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1 Introduction
Trees are familiar objects in diverse mathematical fields. In set theory we are mostly concerned with
infinit, $\xi^{1}$ trees. One basic problem on infinite trees is the existence of paths (also called cofinal branches).
The tree propertv for a cardinal $\kappa$ is the staternent that any $\kappa$-tree has a path, i.e. that there are no
$\gamma_{\backslash }- A\cdot\prime a.|n$ trees. R. Hinnion gave a $generali^{t}/ation$ of trees; he defined the notion of a $\kappa$-tree on a
$rli_{1\zeta(}\prime ted\backslash t^{\backslash }tD$ ([3]). He also defined the tree property for such tiees. In tliis paper we exhibit some
$b\}\gamma.\uparrow(t’t11t^{1}t\downarrow t\backslash \backslash$ which are derived from an attempt to generalize a $ch_{ciI_{C}’}\cdot te1i_{l\dot{c}t}\ulcorner tior1$ of the tree property (see
Tbeoi eiii 4.1). The characterization involves $1_{l}$ he tree property for directed set $\mathcal{P}_{h}\lambda$ . In the sequel, we
( $ol1\mathfrak{c}^{s}((t1\downarrow t’$ definitions and statements which are $11e(ess\cdot a1^{\backslash }y$ for the characterizatioii.

2 Directed sets and cofinal types
$I_{I1}$ 1922, E. H. Moore and H. $L$ , Smith generalized the notion of convergence ([6]). The idea was to
replace the domain of a usual sequence, the set of natural numbers, by an arbitrary directed set. This
generalized notion of a sequence is called a net. In his book [8], J. W. Tukey studied topological
properties such as uniformity and compactness using nets. On the wav he introduced an ordering on
tlie class of all directed sets to conlpare the ability of convergence of nets having different directed sets
$r(\iota_{\iota}\backslash$ doinains. This ordering is known as the Tukev orderiiig. To begin with, we summarize the definition
of the Tukey ordering and related cardinal functions on directed sets,

Definition 2.1 ([8]) Let $\langle D,$ $\leq D\rangle$ , $\langle E$ . $\leq g\cdot\rangle$ be $\mathfrak{c}lii\cdot ected$ sets. A function $f:Earrow D$ which satisfies

$\forall d\in D\exists e\in E\forall e’\geq Ee[f(e’)\geq Dd\rfloor$

is called a convergent function. If such a function exists we write $D\leq E$ and say $E$ is cofinally finer than
D. $\leq$ is transitive and is called the Tukey ordering on the class of directed sets. A function $g:Darrow E$
$W\mathfrak{l}11Ch$ satisfies

$\forall e\in E\exists d\in D\forall d’\in D[g((t’)\leq E$ $earrow$ $\text{\’{a}}’\leq Dd]$

is called a Tukey function.
If there exists a directed set $C$ which has cofinal subsets $D’$ and $E’$ , respectively isomorphic to $D$

and $h^{1}$ , then we say $D$ is cofinally sirriilar uiith. $E$ . In this case we write $D\equiv E.$ $\equiv$ is an equivalence
relation, and the equivalence classes with respect to $\equiv$ are the $cofir|.al$ types.

Proposition 2.2 ([8], see also $[7|)$ For direc $ted$ se $tsD$ and $E$ , the followinq are equiv$(jileri.t$ .
(a) $D\equiv’-\sim E$ .
(b) $D\leq Ea7tdE\leq D$ .

So we can regard the Tukey ordering as an ordering on the class of all cofinal types,
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Definition 2.3 For a directed set $D$ ,

add $(D)$
$de=^{r}$ niin{ $|X||X\subseteq D$ unbounded}.

cof $(D)$ $def=$
$\min\{|C||C\subseteq D$ cofinal $\}$ ,

These are the additivity and the cofinality of a directed set. We restrict ourselves to directed sets $D$

without niaximum, so add $(D)$ is well-defined.

