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1 Introduction

Trees are familiar objects in diverse mathematical fields. In set theory we are mostly concerned with
infinite trees. One basic problem on infinite trees is the existence of paths (also called cofinal branches).
The tree property for a cardinal « is the statement that any x-tree has a path, i.e. that there are no
w-Aronszajn trees. R. Hinnion gave a generalization of trees; he defined the notion of a k-tree on a
directed set D ([3]). He also defined the tree property for such trees. In this paper we exhibit some
statements which are derived from an attempt to generalize a characterization of the tree property (see
Theorem 4.1). The characterization involves the tree property for directed set P.A. In the sequel, we
collect the definitions and statements which arc necessary for the characterization.

2 Directed sets and cofinal types

In 1922, E. H. Moore and H. L. Smith generalized the notion of convergence (|6]). The idea was to
replace the domain of a usual sequence, the set of natural numbers, by an arbitrary directed set. This
generalized notion of a sequence is called a net. In his book [8], J. W. Tukey studied topological
properties such as uniformity and compactness using nets. On the way he introduced an ordering on
the class of all directed sets to compare the ability of convergence of nets having different directed sets
as domains. This ordering is known as the Tukey ordering. To begin with, we summarize the definition
of the Tukey ordering and related cardinal functions on directed sets.

Definition 2.1 ([8]) Let (D, <p),(F, <g) be directed sets. A function f: E — D which satisfies
Vd € D3e € EVe' >g e [f(¢') 2p d]

is called a convergent function. If such a function exists we write D < F and say E is cofinally finer than
D. < is transitive and is called the Tukey ordering on the class of directed sets. A function g: D — E
which satisfies

Vee€ E3d e DVd' € D [g(d') <gp e — d' <p d]

is called a Tukey function.

If there exists a directed set C which has cofinal subsets D’ and E’, respectively isomorphic to D
and F, then we say D is cofinally similar with E. In this case we write D = E. = is an equivalence
relation, and the equivalence classes with respect to = are the cofinal types.

Proposition 2.2 ({8], see also [7]) For directed sets D and E, the following are equivalent.

(a) D= E.
(by DL FE and E < D.

So we can regard the Tukey ordering as an ordering on the class of all cofinal types.
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Definition 2.3 For a directed set D,
add(D) %" min{|X|| X € D unbounded}.
cof (D) def min{|C! | C C D cofinal}.

These are the additivity and the cofinality of a directed set. We restrict ourselves to directed sets D
without maximum, so add(D) is well-defined.

Proposition 2.4 For a directed set D (without mazimum),
Ro < add(D) < cof (D) < [D}.

Furthermore, add(D) is regular and add(D) < cf(cof (D)). Here cf(k) denotes the cofinality (or additiv-
ity. since these are the same) of a cardinal k.

Proposition 2.5 For directed sets D and E, D < E implies
add(D) > add(E) and cof(D) < cof(E).

From Proposition 2.2 and 2.5 we see that the cardinal functions add and cof are invariant under
cofinal similarity.

In the following, « is always an infinite regular cardinal. If P is partially ordered set, we use the
notation X<, = {r € X | £ < a} for X a subset of P and a € P. As usual, P, A= {z C A | |z| <k} is
ordered by inclusion. Note that add(P,.)\) = &.

Definition 2.6 ([4]) We define the width of a directed set D by
wid(D) ¥ sup{|X|* | X is a thin subset of D},
where ‘a thin subset of D’ means that it satisfys
Vd € D{|X<q4| < add(D)].

Lemma 2.7 ([4]) For a directed set D and a cardinal A > & := add(D), the following are equivalent.

(@) D has a thin subset of size .
(b) D > P.A.
(¢) There erxists an order-preserving function f: D — P A with f[D] cofinal in P .

Corollary 2.8 ([4]) The width is invariant under cofinal similarity, and

wid(D) = sup{At | D> P.\}
= sup{At | 3f: D - P\ order-preserving with f[D] cofinal in P A}.

Lemma 2.9 add(D)* < wid(D) < cof(D)*.

3 The tree property for directed sets

Definition 3.1 (k-tree) ({2]) Let D denote a directed set. A triple (T, <, s) is said to be a k-tree on
D if the following holds.

1) (T.<t) is a partially ordered set.

2) s: T — D is an order preserving surjection.

3) Forallt € T, s1T<;: T<y = Dcyry (order isomorphism).

1) For all d € D, |s™'{d}| < k. We call s~!{d} the level d of T.

Note that under conditions 1)2)4), condition 3) is equivalent to 3°):
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3’) (downwards uniqueness principle) Vt € TVd' <p s(¢)3! ¢’ <r t [s(t') = d'].
If a x-tree (T, <7, s) satisfies in addition
5) (upwards access principle) V¢ € TVd' >p s(t)3t' >r t [s(t') = d'],
then it is called a x-arbor on D.

