some
number N', there exists an embedding i : X — RY such that the simplicial
resolution (X, h2) of (h,i) is non-degenerate. O
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Definition. Let h: X — ¥ be a surjective map such that h~1(y) is a
finite set for any y € £, let i : X — R™ be an embedding, and (X2, h?)
be a simplicial resolution of (h,?).

(i) First, assume that (X, h®) is non-degenerate. In this case, (h2)~!(y)
is a simplex for any y € £. We denote by (h®)~!(y)*~U the (k — 1)-
dimensional skelton of (h®)7!(y). Then for each non-negative integer
k > 0, define the subspace XA C X2 by X2 = U(hA)"l(y)[k“l].

>
(ii) Next, consider the general case. In this case, by Theorem 2.2, there

exists an embedding i’ : X — R" such that the simplicial resolution
(X2, hA) of (h,i') is non-degenerate.

Then for each y € X, the simplicial map o(i'(h~!(y))) — a(i(h™(y)))
can be easily well-defined. This naturally extends the surjective map
7 : X2 — X2 such that the following diagram is commutative:

X—-—-——-»zf'A—ii—-»E
c

n | u

X — ., xa M
C
Then for each non-negative integer k > 0, define the subspace X» c X4

by XA = n(XP). It is easy to see that there is an increasing filtration

o0
b=xpcxfc-.cxfcxi,c-clJxr=x~
k=0

3 Generalization of simplicial resolutions.

Let h: X — Y be a surjective map. Even if h is not finite to one, one
can define its simplicial resolution in a complete similar way. However, in
this case, it is degenerate one. In this case, we need some modification for
having a non-degenerate simplicial resolution. Now we recall the following
result.

Lemma 3.1. Let h : X — ¥ be a surjective map and let j : X — RY be
an embedding. Then for each k > 1, there is an embedding ji : X — RN
satisfying the following two conditions:
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(i) For each k > 1, N < Nyy, and there is a commutative diagram
X 2 RM
n 4!
X Jk41 RNk41

(i) The points {jx(z1), - , ju(T2k)} are linearly independent over R for
any 2k distinct points {x1,--- ,xox} C X. O

Then we can easily see that the following two conditions are satisfied:

(38.1.1) If x = {z1, -~ ,zx} C Jr(h™'(¥)), it spans a (k — 1) dimensional
simplex o(x) in RMx.

(3.1.2) Ifxy = {1, -+ ,z;} C Je(h~(y)) and x2 = {51, -+ , w1} C Gu(h~(¥))
with i,l < k, o(x1) No(xz) = 0 if x; Nx, = 0.

Then we define the space X, by

~ {ul.s"' ,'U/l} C]k(h’_l(y))
=4 Wt) eETxRM |  teo({u, -, w})
<k

By using the commutative diagram (3.1), we can identify X2 C XA,.
o0

Then define the space X2 and the map A? : ¥4 — £ by X? = U XA
k=1

and h®(y,t) = y. One can easily see that (X,h?) is a non-generate
simplicial resolution of A with increasing filtration

o0
P=ApcX=XPcAXPc - -cXcXi c -clxs=2x~

Theorem 3.2 ([7]). Let h : X — X and hy : W — X' be surjective
maps, X and W can be embedded into RN for some number N', and the
following diagram is commutative:

X — X
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Then there exzists a filtration preserving map f : X2 — WA such that the
diagram

X—-——»)E'ALZ

C
A A
W — wa s

is commutative, where (X2, h2) and (WA, h®) denote the associated non-
degenerate resolutions of the maps h and hy, respectively. O

4 Spectral sequences of the Vassiliev type.

Let h : X — ¥ be a surjective map such that h=!(y) is a finite set for
any y € ¥ and let i : X — R™ be an embedding. Let (X*, h®) denote
the simplicial resolution of (h,i) with increasing filtration

0=XPcxPc---cxfcxi,c-cJat=2x4
k=0

If h® : X2 5 T is a homotopy equivalence, one has the Vassiliev type
spectral sequence

{E;*,dy: EP® — B[P} = HIV(D),

where Y., denotes the one-point compactification of a locally compact
space Y, H*(Y) := H*(Y,) (the cohomology with compact supports)
and E]° = HITS(XA\ X2,). We call this type spectral sequence as the
spectral sequence of Vassiliev type.

Now we give two typical examples of the computations which use the
spectral sequences of Vassiliev type.

4.1 Theorem of Arnold-Vassiliev.

Definition. (i) For each integerd > 1, let P denote the space consisting
of all monic polynomials f(z) = 2% + a12% 2 + - - - + a4 € R[z] of degree



d and let P4 C P2 be the subspace consisting of all f(z) € P such that
any real root of f(z) has the multiplicity < n.

(ii) Let 3¢ C P? denote the discriminant of P¢ defined by ¢ = P4\ P4,
Let X2 denote the tautological normalization of £¢ defined by

= {(f,a) € ¢ x R: a is a root of f(z) of multiplicity > n}.