Proposition 2.4 For a directed set $D$ (without maximum),

$\aleph_{0}\leq$ add $(D)\leq$ cof $(D)\leq|D|$ .
$FurYhermore$ , add $(D)$ is regular and add $(D)\leq$ cf $(\subset of(D))$ . Here cf $(\kappa)$ denotes the cofinality (or additiv-
; $ty$ . since these are the same) of a cardinal $\kappa$ .

Proposition 2.5 For directed sets $D$ and $E,$ $D\leq E$ implies

add $(D)\geq$ add $(E)$ an $d$ cof $(D)\leq$ cof $(E)$ .
$F^{\backslash }rom$ Proposition 2.2 and 2.5 we see that the cardinal functions add and cof are invariant under

cofinal similarity.
In the following, $\kappa$ is always an infinite regular cardinal. If $P$ is partially ordered set, we use the

notation $X_{\leq a}=(x\in X|x\leq a\}$ for $X$ a subset of $P$ and $0\in P$ . As usual, $\mathcal{P}_{\kappa}\lambda=\{x\subseteq\lambda||x|<\kappa\}$ is
ordered by inclusion. Note that add $(\mathcal{P}_{\kappa}\lambda)=\kappa$ .

Definition 2.6 ([4]) We define the width of a directed set $D$ by

wid $(D)^{d}=^{ef} \sup\{|X|^{+}|X$ is a thin subset of $D$ ),

where ‘a thin subset of $D$ ’ means that it satisfys

$\forall d\in D[|X_{\leq d}|<$ add $(D)]$ .

Lemma 2.7 ([4]) For a directed set $D$ and a cardinal $\lambda\geq\kappa$ $:=$ add $(D)$ , the following are equivalent,

(a) $D$ has a thin subset of size $\lambda$ .
(b) $D\geq \mathcal{P}_{h}\lambda$ .
(c) There exists an order-presennng function $f:Darrow \mathcal{P}_{\kappa}\lambda$ with $f[D]\omega final$ in $\mathcal{P}_{\kappa}\lambda$ .

Corollary 2.8 ([4]) The width is invanant under cofinal similarity, and

wid $(D)$ $=$ $\sup\{\lambda^{+} D\geq \mathcal{P}..\lambda\}$

$=$ $\sup$ { $\lambda^{+}|\exists f:Darrow \mathcal{P}_{\kappa}\lambda$ order-preservrng ulith $f[D]$ cofinal in $\mathcal{P}_{\kappa}\lambda$ }.

Lemma 2.9 add $(D)^{+}\leq$ wid $(D)\leq$ cof $(D)^{+}$ .

3 The tree property for directed sets
Deflnition 3.1 ( $\kappa$-tree) ([2]) Let $D$ denote a directed set. A triple $\langle T,$ $\leq\tau,$ $s\rangle$ is said to be a $\kappa$-tree on
$D$ if the following holds.

1 $)$ $\langle T_{i}\leq\tau\rangle$ is a partially ordered set.
2 $)$ $s:Tarrow D$ is an order preserving surjection.
3 $)$ For all $t\in T,$ $s\square T_{\leq t}:T_{\leq\downarrow}arrow D_{\leq s(t)}\sim$ (order isomorphism).
4 $)$ For all $d\in D,$ $|s^{-1}\{d\}|<\kappa$ . We call $s^{-1}\{d\}$ the level $d$ of $T$ .

Note that under conditions $1$ ) $2)4)$ , condition 3) is equivalent to 3’):
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3’ $)$ (downwards uniqueness principle) $\forall t\in T\forall d’\leq os(t)\exists!t’\leq\tau^{t}[s(t’)=d’]$ .
If a $\kappa$-tree $\langle T,$ $\leq\tau,$ $s\rangle$ satisfies in addition

5 $)$ (upwards access principle) $\forall t\in T\forall d’\geq Ds(t)\exists t’\geq\tau t[s(t’)=d’|$ ,

then it is $c$alled a $\kappa$-arbor on $D$ .

