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Abstract

We consider the solution of complex symmetric shifted linear systems. Such
systems arise in large scale electronic structure theory and there is a strong need
for the fast solution of the systems. Since the QMR-SYM method is known as
a powerful solver for complex symmetric linear systems, we use the idea of the
QMR-SYM method together with shift-invariant property of the Krylov subspace
for solving complex symmetric shifted linear systems.

1 Introduction
In this paper we consider the solution of complex symmetric shifted linear systems of the
form

$(A+\sigma_{l}I)x^{(l)}=b$ , $\ell=1,2,$
$\ldots,$ $m$ , (1)

where $A$ (ae) $:=A+\sigma_{\ell}I$ are nonsingular N-by-N complex symmetric sparse matrices, i.e.,
$A(\sigma_{\ell})=\mathcal{A}(\sigma_{\ell})^{T}\neq\overline{A}(\sigma_{\ell})^{T}$, with scalar shifts $\sigma_{\ell}\in C,$ $I$ is the N-by-N identity matrix, and
$x^{(\ell)},$ $b$ are complex vectors of length $N$ . The above systems arise in large-scale electronic
structure theory [14] and there is a strong need for the fast solution of the systems.

Since the given shifted linear systems (1) are a set of sparse linear systems, it is
natural to use Krylov subspace methods, and moreover since the coefficient matrices are
complex symmetric, one of the simplest ways to solve the shifted linear systems is applying
(preconditioned) Krylov subspace methods for solving complex symmetric linear systems
such as the COCG method [15], the COCR method [12], and the QMR-SYM method [2]
to all of the shifted linear systems (1). On the other hand, denoting n-dimensional Krylov
subspace with respect to $A$ and $b$ as $K_{n}(A, b)$ $:=$ span$\{b, Ab, . . . , A^{n-1}b\}$ , we observe that

$K_{n}(A, b)=K_{n}(A(\sigma_{\ell}), b)$ . (2)

This implies that once Krylov basis vectors are generated from one of Krylov subspaces
$K_{n}(A(\sigma_{\ell}), b)$ , these basis vectors can be used to solve all the shifted linear systems. In
other words, there is no need to generate all Krylov subspaces $K_{n}(A(\sigma_{\ell}), b)$ , and thus
computational costs involving the basis generation, e.g., matrix-vector multiplications,
are saved. Here we give a concrete example: if we apply the COCG method to all of
the linear systems (1), then $K_{n}(A(\sigma_{\ell}), b)$ for $\ell=1,2,$

$\ldots,$
$m$ are generated. On the other

hand, if we apply the COCG method to one of the shifted linear systems (1) (referred to
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as the “seed system”), then the Krylov basis vectors are generated from the seed system
and these vectors are used to solve the rest of the shifted linear systems.

Based on the observation (2), the shifted conjugate orthogonal conjugate gradient
(shifted COCG) method has been recently proposed [14]. The shifted COCG method
works well for the problems from electronic structure theory. However, the shifted COCG
method requires the choice of a seed system, the term $\zeta seed$ system” was mentioned
in the previous paragraph, and unsuitable choice may lead to the drawback that many
shifted linear systems remain unsolved. To avoid the drawback, more recently, the seed
switching technique has been proposed [13]. For some problems from electronic structure
theory, it has been shown that the shifted COCG method together with the seed switching
technique is practical.

There is another approach to solving the shifted linear systems (1). That is the use
of Krylov subspace methods for non-Hermitian shifted linear systems such as the shifted
BiCGStab$(\ell)$ method [5], the shifted (TF)QMR method [3], the restarted shifted FOM
method [9], and the restarted shifted GMRES method [6], see also, e.g., [10]. We readily
see that the relation (2) holds not only for complex symmetric matrices but also for
non-Hermitian matrices, and these methods are based on the use of this shift-invariant
relation. Therefore, this can be a good approach. However, since these methods do not
exploit the property of complex symmetric matrices, these computational costs can be
more expensive than that of the shifted COCG method.

The shifted COCG method is obtained from the COCG method and the COCG
method is closely related to the QMR-SYM method, see [2, Prop. 3.3]. Hence, it is nat-
ural to consider algorithms using the QMR-SYM method for solving complex symmetric
shifted linear systems. The main purpose of the present paper is to develop variants of
the QMR$arrow SYM$ method by considering the minimization of weighted quasi-residual norms
for solving complex symmetric shifted linear systems. Of many possible choices of weight
matrices for the norms, we will show that there exists a practical weight when the number
$m$ of shifted linear systems are large enough.

