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1 Introduction
We study stock market data from an empirical point of view without assuming
any model by looking at simple attributes. Our approach is to describe these
attributes using as little information as possible. The raw data set comes
from the Wharton Research Data Services (WRDS). I would like to thank the
College of Management, National Taiwan University, especially Prof. Shing-
yang Hu for granting my access to the WRDS in November 2007.

This is an ongoing research with Lo-bin Chang, Shu-Chun Chen, Alok
Goswami, Fushing Hsieh, ${\rm Max}$ Palmer, and Jun-Ying Chen who manages our
data set. In this note, I just give a sketch of what we did in [2] and [3]. [4]
contains further statistical analysis on highly volatile periods. Related work
may be found in [5]. [6] is a book for general audience, I found that some of
the points made there are still valid now.

Let the discrete time series of one particular stock prioe be denoted by

{
$X(t \dot{.})=\frac{S(t.)-S(t_{-1})0,\ldots.n\}}{S(t_{-1})},$$i=1\{S(t_{1}),$$i=.’.witht_{i}-t_{i-1}=\delta$

. The retum process is defined by
, ...., $n\}$ . Let $\{V(t_{i}), i=1, \ldots, n\}$ be the corre-

sponding volume process, where $V(t_{i})$ denotes the cumulative volume for the
time period $(t_{i-1}t_{i}]$ .

Mark the time point $t_{i}0$ if $X(t_{i})$ falls in a certain percentile of the retums,
say the upper ten percentile, otherwise 1. The retum process thus tums into
a 0–1 process with $m=n/10$ zeros. This 0–1 process is divided into $m+1$
sections consisting of runs of ls. $V(t_{i})$ is marked similarly. The empirical
distribution of the length of runs of ls, the waiting time of hitting a certain
percentile, which plays the key role in our analysis. The empirical distributions
are considered for different stocks, different time units, different years from the
markets.

Note that for any increasing function of $X(t_{i})$ or $V(t_{i})$ , we still have exactly
the same 0–1 process. For example the logarithmic return $\log\frac{S(t.)}{S(t_{1-1})}$ is just
$\log(X(t_{i})+1)$ .

Consider two distributions $F(x)$ and $G(x)$ , and take $F(x)$ as the baseline
distribution, then the ROC curve is defined as the curve of $(F(x), G(x))$ for all
$x\in$ $(-$ oo $\infty)$ . Mathematically this ROC curve of $F(x)$ and $G(x)$ is defined as

$R(t|F\Rightarrow G)=G(F^{-1}(t))t\in[0,1]$ ,
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where $F^{-1}(t)$ is the quantile function corresponding to $F(x)$ .
One may use the following two criteria to measure the closeness of these

two distributions.
The ROC area:

$/0^{1}|G(F^{-1}(t))-t|dt$ ,

The Kolmogorov-Smirnov distance (Sup-norm):

$Sup_{x}|F(x)-G(x)$ .

We consider companies in S&P500 list which varies slightly each year. The
tables in the next page give us a glimpse of an empirical invariance, using
IBM as the base line, for each company we calculate the ROC area and the
KS distance of the above mentioned empirical distribution w.r. $t$ . that of IBM.
Then calculate the mean, variance, and extremal values for each year.

We do find an empirical invariance for the real stock prices. And the outliers
have financial implications. When the returns follow a L\’evy process, we prove
the invariance distribution being geometric. The invarianoe property for the
fractional Brownian motion is yet to be proved. However both invariances
are different to each other and are different from the one $hom$ the real data
empirically.

An empirical invariance is also established for the volume. The theoretical
counterpart is yet to be proposed. The relationship between the price and
volume is under investigation.
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$\frac{1BM1\mathfrak{M}}{\frac\frac{0\cdot 10\mathfrak{y}4\Re k1\alpha W2(n5}{0.R\pm 0(n710.0103\pm 0\mathfrak{m}\iota}\frac{0\cdot 10\Re k1N\# 2\alpha\kappa}{00t41\pm 009l00131f0\mathfrak{M}5}\frac{0\cdot 5\% 95\cdot 1w2\mathfrak{W}}{001S810.\mathfrak{M}3001A\neq 0.0108}(5\dot{m}n)0\cdot 10A\Re\succ 1N,R\mathfrak{X}00297\pm 0.01N00234\neq 00186}$

(0.0106, 0.3109) $(0$ 0094, 0.3102$)$ $(0N71$ 0.1140$)$ $(00R0$ 1034$)$ $(0$ $W$80.0.1 $u\eta$ $(0.C052, 0.166\ddagger)$ (0.0135, 0.1634) $(0$ 0125, 0.1612$)$

$\frac{(1\min)}{R\mathfrak{X}}\frac{0\cdot 10t\Re l\alpha W_{0}}{0.0203\pm 0014900I85\pm 001\alpha}\frac{0\cdot 10A\Re\succ 1m\%}{0.0203\pm 0.01590.0161\pm 00150}\frac{0\cdot 5\% 95\cdot 1w}{00197\pm 001690.0155\pm 0.0149}$