In the above definition, if we choose $D$ to be an infinite regular cardinal $\kappa$ , then the function
$s$ corresponds to the height function, and thus a ‘

$\kappa$-tree on $\kappa$

’ coincides with the classical $\kappa$-tree’.
Moreover. an ‘arbor’ is a generalization of a ‘well pruned tree’.

Deflnition 3.2 (tree property) ([2]) Let $\langle D,$ $\leq D\rangle$ be a directed set and $\langle T,$ $\leq\tau,$ $s\rangle$ a $\kappa$-tree on $D$ .
$f:Darrow T$ is said to be a faithful embedding if $f$ is an order embedding and satisfies $s\circ f=$ id $D$ . If for
each $\kappa$-tree $T$ on $D$ there is a faithful embedding from $D$ to $T$ , we say that $D$ has the $\kappa$-tree property.
If $D$ has the add $(D)$-tree property, we say simply $D$ has the tree property.

The reason why we are interested in the case $\kappa=$ add $(D)$ is explained in [2]. Note that if $D=\kappa$ a
faithful embedding corresponds to a path on a tree,

Proposition 3.3 ([2]) Let $D$ be directed set and let $\kappa=$ add $(D)$ . $D$ has the tree property iff for any
$\kappa$ -arbor on $D$ there is a faithful embedding into it.

Proposition 3.4 ([4], [5]) If $B$ has the tree prope $\uparrow ty,$ $D\leq E\uparrow n$ the Tukey ordering and add $(D)=$
add $(E)$ , then $D$ also has the tree property. Thus having or not having the tree property depends only on
the cofinal type of a directed set.

Corollary 3.5 ([2]) If $D$ has the tree property, then add $(D)$ has the tree property $m$ th $e$ classical sense.

Theorem 3.6 ([2]) For a stron$gly$ inaccessible cardin $(il\kappa$ . the following $rn\gamma$ equivalent:

(a) $\kappa i.s$ strongly compact,
(b) All (tirected sets $D$ with add $(D)=\kappa$ have the free property.

$COn$ drtion (b) also valid for $\kappa=\aleph_{0}$ .

4 The branching equivalence
Theorem 4.1 ([4], [5]) Let $D$ be a directed set and let rc $:=$ add $(D)$ be strongly inaccessible. The
following are equivalent:

(a) $D$ has the tree property.
(b) For$\cdot$ all $\lambda<$ wid $(D),$ $\mathcal{P}_{\kappa}\lambda$ has the tree property.
(c) For all $\lambda<$ wid $(D),$ $\mathcal{P}_{\kappa}\lambda$ is mildly inefjable.

If we consider the generalization of the theorem by dropping the $\ ssuni_{1}$)$tion$ that $\kappa$ be strongly
inaccessible, condition (c) does not make sense any inore. In the proof of $(a)\Rightarrow(b)$ we use only that $\kappa$

is regular. So we ask:

Problem 4.2 Does the implication $(b)\Rightarrow(a)$ hold for $regular_{l}$ non-strong limit cardinals $\kappa^{\varphi}$

Answering a question related to the above, Usuba has recentlv proved the following theorems:

Theorem 4.3 ([9])(PFA) $\mathcal{A}ll$ directed sets with add $(D)=\aleph_{2}$ have the tree property.

Theorem 4.4 ([9]) If $\mathcal{P}_{!\iota}\lambda$ has the tree property for some $\omega<\kappa<\lambda$ , then $o\#$ exists.
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These theoreins indicate the consistency strength of the tree property $irl$ the non-strong limit case.
Thus Problem 4.2 actually makes sense.