The present paper is organized as follows: in the next section, an algorithm (referred
to as shifted QMR-SYM) for solving the systems (1) will be derived from two important
results given by Freund [2, 3], and some properties of the shifted QMR-SYM method
are given for the problem from large-scale electronic structure theory. In section 3, some
results of a numerical example from electronic structure theory are shown to see the
performance of the shifted QMR-SYM approach. Finally, some concluding remarks are
made in section 4.

Throughout this paper, unless otherwise stated, all vectors and matrices are assumed
to be complex. $\overline{M},$ $M^{T},$ $M^{H}=\overline{M}^{T}$ denote the complex conjugate, transpose, and
Hermitian matrix of the matrix M. $\Vert v\Vert_{W}$ denotes the W-norm written as $(v^{H}Wv)^{1/2}$ ,
where matrix $W$ is Hermitian positive definite.
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2A formulation of the QMR-SYM method for solv-
ing complex symmetric shifted linear systems

The QMR method for shifted linear systems introduced in section 1 was first formulated
in [3] for the case of a general non-Hermitian matrix. Therefore, by simplifying the non-
Hermitian Lanczos process [8], as is known from other papers such as [2, 15], a simplified
QMR method, shifted QMR-SYM, is readily obtained for the case of a complex symmetric
matrix. Although the derivation of the shifted QMR-SYM method is straightforward from
the viewpoint of the above simplification, in this section we precisely derive the shifted
QMR-SYM method from a different viewpoint: a combination of the complex symmetric
Lanczos process and the QMR-SYM method with a weighted quasi-residual approach.

First of all let us recall the complex symmetric Lanczos process (see, e.g., Algorithm
2.1 in [2] $)$ . The algorithm is given below.

Algorithm 2.1. The complex symmetric Lanczos process

set $\beta_{0}=0,$ $v_{0}=0,$ $r_{0}\neq 0\in C^{N}$ ,
set $v_{1}=r_{0}/(r_{0}^{T}r_{0})^{1/2}$ ,
for $n=1,2,$ $\ldots,$ $m-1$ do:

$\alpha_{n}=v_{n}^{T}Av_{n}$ ,
$\tilde{v}_{n+1}=Av_{n}-\alpha_{n}v_{n}-\beta_{n-1}v_{n-1}$ ,
$\beta_{n}=(\tilde{v}_{n+1}^{I’}\tilde{v}_{n+1})^{1/2}’$ ,
$v_{n+1}=\tilde{v}_{n+1}/\beta_{n}$ .

end

Algorithm 2.1 can be also written in matrix form. Let $T_{7l.+1n\rangle}$ and $T_{n}$ be the $(n+1)\cross n$

and $n\cross n$ tridiagonal matrices whose entries are recurrence coefficients of the complex
symmetric Lanczos process, which are given by

$T_{n+1,n}:=(\alpha_{1}\beta_{1}$

$\alpha_{2}\beta_{1}$

.
$\beta_{n-1}$ $\beta_{n-1}\alpha_{n}\beta_{n}$

, $T_{n}:=(\alpha_{1}\beta_{1}$

$\alpha_{2}\beta_{1}$

.
$\beta_{n-1}$

$\beta_{n-1}\alpha_{n}$

and let $V_{n}$ be the $N\cross n$ matrix with the complex symmetric Lanczos vectors as columns,
i.e., $V_{n}$. $:=(v_{1}, v_{2}, \ldots, v_{n})$ . Then from Algorithm 2.1, we have

$AV_{n}=V_{n+1}T_{n+1,n}=V_{n}T_{n}+\beta_{n}v_{n+1}e_{n}^{T}$ , (3)

where $e_{n}=(0,0, \ldots, 1)^{T}\in R^{n}$ .
Now we are ready for describing an algorithm using the QMR-SYM method for solving

complex symmetric shifted linear systems. Let $x_{n}^{(p)}$ be approximate solutions at nth
iteration step for the systems (1), which are given by

$x_{n}^{(l)}=V_{n}y_{n}^{(\ell)}$ , $\ell=1,2,$
$\ldots,$

$m$ , (4)
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where $y_{n}^{(l)}$ ’s are vectors of length $n$ . Then, from the definition of residual vectors $r_{n}^{(l)}$ $:=$

