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Explicit and direct representations of the
solutions of
nonlinear simultaneous equations
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Abstract
In this paper we shall give practical, numerical and explicit rep-
resentations of inverse mappings of n-dimensional mappings (of the
solutions of n-nonlinear simultaneous equations) and show their nu-
merical experiments by using computers. We derive those concrete
formulas from very general ideas for the representation of the inverse
functions.
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1 Introduction

The 2nd author of this paper considered that for any mapping ¢ from an
arbitrary abstract set into an arbitrary set, he tried to consider the represen-
tation of the inversion ¢! in terms of the direct mapping ¢ and he obtained
some simple concrete formulas from some general ideas in ([1]). In this paper,
from its general ideas, we shall give practical representation formulas of some
general functions. Here, we shall give furthermore some general methods and
ideas for the inversion formulas for some general non-linear mappings. We
shall first state the principles for our methods for the representations of in-
verses of non-linear mappings based on ([1}):
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We shall consider some representation of the inversion ¢~! in terms of
some integral form - at this moment, we shall need a natural assumption for
the mapping ¢ . Then, we shall transform the integral representation by the
mapping ¢ to the original space that is the defined domain of the mapping
¢. Then, we will be able to obtain the representation of the inverse ¢!
in terms of the direct mapping ¢. In [1], we considered the representation
of the inverse ¢~! in some reproducing kernel Hilbert spaces, and in [4], we
considered the representations of the inverse ¢! for a very concrete situation
and we gave a very fundamental representation of the inverse for some general
functions on 1 dimensional spaces.

Indeed, note that

|
K(y1,42) = € vl gy € [A, B] (1)

is the reproducing kernel for the Sobolev Hilbert space Hx whose members
are real-valued and absolutely continuous functions on [A, B] and whose inner
product is given by

B
(f1, f2)He =/:4 (f1) f2(y) + fr() f2(y)) dy + f1(A) f2(A) + f1(B) f2(B) (2)
([2]).

For a function y = f(z) that is of C! class and a strictly increasing
function and f'(z) is not vanishing on [a, b] (f(a) = A, f(b) = B), of course,
the inverse function f~1(y) is a single-valued function and it belongs to the
space Hg and from the reproducing property, we obtain the representation,

for any yo € [f(a), f(b)]

FHyo) = (fF710), K(90) gy,

F(b)
-/ (@K@ + £ @)K . w0)dy
+aK(f(a),y0) + bK(f(b)7y0) (3)
From this representation, we obtained in ([4]) the very simple representation

b
F o) = a-;b + %/ Sign(yo - f(:v))dm. (4)




Furthermore, by using the several reproducing kernel Hilbert spaces from
[2] as in (3), we calculated similarly with the related assumptions, however,
surprisingly enough, we obtain the same formula (4). For the formula (4),
we note directly that we do not need any smoothness assumptions for the
function f(x), indeed, we need only the strictly increasing assumption. The
assumption of integrability does not, even, need for the formula (4).

Now, we would like to obtain some multi-dimensional versions. At this
moment, it seems that we can not find some simple representations as in (3)
by some concrete known reproducing kernels for some general domains, and
indeed, we know the reproducing kernels only for special domains and for
special reproducing kernel Hilbert spaces.

In order to consider some general integral representations for some general
functions, we shall recall the fundamental facts:

We can represent a function f in terms of the delta function § in the form

flg) = jD £ (2)8(p — q)dp (5)

in some domain, symbolically. Meanwhile, a fundamental solution G(p — ¢)
for some linear differential operator L is given by the equation, symbolically

LG(p-q)=6(p—q). (6)
So, from (5) we obtain the representation

flg) = /D f(p)LG(p — q)dp. (7)

Then, we can obtain the representation symbolically, by using the Green-
Stokes formula, for some adjoint operator L* for L,

flg) = / L*f(p)G(p — q)dp + some boundary integrals. (8)
D

We shall firstly use this type representation. In this approach, we will meet
the singular integral representation in the first term of (8), however, if G(p—q)
is integrable, then by a simple regularization for G(p — ¢) we will be able to
realize the representation in numerical treatments. In the separate paper
[3] we discussed the natural regularization in the form, for example, for the
singularity .