To investigate the problem, we look at method used in thc proof of $(a)\Rightarrow(1))$ of Theorem 4.1, given
in [5]. It tells us that there is a restriction on the way how an $\wedge$.-arbor branches. $l\dagger\backslash ^{\gamma}e$ give soine definitions
needed to analyze the branching.

Definition 4.5 (branching equivalent levels) ([1]) Let $\langle D,$ $\leq 0\rangle$ be a directed set and $\langle T,$ $\leq\tau,$ $s\rangle$ a
$\kappa$-arbor on $D$ . For $d$ , $d’\in D$ define a binary relation $L_{d.d}/\subseteq s^{-1}(d\}xs^{-1}(d’\}$ by:

$t.t’\in L_{d,d’}\Leftrightarrow\exists e\in D[e\geq Dd\tau$ $d’\wedge\exists u\in s^{-1}\{e\}[t\leq\prime ln\wedge t’\leq\prime l\cdot u\rceil|$ .

$w_{()}$ sav that $t$ and $t’$ are linked.
Next define an order relation $\preceq$ on $D$ by:

$d\preceq d’\Leftrightarrow L_{d.d’}$ is a function from $s^{-1}\{d‘\}$ to si‘ i $(d\}$ .

I $\}$

’

$d\preceq d’$ holds, we say level d’ decides levcl $d$ . Clearlv $d\leq d’$ implies $d\preceq d’$ . The meaning of $d\preceq d$
‘

is that if the faithful embedding is given at level $d’$ , there is exactly one possible choice to extend it to
level $d$ .

Finallv define an equivalence relation $\sim$ on $D$ by the usual way; $d\sim d’\Leftrightarrow d\preceq d’\wedge d’\preceq d$ , and
let $\mathcal{B}$ : $–D/\sim$ be the set of equivalence classes. We call the elements of $\mathcal{B}$ the branching equivalence
$([a6SCS$ .

Proposition 4.6 With the notation of $Definition4\cdot 5$ , assume that $\kappa$ is weakly compact. Then $|\mathcal{B}_{\leq[d]}|<$

$h$ for $d\in D$ .

Proof Suppose on the contrary that $|\mathcal{B}_{\leq!}d]|\geq\kappa$ , and let $\langle d_{o}|\alpha<\kappa\rangle\in"$ $D$ be a sequence such that
($l_{(y}\preceq d$ for $\alpha<\kappa$ and $d_{\alpha}7^{l}d_{3}$ for $\alpha<\beta<\kappa$ . As $(l_{\alpha} \oint d_{9}$ . either $d_{\alpha}\not\leq d_{3}$ or $d,\not\leq d_{t\lambda}$ for $\alpha<\beta<\kappa$ .
Since $\wedge$ ha.s the partition property $\kappaarrow(\kappa)_{2}^{2}$ . without loss of generalitv, $d(\backslash \not\leq d_{j}$ , for $\alpha<\beta<\kappa$ , or
$d_{\{}\not\leq(j_{()}$ for $\alpha<3<\kappa$ . Assume the $fi$rst case, (The otlicr case can be treated siinilarly.)

For each pair $\langle 0,$ $\mathcal{B}\rangle$ with $\alpha<\mathcal{B}<\kappa$ there are $t_{\langle\alpha,(J\rangle}\in s^{-1}\{d_{\beta}\},$ $u^{1}\uparrow l^{2}\langle a,3\rangle’ l_{(X}$

,$ $\rangle$

$\in s^{-1}\{d_{()})$ such that

$\langle u_{\langle\alpha.\beta\rangle}^{1},$ $t_{\langle\alpha.\beta\rangle}\rangle,$ $\langle\uparrow\iota_{(\alpha.d\rangle}^{2},$ $t_{\langle\alpha,\rangle}\rangle\in L_{d_{1},,d},$,

and $u_{\langle\alpha\beta)}^{1}\neq u_{\langle \mathfrak{a},\beta\rangle}^{2}$ .