$b-(A+\sigma pI)x_{n}^{(\ell)}$ , update formulas (4), and the matrix form of the complex symmetric
Lanczos process (3) we readily obtain

$r_{n}^{(\ell)}=V_{n+1}(g_{1}e_{1}-T_{n+1,n}^{(\ell)}y_{n}^{(l)})$ , where $T_{n+1,n}^{(\ell)}:=T_{n+1,n}+\sigma_{\ell}(\begin{array}{l}I_{n}0^{T}\end{array})$ . (5)

Here, $e_{1}$ is the first unit vector written by $e_{1}=(1,0, \ldots, 0)^{T}$ and $g_{1}=(b^{T}b)^{1/2}$ . It is
natural to determine $y_{n}^{(p)}$ such that all residua12-norms $\Vert r_{n}^{(l)}\Vert_{2}$ are minimized. However,
such choices for $y_{n}^{(l)}$ are impractical due to large amount of computational costs. Hence, an
alternative approach is given, i.e., $y_{r\iota}^{(l)}$ ’s are determined by solving the following weighted
least squares problems:

$y_{n}^{(\ell)}= \arg\min_{z_{n}^{(1)}\in C^{1}}.\Vert g_{1}e_{1}-T_{n+1,n}^{(\ell)}z_{n}^{(\ell)}\Vert_{W_{n+1}^{H}W_{n+1}}$ , (6)

where $|/V_{n+}i$ is an $(n+1)- by-(n+1)$ nonsingular matrix. Thus $TV_{n+1}^{H}W_{n+1}$ can be used as
a weight since it is Hermitian positive definite. One of the simplest choices for $W_{n+1}$ is
the identity matrix. In this case, from $f^{j}V_{n+1}=I_{n+1}$ we have

$y_{n}^{(\ell)}= \arg\min_{z_{n}^{(\ell)}\in C^{n}}\Vert g_{1}e_{1}-T_{n+1,n}^{(l)}z_{n}^{(\ell)}\Vert_{2}$ . (7)

A more slightly generalized choice is $W_{n+1}=\Omega_{n+1}$ $:=$ diag$(\omega_{1}, \omega_{2}, \ldots, \omega_{n+1})$ with $\omega_{i}>0$

for all $i$ . Then, we have

$y_{n}^{(\ell)}= \arg\min_{Z_{n}^{(\ell)}\in C^{n}}\Vert\omega_{1}g_{1}e_{1}-\Omega_{n+1}T_{n+1,n}^{(\ell)}z_{n}^{(\ell)}\Vert_{2}$.

Of various possible choices for $\omega_{i}$ , a natural choice is $\omega_{i}=\Vert v_{i}\Vert_{2}$ since $\Omega_{n+1}$ has the diagonal
entries of the upper triangular matrix $R_{n+1}$ that is obtained by the $QR$ factorization of
$V_{n+1}$ . If we choose $T4^{\gamma_{n+1}}=R_{n+1}$ , where $V_{n+1}=Q_{n+1}R_{n+1}$ , then from (5) and (6) we have

$\min_{z_{n}^{(\ell)}\in C^{n}}\Vert g_{1}e_{1}-T_{n+1,n}^{(\ell)}z_{n}^{(\ell)}\Vert_{R_{n+1}^{H}R_{n+1}}$ $=$ $\min_{Z_{n}^{(\ell)}\in C^{\iota}}.\Vert g_{1}R_{n+1}e_{1}-R_{n+1}T_{n+1_{I}n}^{(\ell)}z_{n}^{(l)}\Vert_{2}$

$=$ $\min_{Z_{n}^{(\ell)}\in C^{n}}\Vert Q_{n+1}R_{n+1}(g_{1}e_{1}-T_{n+1,n}^{(l)}z_{n}^{(\ell)})\Vert_{2}$

$=$
$\min_{Z_{n}^{(p)}\in C^{l}},\Vert V_{n+1}(g_{1}e_{1}-T_{n+1,n}^{(l)}z_{n}^{(\ell)})\Vert_{2}$

$=$
$\min_{Z_{\tau\iota}^{(\ell)}\in C^{n}}\Vert r_{n}^{(\ell)}\Vert_{2}$

.