Define the embedding i : X¢ — R%*+'*l4/7 and the surjective map p; :
Xg - Eg by Z(fv a) = (jl(f)7a7a2,' v ?O‘Ld/n'!) and pl(f’a) = f for
(f, ) € X3, where j;(f) := (a1, -+ ,aq) if f=224+a:12%  +--- +aq.

Let (X2,p2 : X2 — L7) denote the simplicial resolution of (p;.i). By
Theorem 2.1, p9 is a homotopy equivalence. Hence, there is the Vassiliev
type spectral sequence

(B[, dy: B — E;™1} = HI(54,2),

where E]® = HI+$(XA\ X2,,Z). If we recall that it follows from the
Alexander duality that there is a natural isomorphism

H,(P2,Z)= H*1Y(22,Z) for1<k<d-1,
by reindexing Ef, = Ef"l"“’, we have the spectral sequence
{E..d — B} = H, . (P7, Z)

such that E}, = HI" 147~ S(XA \ ALTZ).

It is easy to see that X2\ X2, is a total space of the real vector bundle
over C(R) with rank d—1— r(n 1). Hence, by using Thom isomorphism
and Poincaré duality, if 1 < r < d, there is an isomorphism

E,, = HI'7(XA\AXLL,Z) = H(CH(R),Z)
Z —r= —-2), 1 <r<|d/n
0 (otherwise)
By the dimensional reason, it is easy to see that E, = EZ and we have:
Lemma 4.1 (Arnold-Vassiliev; cf. [9], [10]). If n = 3, there is an iso-

morphism

Hi (P2, Z) = {Z ifk=r(n~-2), 0<r < |d/n]

0 otherwise.

O
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If we use the scanning maps (cf. [3]), we have the more precise state-
ment:

Theorem 4.2 (Kozlowski-Yamaguchi; [4]). If n > 4, there is a homotopy

equivalence PE >~ Jy 4/ (QS™1), where Ji(Q2S™) denotes the k-th stage
James filtration of QS™ defined by

o<
Je(QS™) = SmUem UM U U C QST =S U (| ™). O
j=2

4.2 Theorem of Kozlowski-Yamaguchi.

Definition. (i) For each integer d > 1, let P2 denote the space consisting
of all monic polynomials f(z) = 2%+ a;2%" 1 + ... + a4 € R[z] of degree d
as before. Let H? = (P%)" and let H¢ C H% be the subspace consisting of
all n-tuples (f1(z), -, fn(2)) € (P%)™ of monic polynomials of the same
degree d such that fi(z), -, fn(z) have no common real root.

(ii) Let £¢ ¢ H? denote the discriminant of H¢ defined by £¢ = H?\ H¢.
Let X¢ denote the tautological normalization of 3¢ defined by

X4 ={(fr.- -, fara) € 2¢ xR : « is a common root of f1,- -, fa}.

Define the embedding j : X¢ — Ré+1+d and the surjective map ¢; :
Xff - ig by j(f. a) = (F1(f1)s- - le(fn% 1, &, a?, .- s?‘d) a'ndf]l(f’ a) =
f for (f.a) = (f1, -, fn.a) € X3 Let (X2,¢2 : X2 — %) denote
the simplicial resolution of (g;.5). By Theorem 2.1, ¢® is a homotopy
equivalence. Hence, there is the Vassiliev type spectral sequence

(Bp*,dy Bp* — E{¥e-t) = B7v (54,2,

where E* = HI+3(XA\ X2,,Z). If we recall that it follows from the
Alexander duality that there is a natural isomorphism

Hy(H? Z) = Hiv 124 7) for 1<k <dn-—1,
by reindexing Ef, = Edn—1-% we have the spectral sequence

{Et, d:E., — E[T Y o H,  (HS,Z)



such that El, = HIn=1+7=5(XA\ X2 7).

It is easy to see that X2 \ X2, is a total space of the real vector
bundle over C.(R) with rank dn — 1 — r(n — 1). Hence, by using Thom
isomorphism and Poincaré duality, if 1 < r < d, there is an isomorphism

1
Er,s

I

Hgn—-l—s+r(‘)€'rA \ i}?ﬁl, Z) = Hzn—s(cr (R)a Z)

Z (s—r=r(n—2), 1<r<d)
0 (otherwise)

112

H’TTL“S(S?”Z) — {

By the dimensional reason, E., = E% and we have:

Lemma 4.3 (Kozlowski-Yamaguchi, [4]). If n > 3, there is an isomor-
phism

Hk(Hng) = -

Z ifk=r(n—2),0<r<d
0 otherwise.