(lz —yD>’
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we consider the regularization
1
(lz =yl + d)°
for a small 4 and we considered their error estimates.

We are interested in some very concrete results that may be realized by
computers. So, we considered very concrete cases in the 2 dimensional spaces.
It seems that the results will depend on dimensions, domains and functions
spaces dealing with.

In [6], we considered the following typical problem:

Let D C R? be a bounded domain with a finite number of piecewise C*
class boundary components. Let f be a one-to-one C! class mapping from
D into R? and we assume that its Jacobian J(z) is positive on D. We shall
represent f as follows:

v = fi(z) = fi(z1, 72)
y2 = fa(x) = fao(T1, T2) (9)

and the inverse mapping f~! of f as follows:

1= ("N@) = N, p)
z2 = (f20y) = (F 2(v1, 12). (10)

(F (")
((f'l)z(y*)) (11)

in terms of the direct mapping (9).
Of course, we are interested in some numerical and practical solutions of
the non-linear simultaneous equations (9) and we obtained

Proposition 1 ([6]) For the mappings (9) and (10) with (11), we obtain the
representation, for any y* = (yi,v3) € f(D),

((5260) = 3 £, (5) 4meen 535

1 1 : fi(z) — ¥
5 =i (5 - e
(12)

Then, we represented
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In this paper, we shall first give the natural version for the 3 dimensional
case by using the well-known Poisson integral formula and in the last, sur-
prisingly enough we shall give some unified and natural inversion formulas
for the general dimensions that are better than the formula derived from the
Poisson integral formula.

2 3-dimensional formula derived from the Pois-

son integral formula

Let D be a bounded domain in R? with a finite number of C* boundary
components OD. Let f be a one to one C? class mapping of D onto f(D) in
R?2 with sense preserving and we assume that its Jacobian is positive on D.

We set
f1($) fl(l'l,l'z,ﬂ?a)
y=f(z) = | fa(z) | = | fo(z1, 22, 23)
fa(z) fa(z1, 22, x3)

and its inversion f~! as follows:

(F(v) (f D1(v1, y2, ¥3)
z= (N =2y | = | (FD2(v1,92,98) | -

(f51)a(y) (Fa(y1, y2, ys)
Let A = -’%"’? + 4+ % and %g(x) be the Jacobian of y = (y1,** ,¥Yn)
with respect to z = (x1,- -+ ,Z,). For a matrix A, let (A); be the ¢ low vector

of A and (A);; the ¢, j element of A.
We set the vector fields

13
o det(gg(:r) ox; (13)
i ., O 2.8
Ti(z) = o=y 2dil5o @) (o = /(@) Yo W

Then, we obtain the theorem:
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Theorem 1 For any point yo € f(D), we obtain the representation

(FHilyo) = — 4#/// |?/0— leS(IB)d.T1d$2d.’B3

+a;/[,pm<sf—ﬂ><m>°dAz i=1,2,f2-15)

Let U and V be bounded domains in R™ and we write a C? class and one
to one mapping from U onto V as follows: y; = yi(x), ¢=1,---,n. We
denote its inversion by z; = z;(y). Then, we obtain, directly

Lemma 1 For the pull back y* of the mapping y, we have

Yy (Azi(y)dyy A -+ Adyn) = div (adj{ ( (@ ))Qﬂ(:c)})

tdry A---Ndx
det;,g(x) "

i=1--,n.
(16)

Proof. We consider the differential n — 1 form on V'
_1 ax, .
Z( 1" (y dyi A~ ANdyja Adyja A Adyn, i=1,---,n

Then,

Z (—=1)%0- 1’8;'(11)dyx/\ - A dyn,

: 7

that is the part in () in the right hand side in (16). Meanwhile,

* 3 j—1, % 6.’171' *
ywi=» (1) 1y (6—y(y)) y*(dyr A+ Adyioy Adyjia A A dyn)
j=1 J :
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and by the inverse function theorem