By solving the above weighted least squares problems, all residua12-norms are minimized.
Hence $7’V_{n+1}=\Omega_{n+1}$ is a rational choice.

Now, for simplicity we consider the case $l^{j}V_{n+1}=I_{n+1}$ and derive practical computa-
tional formulas for updating approximate solutions $x_{n}^{(l)}$ . The derivation is similar to that
of the QMR-SYM method. If we find $(n+1)- by-(n+1)$ unitary matrices $Q_{n+1}^{(p)}$ such that

$Q_{n+1}^{(l)}T_{n+1,n}^{(p)}=(_{0^{T}}^{\tilde{R}_{n}^{(\ell)}})$ , (8)
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where $\tilde{R}_{n}^{(\ell)}$ are n-by-n banded upper triangular matrices of the form

$\tilde{R}_{n}^{(\ell)}:=$ $(^{t_{1,1}^{(\ell)}}$

$t_{22}^{(\ell)}t_{1,2}^{(\ell)}|$

$t_{3,3}^{(\ell)}t_{2,3}^{(\ell)}t_{1,3}^{(\ell)}$

.

$\cdot$ .

$t_{n\frac{)}{n(\ell}1n}^{(p}t_{n-2,n}^{(p)}t_{n}))$

,

then it follows from (7) and (8) that we have

$\min_{Z_{n}^{(\ell)}\in C^{\iota}},\Vert(_{g_{n+1}^{(l)}}g_{n}^{(l)})-(_{0^{T}}^{\tilde{R}_{n}^{(\ell)}})z_{n}^{(\ell)}\Vert_{2}$ , where $(_{g_{n+1}^{(\ell)}}g_{n}^{(p)})$ $:=g_{1}Q_{n+1}^{(l)}e_{1}$ . (9)

By solving the above least squares problems we have $y_{n}^{(p)}=(\tilde{R}_{n}^{(\ell)})^{-1}g_{n}^{(\ell)}$ . Substituting this
results into (4) and using the auxiliary vectors

$(\tilde{p}_{1} P2^{\cdot}. . \tilde{p}_{n}):=V_{n}(\tilde{R}_{n}^{(\ell)})^{-1}$ ,

we obtain the following update formulas:
$\tilde{p}_{n}^{(p)}$ $=$ $(v_{n}-t_{n-2,n}^{(p)}\tilde{p}_{n-2}^{(\ell)}-t_{n-1,n}^{(p)}\tilde{p}_{n-1}^{(\ell)})/t_{n,n}^{(p)}$ , (10)

$x_{n}^{(p)}$ $=$ $x_{n-1}^{(\ell)}+g_{n}^{(\ell)}\tilde{p}_{n}^{(p)}$ . (11)

Here, we note that $g_{n}^{(\ell)}$ is the nth entry of the vector $g_{n}^{(\ell)}$ . Using auxiliary vectors $p_{i}^{(\ell)}=$

$t_{i,i}^{(\ell)}\tilde{p}_{i}^{(l)}$ , the computational costs for the above recurrences are reduced by the following
simple rewrite:

$p_{n}^{(l)}$ $=$ $v_{n}-(t_{n-2,n}^{(l)}/t_{n-2,n-2}^{(\ell)})p_{n-2}^{(p)}-(t_{n-1,n}^{(\ell)}/t_{n-1,n-1}^{(\ell)})p_{n-1}^{(p)}$, (12)

$x_{n}^{(\ell)}$ $=$ $x_{n-1}^{(\ell)}+(g_{n}^{(p)}/t_{n,n}^{(p)})p_{n}^{(p)}$ . (13)

The new recurrences (12)-(13) require $6Nm+3m$ operations per iteration step. Since the
previous recurrences (10)-(11) require $7Nm$ operations, this rewrite is useful in practice
when the number of linear systems is very large, say, $m\gg 1$ .

We have obtained computational formulas for approximate solutions $x_{n}^{(l)}$ . Next, we
describe how to obtain $Q_{n+1}^{(p)}$ of the form (8). Givens rotations, see, e.g., [7, p.215], are
powerful tools to answer it, which are defined by

$G_{n}^{(\ell)}(i);=(\begin{array}{llll}I_{i-1} -c_{\frac{i}{S}(\ell),i}^{(p)} s_{i}^{(\ell)}c_{i}^{(\ell)} I_{n-i-1}\end{array}),$
$c_{i}^{(\text{の}}\in R,$ $s_{i}^{(l)}\in C,$ $(c_{i}^{(\text{の}})^{2}+|s_{i}^{(l)}|^{2}=1$ .

