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1 Structure of a binary digit
It is important how a binary digit of memory is realized in a cell, because a strange element
must be steady and robust. In this section we propose a simple structure where the binary digit
is constructed cleverly, and make an analysis of it. We are especially interested in correlation
between the total site number and the steadiness of the binary digit. Moreover, we examine
the robustness by changing several parameters in the model system.

1.1 Model Equations
The basic assumptions are the following:

1. The receptor protein converges very rapidly to equilibrium between two configulations
( $S$ and $T$).

2. $S$ stands for a state which has accepted attractants and receives covalent modifiers one
by one in a definite order. $T$ stands for the opposite.

3. The equilibrium shifts towards the $S$ form as the number of covalent modifiers is in-
creasing. The total sites of the receptor protein is $n$ . The total quantity of the receptor
protein denotes $C_{total}$ , and

$C_{tota} \downarrow=\sum_{i=0}^{n}(S_{i}+T_{i})$ . (1)

We illustrate our model in the following:

Fig. 1 The simple two-state model

The total quantity of the attractant protein is denoted $A_{tota}|$ , and $A$ represents a density of
attractants and moreover, a part of the attractants is trapping in $T_{i}’$ . It is therefore satisfies
that

$A_{total}=A+ \sum_{i=0}^{n}T_{i}’$ . (2)
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The intermediate state $(T_{i}^{l})$ satisfies

$\frac{dT_{i}’}{dt}=k_{i}AT_{i}-\lambda_{i}T_{i}’$ . (3)

As it is assumed that the equilibrium state is realized very rapidly,

$\{\begin{array}{l}k_{0}\mathcal{A}T_{0}=\lambda_{0}T_{0}’,k_{1}AT_{1}=\lambda_{1}T_{1}’,k_{1}AT_{2}=\lambda_{2}T_{2}’,:k_{n}AT_{n}=\lambda_{n}T_{n}’.\end{array}$ (4)

When we solve (2) and (4) about $A$ , we have

$A= \frac{A_{total}}{1+\sum_{i=0_{i}^{\frac{k}{\lambda}\dot{\Delta}}}^{nT}}$ . (5)

As a result, the model equation is the following:

$\{\begin{array}{l}\frac{dS_{0}}{dt}=k_{0}AT_{0}-(\gamma_{0}+\alpha_{0})S_{0},\frac{dS_{i}}{dt}=k_{i}AT_{i}+\alpha_{i-1}S_{i-1}-(\gamma_{i}+\alpha_{i})S_{i},\frac{dS_{n}}{dt}=k_{n}AT_{n}+\alpha_{n-1}S_{n-1}-\gamma_{n}S_{n},\frac{dT_{0}}{dt}=-k_{0}AT_{0}+\gamma_{0}S_{0}+\beta_{0}T_{1},\frac{dT_{i}}{dt}=-(k_{i}A+\beta_{i-1})T_{i}+\gamma_{i}S_{i}+\beta_{i}T_{i+1},\frac{dT_{n}}{dt}=-(k_{n}A+\beta_{n-1})T_{n}+\gamma_{n}S_{n}.\end{array}$ (6)

Here, $i=1,2,3,$ $\cdots,$ $n-1$ , and $\alpha_{i},$
$\beta_{i},$ $k_{i},$ $\lambda_{i},$

$\gamma_{i}$ are positive constants. It is easy to un-
derstand that the quantity of the $C_{total}$ is preserved. In fact, clearly we understand that
$\frac{d}{dt}(\sum_{i=0}^{n}(S_{i}+T_{i}))=0$ by summing up all the equations of the system of equations (6).

1,2 Analysis
Degree of covalent modification, $P$ , is defined by

$P= \sum_{i=1}^{n}i(S_{i}+T_{i})$ , (7)

which means how many covalent modifiers the receptor protein totally possesses. How does
$P$ varies as the total attractants change? We investigate $P$ ’s behavior according to change of
$A_{total}$ in (5). Initial conditions of (6) are $T_{0}=1.0,$ $T_{i}=0.0$ , and $S_{j}=0.0(i=1,2,3,$ $\cdots$ ,
and $j=0,1,2,$ $\cdots,$ $n)$ at first. We increase the value of $A_{total}$ from 0.01 to 10.0 step by step
as a width of step is 0.01, and we plot the value of $P$ after enough time goes by. Then an
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each initial state is successivcly made the hnal state just in the previous simulation. Inversely,
we decrease the value of $\mathcal{A}_{tota}\downarrow$ from 10.0 to 0.01 in the opposite manner, and plot it in the
same figure. We repeat the same kind of numerical experiment in each possibly modifying
site number. Moreover, we exactly solve the stationary problem of (6) in another way, and
we make an infinitesimal stability analysis for each stationary solution. See Fig.$s2,3,4$
and 5, and we see a bistable region existing and hysteresis occuring when the site number is
bigger than two. In the figures, curves outside bistable region stand for stable branches of
stationary solution, and a curve inside bistable region stands for unstable branch. The stable
branches overlap completely with the final states in solving the time evolution equation, but
the unstable branch goes inversely up (or down) the interior of in the bistable region, although
at the end points the final states are jumping up (or down) to the nearest stable states in the
same parameters. These are not overlapped with each other at all.

Fig. 2 l-site Fig. 3 2-site

Fig. 4 6-site Fig. 5 12-site
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2 Circadian rhythm of cyanobacteria
In this section we consider the mathematical model of circadian rhythm of cyanobacteria by
use of the model of a binary digit of strage element constructed and analized in the previous
section. Before presenting our model, we briefly explain the circadian rhythm of cyanobacteria
and the recent development.