() = (@), = e (95),
where

(adj g%(x)) ) = (- )z+Jd tgx( )(d tg((z: ' Yi-L Yi+1, , Yn) (1‘))

y Ti1y Tig1y " ,xn)

Furthermore,

v (dyr A - Adyjoa Adyjer A A dyn)

- Oy, Uil Yinl,
=" det (PRRRRY R 1Y S VRS 1), () dzi A+ Adzg—1 AdTrsr A+ A day
a(mla"' sy Lh—1y Lh+1," " axn)

=) (-1)i+k (adj @(z)> dzi A+ AdTr—y AdTier A+ A dp.
ox ki

Hence,
1 n
R — 1)0-1+G+k) (ad T ) (ad = (z )
y det_u(x)fkll( ) j 52 (@) j 52 (@) y
X d.’L'l FANRERIAN d.’L'k_.l A d$k+1 FANCIIRIVAN d.’L'n
_ 1 - oy Oy
" det &(a) ;( 2 (adJ 5 @) i (55 e ))>,~k
xd:zll\---/\dzk L AdTre Ao Adzn
Oy, \\ %y
k-1 gy oy
det-—“ Z( 2 (adj{ (am(x)) aﬂv(x)})ik
X dflfl/\“'/\dxk_l/\dxk.'.l/\"‘/\d.’L‘n.
Meanwhile,

sy = e @ LOLE@IBY,

Oz det 2 (x)
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which is the right hand side of (16). Therefore, from y*(dw;) = d(y*w;), we
have the desired result.

Example. n=1

1

y*(Az(y) dy) = e
Example. n =2
(A dy; N d = T2 T2 —_ 1:1 1:2 d Nd
y* (A1 (y) dyr A dy2) (ax det 2 (z) 8172 det Qﬂ(m) ) e
() 3 (.1') ) (IL‘) ( )
*(A dyy AN d = 2z = = = )d A dzz
y*(Aza(y) dyy A dyz) ( dz;  det %(x) 812 det 2 (z) fna

Here, - denotes the inner product and
] ) (z)
—(x) = |
oz () (a,, (:l? )
Proof of Theorem 1.

By the Poisson integral formula, we have, when Af~! = 0 on f(D)

1 ofMy) 4,0 0 1 }
() = /faf(o){ lvo —y| Oy / (y)al/y %o — yl aAy

(where v denotes the inner normal derivative)

= — ———grad f (y) — f (y) grad ———— § - 1, dA
T af(D) lyo — ¥l W) we lyo — ¥l v

(x : AP(8f (D)) — A3P(8f(D)),p = 1,2,3 denotes the Hodge * operator)

B iw / /ama) *{I—y;—lradf—l(y) —mw d(lyo 1— yl) }
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(¢; : V; = 8f(D) denotes the local coordinates)
1
el Yy) — F () d(

47,2// { iyo-—yl

-1 d¢z2/\§¢z3

dpin A dibiz
df2 ¢]) /\df3 ¢] )

1 1
= EE— Y d d

4mr ZJ://UJ lyo — f(¢5)] {f 2 %ly (¢, |2 (df‘?(iﬁ%ﬁdﬁ(ﬁj

. dojo N dojs

1 1 adj f'(¢;) } t doys A do,

72 |, e i) e g @) (dﬁﬁﬁdﬁﬁ
_ 1 1 adj*f'(¢;)f'(¢;)

4r XJ:/ u; 190 — f(¢j)|{ det f'(¢;)

d¢j2 A d¢j3

o e W (o — Fl a A do;
=l (oro-ne)) (B25). o

Therefore by using S;,T;,7 = 1, 2,3 we have

“1Y. (o) = — S R R L YPR -
(f™)i(vo) yw / /a T f(x)|(5’ T)(z) - vy dA,
1 1 L
ey (SR GRS

In general, by using Lemma 1, we obtain the theorem.