By determining $c_{i}^{(\ell)}$ and $s_{i}^{(\ell)}$ such that the $(i+1, i)$ entry of a matrix $G_{n}^{(\ell)}(i)T$ is zero,
where $T$ is a tridiagonal matrix, we readily have the form (8) in the following way:

$G_{n+1}^{(p)}(n)G_{n+1}^{(l)}(n-1)\cdots G_{n+1}^{(l)}(1)T_{n+1,n}^{(p)}=(_{0^{T}}^{\tilde{R}_{n}^{(\ell)}})$ . (14)
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From the above we see that $G_{n+1}^{(\ell)}(n)G_{n+1}^{(\ell)}(n-1)\cdots G_{n+1}^{(l)}(1)$ is the matrix $Q_{n+1}^{(l)}$ . Here we
note that $Q_{n+1}^{(\ell)}$ and $Q_{n}^{(\ell)}$ are related by

$Q_{n+1}^{(p)}=G_{n+1}^{(\ell.)}(n)(\begin{array}{ll}Q_{n}^{(\ell)} 00^{T} 1\end{array})$ for $n=2,3,$ $\ldots$ , (15)

where $Q_{2}^{(\ell)}=G_{2}^{(\ell)}(1)$ . Now we describe the complete algorithm of shifted QMR-SYM
method.

Algorithm 2.2. Shifted QMR-SYM

$x_{0}^{(l)}=p_{-1}^{(l)}=p_{0}^{(p)}=0,$ $v_{1}=b/(b^{T}b)^{1/2},$ $g_{1}^{(\ell)}=(b^{T}b)^{1/2}$ ,
for $n=1,2,$ $\ldots$ do:

(The complex symmetric Lanczos process)
$a_{r\iota}=v_{n}^{T}Av_{n}$ ,
$\tilde{v}_{n+1}=Av_{n}-\alpha_{n}v_{n}-\beta_{n-1}v_{n-1}$ ,
$\beta_{n}=(\tilde{v}_{n+1}^{T}\tilde{v}_{n+1})^{1/2_{7}}$

$v_{n+1}=\tilde{v}_{n+1}/\beta_{n}$ ,
$t_{n-1_{\gamma}n}^{(\ell)}=\beta_{n-1},$ $t_{n,n}^{(\ell)}=\alpha_{n}+\sigma_{\ell},$ $t_{n+1,n}^{(l)}=\beta_{n}$ ,
(Solve least squares problems by Givens rotations)
for $\ell=1,2,$

$\ldots,$ $m$ do:
if $\Vert r_{n}^{(l)}\Vert_{2}/\Vert b\Vert_{2}>\epsilon$ , then

for $i= \max\{1, n-2\},$ $\ldots,$ $n-1$ do:

$(_{t_{i+1,n}^{(\ell)}}t_{i,n}^{(p)})=(_{-}c^{(\ell)} \frac{i}{s}(\ell)i$ $s_{i}^{(\ell)}c_{i}^{(\ell)})(_{t_{i+1n}^{(p)}}t_{i,n}^{(\ell)},)$ ,

end

$c_{n}^{(l)}= \frac{|t_{n,n}^{(p)}|}{\sqrt{|t_{nn}^{(p)}|^{2}+|t_{n+1,n}^{(p)}|^{2}}}$ ,

$\overline{s}_{n}^{(\ell)}=\frac{t_{n\dashv 1,n}^{(p)}}{t_{nn}^{(l)})}c_{n}^{(\ell)}$,

$t_{n,n}^{(\ell)}=c_{n}^{(\ell)}t_{n,n}^{(p)}+s_{n}^{(\ell)}t_{n+1,n}^{(\ell)}$ ,
$t_{n+1_{\dagger}n}^{(p)}=0$ ,

$(_{g_{n+1}^{(p)}}g_{n}^{(p)})=(_{-}c^{(l)} \frac{n}{s}(\ell)n$ $s_{n}^{(p)}c_{n}^{(p))}(\begin{array}{l}g_{n}^{(p)}0\end{array}))$