If we use the scanning maps (cf. [3]), we have the more precise state-
ment:

Theorem 4.4 (Kozlowski-Yamaguchi; [4], [11]). Ifn > 4 or n = 3 with
d =1 (mod 2), there is a homotopy equivalence H3 ~ J;(QS™1). O

Remark. If n > 4, H? is simply connected and it is not so difficult to
prove the above result. However, if n = 3, m1(H§) = Z and it seems that
the proof for the homotopy stability is not so easy in this case. If n =3
and d = 1 (mod 2), we can show that there is a free S'-action on H¥ such
that there is a homotopy equivalence H¢ ~ S x H§/S!.

Conjecture. Is there a homotopy equivalence H§ =~ Jg(€25?) even if
d =0 (mod 2)7?

5 Generalization of Theorem 4.4.

In this section, we give some generalization of Theorem 4.4.

Definition. From now on, we assume that 2 < m < n be fixed

integers, let {2o,21, - ,2m} is & set of fixed variables, and for each € €
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{0,1} = Z/2 = mo(Map(RP™,RP")) we denote by Map,(RP™,RP") the
corresponding path component of Map(RP™, RP").

(1) Let Map?(RP™, RP"™) denote the space consisting of all based maps
f € Map (RP™,RP"), where e, =1 :0::--:0] € RP* is the base
point of RP* (k = m,n). Let 9y : RP™! — RP" denote the map
given by ¥a([zo : -+t Tpey)) =[x - 2%, :0:0:---:0]. We
regard RP™! as a subspace of RP™ by identifying [zo : -+ - : Zpp—1] With
[Zo: -+ : Tm—1 : 0], and define the subspace F;(m,n) C Map*(RP™, RP")
by Fy(m,n) = {f € Map*(RP™,RP™) : fI[RP™™! = ¢;}. It is routine to
see that there is a homotopy equivalence Fz(m,n) ~ Q™S™.

(ii) Let Hg C Rz, - , zm) be the subspace consisting of all homoge-
nous polynomials of degree d, and for € € {0,1} let H§ C Hg4 be the
subspace consisting of all homogenous polynomials f € Hy4 such that the
coefficient of zg of f is €. For each integer 0 < k < n, let By C H, denote
the subspace given by

B, = {2zt +2mh:h€Ha} fO0<k<m
* {zmh : h € Ha_1} fm<k<n

and let Ag(m,n) C HY x (H1)" be the subspace consisting of all (n + 1)-
tuples (fo,- - , fn) € HY x (H})™ of homogenous polynomials of the same
degree d such that fo,--- ., fn have no common real root except Opy1 =
(0,---,0) € R™! (but may have non-trivial common complex roots).
Similarly, let A%(m,n) C Aq(m,n) denote the subspace defined by

Ai(m,n) = Ag(m,n) N (By X By x -+ x By).

(iii) Let f = (fo, -+, fn) € Aq(m,n) be any element and consider the
map iq(f) : RP™ — RP™ given by iq(f)([x]) = [fo(x) : -+ 1 fa(x)] for
[x] = [zo: - : zm] € RP™. This naturally induces the map

14 : Ad(m, n) — Ma,p’[.‘d]2 (RPm, RPn),

where [d]; € Z/2 denotes the integer mod 2.

(iv) If f € A%(m,n), since iq( fRP™! = 4,4, the restriction j; =
iq|A%(m,n) can be regarded as the map jq : Aj(m,n) — Fy(m,n) =~
QmS™. If we use the spectral sequence induced from the simplicial res-
olution and Vassiliev spectral sequence given in [9], we can prove the
following;:



Theorem 5.1 ([1]). Let 2 < m < n be integers, and we set

{M(m, n) =2[2] +1, ([2] =min{N € Z: N > z})
D(d;m,n) = (n—m)(|&] +1) — 1.

() Ifd > M(m,n), jq : Aag(m,n) — Q™S™ is a homotopy equivalence
through dimension D(d;m,n) when m + 2 < n and a homology
equivalence through dimension D(d;m,n) when m+1=n.

(ii) Ifd > M(m,n) is an even integer, iq : Aa(m,n) — Mapy(RP™, RP")
is a homotopy equivalence through dimension D(d;m,n) when m +

2 < n and a homology equivalence through dimension D(d;m,n)
when m+ 1 =n. O

Remark. A map f: X — Y is called a homotopy (resp. homology)
equivalence through dimension D if the induced homomorphism

-f* : ﬂ-k(X) - ﬂk(Y) (resp. f* : Hk(Xs Z) - Hk(Y7 Z))
is bijective for any k£ < D.

At the moment we cannot prove the homotopy (or homology) unstabil-
ity theorem for the map 44 : Ag(m,n) — Mapjy,(RP™,RP") when d =1
(mod 2). However, if d = 1, we can prove:

Theorem 5.2 ([12], [14]). If 1 < m < n and d = 1, the map %; :
A;(m,n) — Map}(RP™, RP") is a homotopy equivalence through dimen-
sion D(m,n), where D(m,n) := 2(n —m) — 2. O

SE
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