In the above definition, if we choose D to be an infinite regular cardinal k, then the function
s corresponds to the height function, and thus a ‘k-tree on s’ coincides with the classical ‘x-tree’.
Moreover, an ‘arbor’ is a generalization of a ‘well pruned tree’.

Definition 3.2 (tree property) ([2]) Let (D,<p) be a directed set and (T, <r,s) a x-tree on D.
f: D — T is said to be a faithful embedding if f is an order embedding and satisfies so f = idp. If for
each s-tree T on D there is a faithful embedding from D to T, we say that D has the x-tree property.
If D has the add(D)-tree property, we say simply D has the tree property.

The reason why we are interested in the case k = add(D) is explained in [2]. Note that if D =k a
faithful embedding corresponds to a path on a tree.

Proposition 3.3 ([2]) Let D be directed set and let k = add(D). D has the tree property iff for any
k-arbor on D there is a faithful embedding into it.

Proposition 3.4 ([4], (5]) If E has the tree property, D < E in the Tukey ordering and add(D) =
add(FE), then D also has the tree property. Thus having or not having the tree property depends only on
the cofinal type of a directed set.

Corollary 3.5 ({2]) If D has the tree property, then add(D) has the tree property in the classical sense.
Theorem 3.6 ([2]) For a strongly inaccessible cardinal k, the following arc equivalent:

{a) x is strongly compact.
(b) All directed sets D with add(D) = & have the tree property.

Condition (b) also valid for K = Rg.

4 The branching equivalence

Theorem 4.1 ([4], [5]) Let D be a directed set and let k := add(D) be strongly inaccessible. The
following are equivalent:

(a) D has the tree property.
(b) For all A < wid(D), PxA has the tree property.
(c) For all A < wid(D), P.A is mildly ineffable.

If we consider the generalization of the theorem by dropping the assumption that x be strongly
inaccessible, condition (c) does not make sense any more. In the proof of (a) = (b) we use only that &
is regular. So we ask:

Problem 4.2 Does the implication (b) = (a) hold for regular, non-strong limit cardinals K2
Answering a question related to the above, Usuba has recently proved the following theorems:
Theorem 4.3 ([9])(PFA) All directed sets with add(D) = Ry have the tree property.

Theorem 4.4 ([9]) If Po\ has the tree property for some w < k < X, then 0% exists.
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These theorems indicate the consistency strength of the tree property in the non-strong limit case.
Thus Problem 4.2 actually makes sense.

To investigate the problem, we look at method used in the proof of (a) = (b) of Theorem 4.1, given
in [5]. It tells us that there is a restriction on the way how an x-arbor branches. We give some definitions
needed to analyze the branching.

Definition 4.5 (branching equivalent levels) ([1]) Let (D, <p) bec a directed set and (T, <r,s) a
x-arbor on D. For d,d’ € D define a binary relation Ly C s71'{d} x s7!{d’} by:

t.t' € Lyy <= Jee Die>pd.d Aues e}t <runt <z

We say that ¢ and t’ are linked.
Next define an order relation < on D by:

d=<d <= Lgg is a function from s™'{d’} to s }{d}.

If d < d’ holds, we say level d' decides level d. Clearly d < d’ implies d < d’. The meaning of d <X d’
is that if the faithful embedding is given at level d’, there is exactly one possible choice to extend it to
level d.

Finally define an equivalence relation ~ on D by the usual way; d ~d' <= d <d Ad =<d, and
let B := D/ ~ be the set of equivalence classes. We call the elements of B the branching equivalence
clusses.

Proposition 4.6 With the notation of Definition 4.5, assume that k is weakly compact. Then |B<|q)| <
w ford € D.

Proof Suppose on the contrary that |B<iq)| = &, and let (do | @ < k) € "D be a sequence such that
d, <dfora<kandd, £dsfora< 3 <k Asd, #dg. eitherd, Adzords £Ad, fora < 3 < k.
Since & has the partition property x — (k)3, without loss of generality, d,, £ dy for @ < 3 < k, or
ds £ d, for o < 3 < k. Assume the first case. (The other case can be treated similarly.)

For each pair (a,3) with o < 8 < & there are t;, 4, € s7'{ds}, U’zo.,’?)’u%md) € s '{d,} such that

<u%a.ﬂ) ' t(‘—Y~U) >’ <U’%a_(j) , t((x.d)) S Lrl,, oy

1 2
and Un.a) #* Ulo 3y
. 1 2 -1 ]
Since d, < d there are Va8 Yiaa) € 5 {d} such that

U(loz.ﬁ) is linked to t(, 3 and u(l(m.,).
v?am is linked to t(, 3 and u%am,
and v<l(x.,'3) # 7"’(2a.;3>'
So. there is a map k2 2 (o, 8) — <v<1aﬂ>,v(2u‘[,>> € (s~ '{d})?. Since |{(s~'{d})?| < , by the partition
property again, there are o, 3,y € & such that a < 3 < v and 1’20.3) = vz,%} for i = 1,2. Then
Vi) = Vg 18 linked to u}, 5 and ta,p), 80 ul, 5 = tias- Likewise u?, 3 = tam- But this
contradicts the assumption that u(, 5 # u?, 5y Thus [Bgjayl < &. O

