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Abstract

In this paper we study the essential dynamics of a system referred to as attrac-
tor selection. This model is based on the dynamical and self-adaptive behavior of
gene regulatory networks found in biological cells and we apply the methodology
of stochastic sensitivity analysis. Our goal is to investigate the fundamental math-
ematical relationship between the dynamics of the interactions between a system
state vector corresponding to an on$/0ff$ behavior of protein regulation and the cell
growth rate function.

1 Introduction
Noise is a common phenomenon that is ubiquitous and can be found everywhere in nature,
as well as many in engineered systems. In biological systems, noise is often manifested in
the random motion of molecular particles or the spike trains of firing neurons in the brain.
On the other hand, in engineered systems, such as communication networks, different user
behavior and heterogeneous devices interacting with each other are often the cause that
fluctuations appear. Especially, in the design of complex systems on nano-scale [1] it is
therefore highly desirable to understand and exploit the beneficial properties induced by
noise, such as the reduction of complexity or higher robustness to failures [2].

Biological cells are not deterministic in their dynamics, but are influenced by the in-
herent fluctuations which govem their reaction to extemal influences. In general, the
interaction between cells is controlled through signaling molecules, which are propagated
among cells. Intercellular communication over close proximity is performed by the dif-
fusion of first messenger molecules that are emitted from one cell and bound by the
receptors of neighboring cells. Since these molecules can not penetrate the membrane of
the receiving cells, receptors at the membrane bind these molecules and cause an intemal
chemical reaction over signal transduction networks that are pre-encoded pathways in
the cell. These transduction networks can be regarded as pre-programmed responses to
frequently occurring events in the environment and they trigger a biochemical reaction
within the cell to result in a certain expression of genes that is reflected in the activation
of proteins in an on$/0ff$ manner. Gene expression is, therefore, essential to the way a cell
reacts to environmental changes in terms of extemal nutrients that are provided to the
cell. However, due to the almost infinite number of possible conditions that a cell may be
exposed to, there can only be a finite number of stored pathways and the question arises
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to how the cell reacts to possible environmental conditions for which no such pathway
exists. This problem is experimentally discussed in [3] and we use their mathematical
formulation to provide a framework for studying the sensitivity of the basic dynamical
model. In this paper, our goal is to investigate the fundamental relationship between
the dynamics of the system state (protein concentration levels) and the feedback function
(cell growth or activity) using the framework of stochastic sensitivity analysis [4].

The remainder of this paper is organized as follows. We first discuss the underlying
biological model of gene expression and the basic mathematical formulation in Section 2.
By investigating the stochastic sensitivity of the kinetics of the dynamical systems in
Section 3, we establish a relationship between the cell activity and the dynamics of gene
expression. Our intention is to provide a framework for mathematically characterizing the
sensitivity of the system in a generalized form to define appropriate functions and criteria
for implementation in robust, noise-tolerant systems. As target application we consider
the self-adaptive and fully distributed control of information networks [5].

2 Attractor Selection Model
In this section, we briefly summarize the fundamental behavior of attractor selection and
provide an introduction to the biological background and the original mathematical model.
The attractor selection method was introduced by Kashiwagi et al. in [3] by formalizing
the results from experimental studies when exposing mutually inhibitory operons of Es-
cherichia Coli cells to different media where nutrients are available in the environment or
not. In molecular biology, such experiments are carried out by synthetically modifying the
genetic structure of cells by attaching a fluorescence protein to their operons. The level of
fluorescence can be measured to obtain empirical results in the long term dynamics when
exposed to a certain environmental condition.

2.1 Biological Background
Let us now describe in greater detail the background of the underlying biological model. In
[3], the original model was derived from experiments of a bistable switch of two mutually
inhibitory operons in E. Coli cells. An operon is a unit in the protein transcription process
that creates messenger RNA $(mRNA)$ and consists of an operator, a promoter, and the
associated structural genes.

In general, cells alter their gene expression through their regulatory network, which
induces a change in expression as response to environmental changes or extemal signals.
The regulatory network is essentially a network of activating or inhibiting genes and it is
controlled through specialized signal transduction networks to quickly react to frequently
occurring signals. Thus, a specific program in the transduction network is activated if a
certain environmental event is detected. However, the number of possible environmental
changes can be so large that a transduction pathway can not exist for all possible cases,
but the adaptation toward a stable expression state is nevertheless achieved.

In order to study this phenomenon, Kashiwagi et al. used in [3] a synthetic gene
network composed of two mutually inhibitory operons that were respectively attached
with a green fluorescence protein (GFP) and red fluorescence protein (RFP) to visualize
their dynamics. Exposure to a neutral medium resulted in a single monostable attractor,
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Figure 1: Simulation of dynamics of network with two mutually inhibitory operons

where the $mRNA$ concentrations of both operons showed only weak expression. On the
other hand, when the network was exposed to a medium that was lacking either one of
the key nutrients, it resulted in a bistable condition with two attractors, one with high
green and low red fluorescence expression and vice versa. Thus, the former single stable
attractor with weak expression became unstable and fluctuations due to the noise inherent
in gene expression caused the system to shift toward either one of the attractors due to
their mutually inhibitory behavior.

A mathematical model of this phenomenon was derived in [3], describing the dynamics
of the $mRNA$ concentrations $x_{i}(t)$ of each operon $i=1,2$ .