The circadian rhythm of cyanobacteria is discovered in 1986 by Prof. $s$ Kondo’s and Iwasaki’s
research group in Nagoya University. It is the most primitive life of organism obtaining circa-
dian rhythm known so far. The clock genes $(kaiA, kaiB, kaiC)$ and proteins $(KaiA,$ $KaiB$ ,
$KaiC)$ have been already determined in [4]. Transcription-Translation roop had been consid-
ered as the core negative feedback roop of the circadian rhythm, but recently phosphorylation-
dephosphorylation cycle of the clock protein, $KaiC$ , continues to oscillate with 24 hours period
in the constantly dark condition in [16], when all the transcription stop, although. Nowaday,
at least in the case of cyanobacteria, the core cycle is thought of as this phosphorylation-
dephosphorylation feedback roop composed of the clock proteins, $KaiA,$ $KaiB$ , and $KaiC$ .
Here $KaiC$ is a receptor protein, and $KaiA$ and $KaiB$ are enzymes and work as attractants
and as repellents, respectively. The possibly modifying number $n$ is regarded as phosphoryla-
tion site of $KaiC$ . Usually $KaiC$ constructs hexamer and it has twelve phosphorylation sites.
But according to T. Nishiwaki et al[13], there are approximately 7.44 sites utilized in the
average, when the phosphorylation of $KaiC$ ’s hexamer is maximum. In this section we let $n$

moving from 2 to 12 to compare the qualitation properties.

2.1 Model Equations
The clock protein $KaiC$ is the receptor protein of phosphoric acids, and as it conbined with
$KaiA$ (which is another clock protein), it is likely to promote phosphorylation. The other
clock protein $KaiB$ is known as a repellent, which operates the complex $KaiA-KaiC$ to let the
receptor protein be likely to be dephosphorylation. The correlation is illustrated in Fig.6. As
we consider that the total quantities of the three proteins must be preserved, respectively, by
writing these as $A_{t\circ tal},$ $B_{total}$ , and $C_{total}$ , then we see

$\{\begin{array}{l}A_{total}=A+(AB)+\sum_{i=0}^{n}T_{i}’=A+(AB)+(\sum_{i=0}^{n}\frac{k_{i}}{\lambda_{i}}T_{i})A,B_{total}=B+E+(AB),C_{total}=\sum_{i=0}^{n} (Si+T_{i}).\end{array}$ (8)

According to Fig.6, we present our model equations of $A,$ (AB), and $B$ , respectively.

$\frac{dA}{dt}=d\{\frac{1}{1+\sum_{i=0X_{i}^{1}}^{nk}T_{i}}($ (9)$m_{2}A_{total}-(l_{2}B+ \sum_{i=0}^{n}\frac{k_{i}}{\lambda_{i}}\frac{dT_{i}}{dt})A\}-m_{2}A\}$ ,

$\frac{d(AB)}{dt}=d\{l_{2}BA-m_{2} (AB)\}$ , (10)

$dB$
$–=d\{l_{1}P(B_{tota1}-(AB)-B)+m_{2}(AB)-(m_{1}+l_{2}A)B\}$ . (11)
$dt$
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Fig. 6 relation of clock proteins

$\lambda_{i},$ $k_{i}(i=0,1,2, \cdots n),$ $l_{j},$ $m_{j}(j=1,2),$ $d$ are positive constents. We remark that (6), (7),
(8), (9), (10), and (11) are a consistent system of equations, although it seems to be surplus,
apparently. In fact, we can derive the conservation law of $A_{tota}|$ in (8) by use of (9) and (10)
easily. We remark that the right hand side of (9) has the terms dependent upon $T_{i}$ or $\frac{dT}{dt}L$ ,
which come from the implicit change of $\mathcal{A}$ because of shift of chemical equilibrium according
to $A$ ’s and $B$ ’s varying explictly. These terms need for conservation law of $A_{total}$ of (8).

2.2 Analysis
In this subsection we solve the system (6), (7), (8), (9), (10), and (11), numerically. First of all
we ensure that it has a time periodic solution shown in Fig.7 and Fig.8. These are generated
by the corresponding hysteresis roop to bifurcations of hysteresis type of Fig.4 and Fig.5.

Fig. 7 6-site Fig. 8 12-site
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Fig. 9 oscillation range in various sites
Fig. 10 period’s change as $d$ ’s moving

We investigate how the period changes, as some parameters move.

Fig. 11 period’s change as $B_{tota}i$ ’s moving Fig. 12 period’s change as $A_{tota}i$ ’s moving

3 Poisson process simulation
In this section we investigate the same system by use of stochastic process. In fact, this is
important and useful, as each event of the chemical reactions in the system should be regarded
as one following Poisson process.

But in the case of a lot of site-numbers, it seems that shakes are relatively small. To ensure
the site-number’s effect, we calculate the rotation number in the phase space of the system.
The rotation number is defined as how many times the corresponding orbit rotates around the
proper center point in the phase space. We first compare the average value of rotation number
of Poisson process system with the rotation number of the system of differential equations. We
moreover compute the variance of the value. By use of these value, we see a kind of stability
of periodic solution of the system for this kind of shakes.
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Fig. 13 3-site $V=10$ Fig. 14 3-site $V=100$

Fig. 15 3-site $V=1000$

Fig. 17 6-site $V=100$

Fig. 16 6-site $V=10$

Fig. 18 6-site $V=1000$
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Fig. 19 12-site $V=10$ Fig. 20 12-site $V=100$

Fig. 21 12-site $V=1000$

Fig. 22 variance Fig. 23 average
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