3 n-dimensional formulas
We shall give the very beautiful representation

Theorem 2 Let D be a bounded domain in R™ with a finite number 8D
of C! class boundary components. Let f be a C! class real-valued function

on D. For any £ € D and for any n € N we have the representation

£(2) = —cn(df (2), dGn( — #)) + cn /a f@)*dCua-2) (18



Here, for n < 2,¢, = 1 and for n > 3,¢, = n — 2. * is the Hod§e star
operator, GG, the fundamental solution of the Laplacian A,, = Z?=1 C%;, and

(, ) the inner product of the vector space A¥(D) comprising of the k order
differential forms over D with finite L2 norms that is

(w,n)=/Dw/\*n=/;n/\*w (w,n € A¥(D)).

Lemma 2 Let U.(0) be an ¢ neighbourhood with centre 0, then

/ *dGp(z) = i
aU.(0) Cn

Proof. Let A, be A, = 132’7), the surface measure of the n dimensional
unit disk. Then,

3

I

|z| (n=1)

Gn(x) = i loglz] (n=2) (logarithmic kernel)

~mr=  (n>3) (Newton kernel).

Hence, on R" \ U,(0) we have dG,(z) = % (vn € N). Then, for
T = (1:17"' ):Bn)

Z;;l('-l)i“l.’l?idl'l A---driy ANdxig1 N --- Adzxy,

*dGp(z) = Azl

(Vn € N).

For a local coordinate ¢ : U(0) — R", we denote the pull back ¢* *
dGp(z) of *dGp(z) by the polar coordinate, by using z = ¢(0) = €¢(6),6 =
(61, ,6n_y) €[0,7] x -+ x [0,7] x [0, 27],

120

o(6) = (cos 6., sinf,cosfy, ---, sinf---sinf,_ocosb,_;, sin6;---sinb,_osinb,_1),

we have ¢* * dG,(x) = sin" %0 sinfn_y déy A--- ANdb,_;. Hence,

cnAn

/ +dGn(z) = / ¢ * dGn(z) = —.
8U(0) [0,7] x -+~ % [0,7] X [0,27] Cn
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Proof of Theorem 2.
Let U(Z) be a neighbourhood contained in D. Then, for G,(z—%) € C*(D\
Ue(£)) and for f € CY(D), f(z) x dGn(x — %) € AY(D \ U(Z)) that is a C*
class differential. Hence, on D \ U(%), for f(z) * dG,(z — &) we apply the
Green-Stokes formula and we have

[ df@) Gtz - )

D\U.()

=/ flz) *dG,(z — ) ;/ f(z) *dG,(z — ).
oD AU (2)

Let 6 be the Dirac distribution and w, be dz; A --- A dx,,. Then, by
d* dGp(z — 2) = ApGp(z — T)wy = 6(x — &)wy, we have

d{f(z) * dGn(z ~ )} = df (z) A %dGpn(z — Z) + (=1)° f(z)d * dGn(z — %)
= df () A *dG,(z — %) + 6(z — ) f(2)w,.

Hence,

mn/' d{f(z) * dGn(z — £)} = (df (), dGu(z — &)).
D\U(%)

¢—0

As in the proof of Lemma 2, from the polar coordinate representation ¢*( f(z)*
dGn(x — &)) = ¢*f(x)¢" * dGn(z — &) = f(Z + €¢(0))¢" * dGn(z — £) and

- from Lemma 2,

/ f(@) % dGo(z — 2) = / F(& + §(8))6°dCn(z — 3)
U, (&) [O,:r] X ++-x [0,7] % [0,27]
)

We thus obtain the desired representation.

Theorem 3 In the situation of Theorem 2 and we assume furthermore
that f is a sense preserving C! class function on D in R™ with a single-valued
inverse. Then, for § € f(D), we obtain the representation
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£ o) = — / dz; A f* % dGn(y — yo) + / zif* % dGa(y — o).
D oD

Here, f;! denotes the i component of f~!.

Proof. For the function f~! on f(D), we use the representation in The-
orem 2 and we use the transform of the representation by f. Then, by using
the formulas f*df;'(y) = dz;, and f*(w,7) = (f*w, f*n), we obtain the
desired representation.

In particular, for n = 1, we obtain (4), directly.