Since $d$. $\leq d$ there are $v_{(\alpha,\beta\rangle}^{1},$ $v_{\langle \mathfrak{a},\beta\rangle}^{2}\in s^{-1}\{d\}$ such that

$v_{\langle\alpha,\beta)}^{1}$ is linked to $t_{(\alpha./’\rangle}$ and $\uparrow\iota_{\langle(t.(;_{\rangle}}^{1}$ .
$v_{\langle\alpha\prime’\rangle}^{2}$ is linked to $t_{\langle(\}_{\backslash }(j\rangle}$ and $t\iota_{(\alpha.\{j\rangle}^{2}$ .

and $v_{\langle\alpha\beta\rangle}^{1}\neq v_{(\alpha_{1}\beta\rangle}^{2}$ .

$So_{1}$ tliere is a map $\kappa^{2}\ni(0,$ $\beta\rangle\mapsto\langle v_{\langle\alpha,\beta\rangle}^{1},$ $v_{\langle\alpha\{’\rangle}^{2}\rangle\in(s^{-1}\{d\})^{2}$ . Sinc $c|(9^{-1}\{d\})^{2}|<\kappa$ , by the partition
piop $(^{\backslash }rt\backslash r$ again, there are $\alpha,$

$\beta,$ $\gamma\in\kappa$ such that $\alpha<\beta<\gamma$ and $v_{(\alpha,l)}^{l}=v_{\langle\prime 9,\gamma/}^{i}$ for $i=1,2$ . Then
$t_{\langle.\mu)}^{1_{\mathfrak{a}}}=v_{\langle\beta.\gamma\rangle}^{1}$ is linked to $u_{\langle \mathfrak{a},\beta)}^{1}$ and $t_{(\alpha,\beta\rangle}$ , so $\uparrow\iota_{\langle\alpha,\beta_{/}^{\backslash }}^{1}=t_{\langle\alpha,\beta)}$ . Likewise $u_{\langle\alpha\beta)}^{2}=t_{\langle\alpha,\beta\rangle}$ . But this
contradicts the assumption that $u_{\langle\alpha,\beta\rangle}^{1}\neq u_{\langle\alpha,\beta)}^{2}$ . Thus $|\mathcal{B}_{\leq[d)}|<\kappa$ . $\square$

Proposition 4.7 With the notation of Definition 4.5, let $\kappa$ be a cordinal and $let\underline{\triangleleft}$ be a pre-orderzng
(a relation which is reflexive and transitive) on $D$ such that

$d\leq D$ $d’\Rightarrow d$ Sl $d’$ .

A ssurne fhat

$|\mathcal{B}_{\underline{\triangleleft}|d]}’|<\kappa$ for $d\in D$ , $(*)$

( $\}\},er(\lrcorner \mathcal{B}’=D/\sim and$ $d\sim d’$ $\Leftrightarrow$ $d\underline{\triangleleft}$ d’ $\wedge d’$ $\underline{\triangleleft}d$ . Then there is a $!\backslash$ -arbor $Tor|D$ such $that\underline{\triangleleft}$

( $oirlC/(lc^{J}s$ rvith the wlation $\preceq$ ( ‘decides $r$

) on $D$ ?nith respect to $T$ .
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Proof Define a $\kappa$-arbor $\langle T,$ $\leq\tau,$ $s\rangle$ by

$s^{-1}\{d\}$ $:=\{\langle t,$ $d\rangle|t$ is a function fi om $\mathcal{B}_{\triangleleft,rightarrow[d]}’$ to 2, and $|t^{-1}\{1)|\leq 1\}$ ,
$\langle t,$ $d\rangle\leq\tau\langle t’,$ $d’\rangle\Leftrightarrow d\leq D$ d’ and $t=t’|\mathcal{B}_{\underline{\triangleleft}[d]}’$ .