Proposition 4.7 With the notation of Definition 4.5, let k be a cardinal and let < be a pre-ordering
(a relation which is reflexive and transitive) on D such that

d<pd =dad.
Assume that
]B’S[fill <k ford e D, (%)

where B' = D/ ~ and d ~ d" <= d Qd ANd <d. Then there is a x-arbor T on D such that <
coincides with the relation =< (’decides’) on D with respect to T.
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Proof Define a k-arbor (T, <7, s) by

s~Hd} := {(t,d) | t is a function from B,gl[d] to 2, and |t71{1}] < 1},
(t,d) <r (t',d") <= d<pd andt=1t[Bgy,.

By the condition (%), |s™!{d}| < k for d € D.

Downwards uniqueness is clear. We have to check upwards access. Given arbitrary d <p d’ and
(t.d) € s7*{d}, we have to find some (t',d’) >p (t,d). Just take t’ D t so that #' I Bgig = t and
t'([e]) = 0 for [e] € By 4 \ Bgq-

Now we shall see E{lat < coincides with the relation 'decides’.

(1)d <d = d decides d

Consider the map @: s7}{d'} 3( ¢, d') ~> (¢ [B’<,[d],d> € s~'{d}. We check that this map witnesses d’

decides d. Given any (¢,d’) € s7!{d'} and d,d’ € D with d < d’, pick dp > d,d’ in D. By upwards

access, there is (to, do) € s7!'{do} such that (¢,d’) < (to,do), i.e. t =tg] ’<,[d,]. But t [B’Q[d] =tp [B’q[d,]

since d < d’. Hence <t {B’qd],d> < (to,do). Since (tg,do) was taken arbitrary, this shows that d’ decides

d by the map . -

(2) d’ decidesd = d<d

Assume that d ¢ d’. Consider the elements (t;,d) € s~'{d} (i = 0,1), where t;([d]) = i and ¢([e]) = 0

for [e] # [d]. Then both of (t;,d) are linked to (0,d’), where 0 is the constant zero function on By,,.

Thus d’ does not decide d. -
Hence < is exactly the relation 'decides’ on D. ad

Theorem 4.8 Let k be a weakly compact cardinal. Then for a partition B’ of D into nonempty sets,
the following are equivalent:
(a) B’ is the set of branching equivalent classes with respect to some k-arbor T.
(b) B’ is obtained from a pre-ordering < as described in Proposition 4.7 and satisfies |B’S[d][ < K
forde D.

Instead of considering partitions of D, we may take a set of representatives ¥ C D with respect
to the branching equivalence relation ~. Now, what are the conditions that a set of representatives
Y C D does satisfy? Since subsets of D are easier than pre-orderings on D to handle with, this setting
makes the construction of arbors easier. We hope that from considering all possible Y, we get enough
information about the branching structure.

Lemma 4.9 Let D be a directed set with k = add(D) and letY be a set of representatives with respect to
the branching equivalence relation of some k-arbor T. Then all increasing k-chains of Y are unbounded
in D.

Proof Assume that (d, | @ < k) is a k-chain in Y with upper bound e € D. By recursion on a we
choose elements (u, | @ < &) in s7}{e} such that

Va< kVB,3 <a[B#0 — ug | da #up | dal (%)

Here u | d denotes the unique element v at level d which satisfies v <t u. Suppose ap < « and we have
already a sequence (uq | @ < ap) satisfying (%) up to a = ap. Now look at level d,, and dq,41. Since
level d,, does not decide level dgy,+1, there are

t € s7H{dao},
Vo, V1 € S—l{da()-«l-l}

such that ¢t <7 vp,v; and vy # v;. By (%), not both of vg,v; can be among uy | dug+1 (o < ag). So,
we can choose uq, € s7'{e} so that us, | dap+1 & {Ua | dap+1 | @ < ap}. This ensures the successor
step of the construction.

If o is a limit ordinal and for every 3 < o the sequence (ug | 3 < 3) satisfies (x), then (ug | 8 < o)
also satisfies (*).

Hence we succeed in constructing the required sequence (u, | «« < k). Surely these u, are distinct
elements of s~!{e}. But this contradicts the restriction of the size of s~ !{e}. |
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Proposition 4.10 Let D be a directed set with k = add(D) and let Y be u set of representatives with
respect to the branching equivalence relation of some k-arbor T. Then

- Foralld e D, |Y<4| <sup{(2%)* | 6 < &}, and

- All increasing k-chains of Y are unbounded in D.

Proof The first condition is obtained from the proof of [5, Lemma 8.10] a

Problem 4.11 Are the above two conditions all that can be said about Y 2 In other words, given a
subset Y C D satisfying the above two conditions, is there always a x-arbor T' on D such that each two
distinct elements of Y lie in different branching equivalence classes?
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