(Update approximate solutions $x_{n}^{(p)}$ )
$p_{n}^{(l)}=v_{n}-(t_{n-2,n}^{(p)}/t_{n-2,n-2}^{(\ell)})p_{n-2}^{(l)}-(t_{n-1,n}^{(p)}/t_{n-1,n-1}^{(l)})p_{n-1}^{(l)}$ ,
$x_{n}^{(\ell)}=x_{n-1}^{(\ell)}+(g_{n}^{(\ell)}/t_{n,n}^{(p)})p_{n}^{(\ell)}$ ,

end if
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end
if $\Vert r_{n}^{(\ell)}\Vert_{2}/\Vert b\Vert_{2}\leq\epsilon$ for all $p$ , then exit.

end

In order to know that numerical solutions are accurate enough, one may need to
compute the residua12-norms. In that case, the following computation may be useful to
evaluate the norms:

Proposition 1 (See [4]) The $nth$ residual 2-norms of the approximate solutions $x_{n}^{(\ell)}$ for
the shifted QMR-S $YM$ method are given by

$\Vert r_{n}^{(p)}\Vert_{2}=|g_{n+1}^{(\ell)}|\cdot\Vert w_{n+1}^{(\ell)}\Vert_{2}$ for $\ell=1,2,$ . . . , $m$ ,

where $w_{n+1}^{(\ell)}=-s_{n}^{(\ell)}w_{n}^{(p)}+c_{n}^{(\ell)}v_{n+1}$ and $w_{1}^{(\ell)}=v_{1}$ .

Proposition 1 is a result known to hold for the QMR method in [4]. Therefore, it also
holds for the above specialized variant.

The rest of this section describes some special properties of the shifted QMRSYM
method.

Proposition 2 (See [1]) Let $A\in R^{N\cross N}$ be real symmetric, $\sigma_{l}\in C$ be complex shifts,
and $b\in R^{N}$ . Then the shifted QMR-S $YM$ method (Algorithm 2.1) enjoys the following
properties:

I. All matrix-vector multiplications can be done in real $ar^{J}i$thmetic;

$\Pi$. $\mathcal{A}n$ approximate solution at $nth$ iteration step for each $\ell$ has minimal residual 2-
norms, $i.e_{f}x_{n}^{(p)}s$ are generated such that $\min\Vert r_{n}^{(\ell)}\Vert_{2}$ over $x_{n}^{(l)}\in K_{n}(A, b)$ ;

ZZZ. $\Vert r_{n}^{(\ell)}\Vert_{2}=|g_{n+1}^{(\ell)}|$ for $\ell=1,2,$
$\ldots,$ $m,$ $n\geq 0$ .

The above properties are known results since the properties have been proved for each
individual shift. See [1] for detail.

The properties of proposition 2 may be very useful for large-scale electronic structure
theory [14] and a projection approach for eigenvalue problems [11] since there are com-
plex symmetric shifted linear systems to be solved efficiently under the assumption of
proposition 2.

3 A numerical example
In this section, we report some results of a numerical example for the shifted COCG
method and the shifted QMR-SYM method (Algorithm 2.2). We evaluate both two
methods in terms of computational time. All tests were performed on a workstation with
a 2. $6GHz$ AMD Opteron(tm) processor 252 using double precision arithmetic. Codes were
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written in Fortran 77 and compiled with g77-O3. In all cases the stopping criterion was
set as $\epsilon=10^{-12}$ .

We consider the solutions of the following shifted linear systems that come from electronic
structure calculation of a bulk Si(001) with 512 atoms in [14]:

$(\sigma pI-H)x^{(p)}=e_{1},$ $\ell=1,2,$
$\ldots,$ $m$ ,

where $\sigma_{l}=0.400+(P-1+i)/1000,$ $H\in R^{2048\cross 2048}$ is a symmetric matrix with 139264
entries, $e_{1}=(1,0, \ldots, 0)^{T}$ , and $m=1001$ . Since the shifted COCG method requires
the choice of a seed system, we have chosen the optimal seed $(\ell=714)$ in this problem;
otherwise some linear systems will remain unsolved by another choice.

Figure 1 shows the number of iterations of each method to solve $Pth$ shifted linear
systems. For example, in Fig. 1, the number of iterations for the shifted COCG method
at $P=600$ is 150, which means the shifted COCG method required 150 iterations to obtain
the (approximate) solutions of 600th shifted linear systems, i.e., $(\sigma_{600}I-H)x^{(600)}=e_{1}$ .