By the condition $(*),$ $|s^{-1}\{d\}|<\kappa$ for $d\in D$ .
Downwards uniqueness is clear. We have to check upwards access. Given arbitrary $d\leq Dd$‘ and

$\langle t.d\rangle\in s^{-1}\{d\}$ , we have to find some $(t’,$ $d’\rangle\geq 0\langle t,$ $d\rangle$ . Just take $t’\supseteq t$ so that $f’r\mathcal{B}_{\underline{\triangleleft}[d]}’=t$ and
$t’([e|)=0$ for $[e]\in \mathcal{B}’$

Now we shall see
$\frac{\triangleleft}{t}l_{1at\underline{\triangleleft}oincides}^{d’J^{\backslash \mathcal{B}_{\frac{\triangleleft}{c}[d}’}}$

with the relation decides’.
(1) $d\underline{\triangleleft}d^{l}\Rightarrow d$

‘ decides $d$

Consider the map $\varphi:s^{-1}\{d’\}\ni\langle t$ . $d’\mapsto\langle tr\mathcal{B}_{\underline{\triangleleft}|d]}’,$ $d\rangle\in s^{-1}\{d\}$ . Wc check that this map witnesses $d’$

decides $d$ . Given any $\langle t,$ $d’\rangle\in s^{-1}\{d’\}$ and $d$ , $d’\in D$ with $d\underline{\triangleleft}d$‘, pick $d_{0}\geq d$ , d’ in $D$ . By upwards
access, there is $\langle t_{0},$ $d_{0}\rangle\in s^{-1}\{d_{0}\}$ such that $\langle t,$ $d’\rangle\leq\langle t_{0},$ $d_{0}\rangle$ , i.e, $t=t_{0}|\mathcal{B}_{\underline{\triangleleft}[d’]}’$ . But $t|\mathcal{B}_{\underline{\triangleleft}[d]}’=t_{0}|\mathcal{B}_{\underline{\triangleleft}[d’]}’$

since $d\underline{\triangleleft}d’$ . Hence $\langle t|\mathcal{B}_{\underline{\triangleleft}[d]}’,$
$d\rangle\leq\langle t_{0},$ $d_{0}\rangle$ . Since $\langle t_{0},$ $d_{0}\rangle$ was taken arbitrary, this shows that $d’$ decides

$d$ by the map $\varphi$ .
(2) d’ decides $d\Rightarrow d\underline{\triangleleft}d’$

Assume that $dgd^{l}$ . Consider the elements $\langle t_{i},$ $d\rangle\in s^{-1}\{d\}(z=0,1)$ , where $t_{i}([d])=i$ and $t([e])=0$
for $[e]\neq[d]$ . Then both of $\langle t_{t},$ $d\rangle$ are linked to $\langle 0,$ $d’\rangle$ , where $0$ is the constant zero function on $\mathcal{B}_{\underline{\triangleleft}[d]}’$ .
Thus d’ does not decide $d$ .

Hence $\underline{\triangleleft}$ is exactly the relation ‘decides’ on D. $\square$

Theorem 4.8 Let $\kappa$ be a weakly compact cardinal. Then for a partition $\mathcal{B}’$ of $Dmto$ nonempty sets,
$t$ he followmg are equivalent;

(a) $\mathcal{B}’$ is the set of branching equivalent classes with respect to some $\kappa$ -arbor $T$ .
(b) $\mathcal{B}’$ is obtained from a pre-ordering $\underline{\triangleleft}$ as descr bed in Proposition 4.7 and satisfies $|\mathcal{B}_{\underline{\triangleleft}[d]}’|<\kappa$

for $d\in D$ .