For n = 2, we obtain (13) and this formula may be represented as follows,
from our general formula:

For any y € f(D), we have

104 _i/ 4, —
f; (y)—zﬂ_ aowtdal da:,/\d

1,2.

Here, 6, = Arctan ;—‘1(5%——%-, Oy = — Arctan %@);g- In particular, furthermore,

when D is a convex domain, we have the representation

xmtn + mmax 1
1( )= Sttt — ) ( 6;dz;
T \JaD

/d:z:,/\da) i=1,2.

Here, ™™ and 2 are determined by § as the two points of 8D ([6]).

4 Numerical experiments

We shall give some simple numerical examples. The integrations are com-
puted by Mathematica™. Consider the mapping f on D = [0,1]? x [1,2] as
follows:
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n = fi(z) =z,

Y2 = fo(x) = 22,
Yz = f3($) = - — Ty + 1‘%
Since det f'(z) = 2x3 > 0 on D and f3 is subharmonic because of

Afs(z) = 2 > 0, Theoreml can be applied. Fig.1 (a), (b) and (c) shows

the graph of fio.1,0912xi2} 3 *lo.1,092x{2p and f3'lj0.1,002x{2} computed
by (16), respectively.

LT AL I T AT Yo

LA A TRIEL)

R R
LLALRIRA
5

(a) fi lo1.092x{2} (b) f5o.1.002x{2} () f3'lo.1.092x {2}
Figure 1: the graph of f~'|jp.1,092x{2} computed by (16).
Next, regard the mapping on [0, 1)?

g(u,v) = —;—I cos(40u) + cos(40v)| + 1

as an original image data and regard §(u,v) = f3(u, v, g(u, v)) on [0, 1]? as the
transformed image data. Then §(u,v) = f5(u,v,§(u,v)) on [0,1]? can be
considered to be the reconstructed image data because of §(u,v) = g(u,v).
Figure 2(a) and Figure 2(b) show g(u,v) and §(u,v), respectively. Figure
2(c) shows §(u,v) computed by (16).

rrrren IR ca

0.4 0.6 0. 1

(a)‘ g(u;v) on [0.01,0.99] (b) g(@, v) on [0.01,'0.99] (c) §(u,v) on [0.01,0.99]
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Figure 2: Numerical image reconstruction computed by (16).

For the case of the identity on D = [0, 1]®
On D = [0, 1}3, we consider the identity mapping

y1 = fr(z) = 71, o =fi'y)=wn
Y2 = fa(x) = 29, T2 = f5 ' (y) = vz
y3 = f3(x) = z3, T3 = f{l(y) = Y3

Then, for £ € D,det f'(x) = 1 > 0 and from D = f(D) = [0,1]3,0D =
Of(D) = US_, ¢;(U). Here, U = [0,1], and we assume that

1 0
o1(u,v) = (u) , P2(u,v) = (v) , ¢3(u,v) = (
v U
;
) oien= 3)

u
¢4(U,U) = (O) ,¢5(U,’U) = ( ) ’¢6(u U) - (
v
"'—__‘1“‘__|3 ((-rl—"!71)d$2/\d$3+(1'2—-g2)d$3/\d1‘1+(.’L‘3—-373)d$1/\d.’132).

From (2), we have
4r|x

og e & =

[ *dG3(y—g) =

Hence, from

I 6 I
/aD (2§> [** dGn(y—9) = /U;dy ((zz) I dGn(y—y))

we obtain by Theorem 2,
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1 o 1-g 1 7 0 1— g, v
f_1(§)=—//(—_5 v+t 3 | !
4r Jo Jo \lé1 =1l v |$2 — 7 u |¢3 — 7 u
o u 1—gs (¥ 7s v
+———— |0 +—— v | + "5 | u | |dudv
lpa—gPP \, ] les—aP\;) lI¢e—7 |\, )

1 oo 1 T1— %
- Z../ / / 3 | T2 — 72 | dzidzodzs.
T Jo Jo Jo |z -1l T3 — Js

the graphs of f~! on {7 € [0.1,0.9]%|7s = 0.5}.
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