Serial number of shifted linear systems (1)

Figure 1: Number of iterations for the shifted COCG method and the shifted QMRSYM
method versus serial number of shifted linear systems.

From Fig. 1 we obtain three observations: first, the two methods required almost the
same number of iterations at each $\ell$ ; second, in terms of number of iterations, the shifted
QMR-SYM method often converged slightly faster than shifted COCG method. This
phenomenon is closely related to proposition 2, which will be clearer later; third, for each
method the required number of iterations depends highly on the shift parameters $\sigma_{\ell}$ . This
result may come from varying eigenvalues of the coefficient matrices $\sigma pI-H$ since if we
choose $\sigma_{\ell}$ close to $\lambda$ , where $\lambda$ is one of the eigenvalues of $H$ , then $\sigma_{t}I-H$ is close to
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singular. Conversely. from the shape of Fig. 1 we may obtain the partial distribution of
eigenvalues of $H$ .

One of the residual 2-norm histories for the two methods is given in Fig. 2. From
Fig. 2 we see that ${\rm Log}_{10}$ of the relative residua12-norm of the shifted QMR SYM method
decreases monotonically and at every iteration step the norm is less than that of the
shifted COCG method. Hence we can say that the property (I) of proposition 2 was
experimentally supported by this history.

$o^{c_{i}}Eo|$

コ

$\frac{..\check\geq\Phi\infty}{\propto Q)}$

Figure 2: ${\rm Log}_{10}$ of relative residual 2-norms versus the number of iterations of the shifted
COCG method and the shifted QMR-SYM method for shifted linear systems with $\ell=$

$701$ , i. e., $\sigma_{701}=1.100+0.001i$ .

Each computational time of the two methods is given in Fig. 3, where the horizontal
axis denotes the number of shifted linear systems that are solved from $\ell=1$ to $m$ . For
example, in Fig. 3, the computational time of the shifted COCG method at $m=200$ is
about 0.76 [sec.], which means that it required about 0.76 [sec.] to solve the shifted linear
systems: $\{(0.400+0.001i)I-H\}x^{(1)}=e_{1},$ $\{(0.401+0.001i)I-H\}x^{(2)}=e_{1},$ $\ldots,$ $\{(0.599+$

$0.001i)I-H\}x^{(200)}=e_{1}$ . From Fig. 3 we see that as the number $m$ grows larger, the
shifted QMR method required the CPU time more than the shifted COCG method.

In Fig. 3 we can know little about the properties of the two methods for small $\ell$ .
Hence, we show the ratio of the CPU time of the shifted QMR-SYM method to that
of the shifted COCG method in Fig. 4. We see from Fig. 4 that in terms of ratio of
CPU time, the shifted QMR-SYM method converged much faster than the shifted COCG
method when the number of shifted linear systems is small, say, $m<200$ . This can be
explained in the following way: for small $m$ , updating approximate solutions does not
affect the CPU time so much. Other operations such as matrix-vector multiplications

are now one of the most time-consuming parts since the two methods required almost
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Number of shifted inear systems (m)

Figure 3: Required CPU time given in seconds versus the number of shifted linear systems
for each iterative method.
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Figure 4: The ratio of the CPU time of the shifted QMR-SYM method to that of the
shifted COCG method versus the number of shifted linear systems.
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the same number of iterations, see Fig. 1. From proposition 2 (I) we know that in this
case the cost of matrix-vector multiplication for the shifted QMR-SYM method is niuch
cheaper than that for the shifted COCG method since the shifted QMR-SYM method
require real matrix-real vector multiplications and the shifted COCG method requires
real matrix-complex vector multiplications. Moreover, dot products and vector additions
of the complex symmetric Lanczos process used in the shifted QMRSYM method can
be done in $re$al arithmetic. Hence, the shifted QMR-SYM method converged much faster
than the shifted COCG method for a small number of shifts.

4 Concluding remarks
In this paper, with the aim of solving cornplex symmetric shifted linear systems efficiently,
we have derived the shifted QMR-SYM method from two important results given in [2, 3].
The method has an advantage over the shifted COCG method in that it has no need to
choose a suitable seed system. From the results of a numerical example, we have learned
that for a small number of shifts the shifted QMR SYM method converged much faster
than the shifted COCG method. In this case, the shifted QMR-SYM method is a method
of choice for solving complex symmetric shifted linear systems arising from electronic
structure theory.
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