$\overline{\kappa\cdot s}$
$\frac{(0.N18,00915)(0N10,00M)}{00\downarrow w\neq 0.02330.036510.02l7}$ $\frac{(0.\cdot \mathfrak{W})9,0.0930)(o.\alpha)[5,00821)}{004u*003220.0324*0.02\mathfrak{R}}$ $\frac{\langle 0.\mathbb{O}13.0123I)(0.\alpha 27,0tt67)}{003l1*0.032800323f0.0282}$

(0.0065, 01734) $(0$ 0040, 01637$)$ $(0$ 0044, 01%1 $)$ ($0$ 0051, $0$ IP47) $(o\alpha\kappa 3,02u8)$ $(o\mathfrak{w}80, OX40)$

$\frac{1BM2(X)]}{\frac\frac{0\cdot 10^{0}4\Re 1W42002}{00182*0m60017l\pm 0R}(5\min)0\cdot 10/0\Re[m\%,R\alpha:0.0393\pm 001\infty 0.0243\neq 0.0216}$

$\frac{(0\mathbb{O}53,0.2321)(0N21,0.269)}{K\cdot S00707\pm 003N0Ml7\pm 00339}$ $\frac{(o.w30.0.\mathfrak{N}22)(0.(nu.o.\infty 70)}{00393\pm 0015800l02\pm 00169}$

$(001S5,0. U7)$ $($0.0073, $04|\alpha)$ (0.0123, 01451) $(0$ 0110, 01412$)$

$\frac{(1\min)0\cdot 10t\Re\succ[\alpha W_{0}}{R\mathfrak{X}00225f00195001\Re\neq 00191}$ $\frac{0\cdot 10\Re k100}{0.0147f001040.0134\pm o.wl}$

$\frac{(0N210.2w)\langle 0.N29,02425)}{K’\cdot S00436\pm 0.0307003l310.0303}$ $\frac{(0.017,0.1018)(0.026,0]\mathfrak{m})}{00316f0.02U0.02l0\pm 0.0193}$

$(0$ 0062, $0$ 3611 $)$ $(0$.0071, 0.3836$)$ $(0$ 0057, 0.21 $S2)$ $(or3i02028)$

2 Mathematical Framework and Discussions
For each stock the empirical distribution of the waiting time to hit the upper
(and lower) ten percentile of the retums is considered. Most of the empirical
distributions are close to each other under two different comparison criteria,
ROC area and Kolmogorov-Smimov distance. Comparisons are done across
stocks, years, different time units. This may be regarded as an empirical
invariance. IBM is used as the base line through most of our study with no
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particular reason. One may pick other base line for comparison.
We have analyzed the actual trade price data for 2006, 2005, 2002, 2001,

1998 and the cumulative volume data for each 30 seconds for 2005. A possible
invariance of the correlation between price and volume is yet to be addressed.
The analysis of attributes of the ask and bid prices seems very challenging,
but unfortunately this data set is not available in WRDS.

We carry out a similar empirical analysis when the retums are finite se-
quence of $i.i.d$ . random variables, $e.g$ . from a L\’evy process. The corresponding
empirical distributions which are the same as those from finite sequence of ex-
changeable random variables converge completely to a geometric distribution.
For the fractional Brownian motions we only have the empirical study.

More precisely, the stock price $S(t)$ follows

$S(t)=S(0)\exp Z(t)$ ,

where $Z(t)$ is a L\’evy process or

$S(t)=S( O)\exp(\mu t-\frac{\sigma^{2}}{2}t^{2H}+\sigma B^{H}(t))$ ,

where $B^{H}$ is a fractional Brownian motion with parameter $H$ .
A fractional Brownian motion with parameter $H$ in $(0$ , 1 $)$ is a continuous-

time Gaussian process $B^{H}$ starting at zero with mean zero and covariance
function

$E(B^{H}(s)B^{H}(t))= \frac{1}{2}(|s|^{2H}+|t|^{2H}-|s-t|^{2H})$ .
For any non-overlapping intervals $(t_{0}, t_{1})\cdots(t_{n-1}, t_{n}),$ $Z(t_{1})-Z(t_{0}),$ $\cdots,$ $Z(t_{n})-$

$Z(t_{n-1})$ are independent. And the distribution of $Z(t)-Z(s)$ depends only on
$t-s$ .

Note that the empirical distributions derived from a L\’evy process converge
a.s. to a geometric distribution. This is our main theorem. Detailed proof is
in [3]. This is a kind of law of large numbers. What are the corresponding
Kolmogorov theorem (rate of convergence) and Donsker’s theorem (central
limit theorem)?

What is the corresponding limiting distribution for the fractional Brownian
motion? Most importantly, what is that invariance in the real market and what
are the dynamics behind this invariance financially and mathematically?

The entropy of the empirical distribution of the waiting time from the real
data is smaller than that from the i.i. $d$ . case. Very high reject rate is observed
for the hypothesis testing of entropy. For the countable case with fixed mean
the geometric distribution maximizes the entropy. It is reasonable that the
entropy calculated from one-year data for each stock is smaller.
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But for a small fixed $n$ , the entropy of the empirical distribution of the
waiting time from the i.i. $d$ . retums is a random variable. What sort of opti-
mization problem is it to justify our observation?
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