Instead of considering partitions of $D$ , we may take a set of representatives $Y\subseteq D$ with respect
to the branching equivalence relation $\sim$ . Now, what are the conditions that a set of representatives
$Y\subseteq D$ does satisfy? Since subsets of $D$ are easier than pre-orderings on $D$ to handle with, this setting
makes the construction of arbors easier. We hope that from considering all possible $Y$ , we get enough
inforniation about the branching structure,

Lemma 4.9 Let $D$ be a directed set with $\kappa=$ add $(D)$ and let $Y$ be a set of represen fatives with respect to
th $ebr\cdot anching$ equivalence relation of some $\kappa$ -arbor T. Then all incr easing $\kappa$ -chains of $Y$ are unbounded
$ir\prime D$ .

Proof Assume that $\langle d_{1}|a<\kappa\rangle$ is a $\kappa$-chain in $Y$ with upper bound $e\in D$ . By recuision on $\alpha$ we
choose elernents $\langle u_{(\}}|$ ct $<\kappa\rangle$ in $s^{-1}(e\}$ such that

$\forall\alpha<\kappa\forall\beta,$ $\beta’<\alpha[\beta\neq\beta’arrow u_{\beta}\downarrow d_{(Y}\neq u_{\beta’}\downarrow d_{\alpha}]$. $(\star)$

Here $l\iota\downarrow d$ denotes the unique element $v$ at level \’a which satisfies $v\leq\prime r^{u}$ . Suppose $\alpha_{0}<\kappa$ and we have
already a sequence $\langle u_{\alpha}|\alpha<\alpha_{0}\rangle$ satisfying $(\star)$ up to $\alpha=\alpha_{0}$ . Now look at level $d_{\alpha_{0}}$ and $d_{\alpha_{11}+1}$ . Since
level $d_{\alpha_{(}}$ , does not decide level $d_{\alpha_{(}’+1}$ , there are

$t\in s^{-1}\{d_{\alpha_{()}}\}$ ,

$v_{0},$ $v_{1}\in 6^{-}{}^{t}\{d_{\alpha_{()}+1}\}$

such that $t\leq\tau v_{0},$ $v_{1}$ and $v_{0}\neq v_{1}$ . By $(\star)$ , not both of $?$ )$0,$ $v_{1}$ can be among $u_{fX}\downarrow d_{\alpha_{()}+1}(\alpha<\alpha_{0})$ . So,
we can cboose $u_{\alpha_{(\}}}\in s^{-1}\{e\}$ so that $u_{\mathfrak{a}_{(}},$

$\downarrow d_{\alpha_{()}+1}\not\in\{u_{\alpha}\downarrow d_{\alpha_{(\rangle}+1}|$ a $<\alpha_{\{)}\}$ . This ensures the successor
step of the construction,

If $\alpha$ is a limit ordinal and for every $\beta<0$ the sequence $\langle u_{\beta’}|\beta’<\beta\rangle$ satisfies $(\star)$ , then $\langle u_{\beta}|\beta<\alpha\rangle$

also satishes $(\star)$ .
Hence we succeed in construct\’ing the required sequence $\langle u_{\alpha}|\alpha<\kappa\rangle$ . Surely these $u_{\alpha}$ are distinct

eleinents of $s^{-1}\{e\}$ . But this contradicts the restriction of the size of $s^{-1}\{e\}$ . $\square$
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Proposition 4.10 Let $D$ be a directed set with $\kappa=$ add $(D)$ and let $Y$ be a set of representatives with
\dagger espect to the branching equivalence relation of some $\kappa$ -arbor T. Then

- For all $d\in D,$ $|Y_{\leq d}|< \sup\{(2^{\theta})^{+}|\theta<\kappa\}$ , and
- All increasing $\kappa$ -chains of $Y$ are unbounded in $D$ .

Proof The first condition is obtained from the proof of [5, Lemina 8.10] 口

Problem 4.11 Are the above two conditions all that can be said about $Y’?Irl$ other words, given a
$\backslash \prime nbs(/Y\subseteq D$ satishing the above two condition 9, is there always a $\kappa$ -arbor $T$ on $D$ such that each two
$(l/stinct$ elements of $Y$ lie in different branching equivalence classe $s^{}?$
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