$\frac{d}{dt}x_{1}(t)=\frac{S(\alpha)}{1+x_{2}^{2}(t)}-D(\alpha)x_{1}(t)+\eta_{1}(t)$

(1)
$\frac{d}{dt}x_{2}(t)=\frac{S(\alpha)}{1+x_{1}^{2}(t)}-D(\alpha)x_{2}(t)+\eta_{2}(t)$

The functions $S(\alpha)$ and $D(\alpha)$ are the rate coefficients of the synthesis and degradation of
cell growth, respectively, and can be defined over a function $\alpha$ , which represents the cell
activity. The values $\eta_{i}(t)$ are used for modeling the intrinsic noise in gene expression.

$S( \alpha)=\frac{6\alpha}{2+\alpha}$ $D(\alpha)=\alpha$ (2)

The activity dynamics is explained in the supplemental material of [3] and defined
using a classical model for cell growth rate [6].

$\frac{d}{dt}\alpha(t)=\frac{P}{\prod_{i=1}^{2}[(\theta)^{n}+1]}-C\alpha$
(3)

An example of a numerical simulation is illustrated in Fig. 1, using the same parameter
set as specified in [3]. Here, $P=C=0.01$ are the production and consumption rates of
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Figure 2: Principle of attractor selection dynamics

activity, $N_{i}\in\{0,10\}$ represent the extemal supplementation of the respective nutrients,
$\theta_{i}=2$ are the thresholds of nutrient production, and $ni=5$ are their sensitivities, for
$i=1,2$ . The upper figure shows the nutrient availability over time, whereas the lower
figure depicts the expression levels of the two operons. Notice that roughly between time
10000 and 12000, the system state lies outside the basin of the proper attractor, so the
activity decreases to $0$ (black line marked by $\alpha$ ) and a random walk is performed until
the system finally approaches the proper attractor.

2.2 Generalized Model of Attractor Selection
In Section 2.1, a mathematical model was discussed using stochastic differential equations
that show the basic reaction and it was observed that convergence to attractors is achieved
under certain environmental conditions. However, as biological systems do not instantly
adapt to environmental changes, they are driven by the inherent noise in gene expression
causing the orbit of the dynamical system to approach an attractor through feedback and
fluctuations. For the sake of mathematical tractability, we only discuss in this section a
one-dimensional formulation that captures the basic dynamical behavior of the system, see
Eqn. (4). As we will show later, our study can be easily extended to a higher dimensional
case. For a further discussion of multi-dimensional attractor selection systems, we refer
to [3, 7, 8].

$\frac{d}{dt}x(t)=f(x(t))\alpha+\eta(t)$ (4)

In Eqn. (4), function $f$ defines the attractors and depends on the system state $x(t)$

at time $t$ . Function $\alpha$ : $\mathbb{R}arrow[0,1]$ represents the activity or growth rate of the system.
The term $\eta(t)$ represents the system-inherent fluctuation, which we assume to be zero-
mean white Gaussian noise with a standard deviation $\sigma$ . Before we analyze the system
in greater detail, let us examine the essential behavior in Eqn. (4). The function $f(x(t))$
characterizes the attractors of the system to which its state win converge, regardless of
small perturbations introduced by $\eta(t)$ . However, as $\alpha$ approaches $0$ , the influence of the
first summand diminishes, leaving the entire dynamics influenced only by the noise term,
essentially resulting in a random walk in phase space.

Figure 2 illustrates the general principle of attracter selection. The horizontal axis
represents the intemal state $x(t)$ and three attractors exist as $A_{1},$ $A_{2}$ , and $A_{3}$ . The orbit
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of the system is currently within the influence of the rightmost attractor $A_{3}$ . If this
solution is no longer suitable due to the influence from some environmental factor, the
activity function $\alpha$ decreases, leading to a “flatter” potential landscape defined by $f(x(t))$

on the vertical axis. Given that the noise term is unchanged, the system will be driven
away from its current attractor and perform a random walk in the phase space. Once the
system approaches a more suitable attractor (in this case $A_{1}$ ), the system will become
again more deterministic and its state will remain at this attractor in spite of the still
existing noise terms. In order to appropriately define the functions $f$ and $\alpha$ for application
as self-adaptive control mechanism, we investigate their sensitivity in Section 3.

3 Sensitivity Analysis of Attractor Selection

In the following, we consider the abstract form of the attractor selection equation intro-
duced in Eqn. (4). We distinguish two cases with regard to $\alpha$ . The first case simply
assumes $\alpha(t)$ to be only a function of time and independent of the state $x(t)$ . Secondly,
we include the influence of $x(t)$ and consider in Section 3.2 that we have a function of the
type $\alpha(x(t), t)$ .

3.1 Time-Dependent Activity IFtinction
Let us now consider that $\alpha(t)$ is simply a function of time and independent of the system
state $x(t)$ , see Eqn. (5).

$\frac{d}{dt}x(t)=f(x(t))\alpha(t)+\eta(t)$ (5)

In this case, activity is influenced only by an extemal source. Eqn. (5) can thus be
interpreted as a variation of the simulated annealing technique [9], which is closely related
to the considered system. However, while in simulated annealing the noise amplitude is
gradually reduced over time, we have here an always constant noise influence in the system
and the switching to a new attractor is controlled by the dynamics of the activity $\alpha(t)$ .

We define the variation or drifl of the system by the operator $\delta$ , such that

$\delta f(x(t))=\frac{f(x(t)+\delta x(t))-f(x(t))}{\delta x(t)}\delta x(t)=\frac{\partial f(x(t))}{\partial x(t)}\delta x(t)$ . (6)

This leads to the following equation for describing the dynamics of the fluctuations of
the state.

$\frac{d}{dt}\delta x(t)=\alpha(t)\frac{\partial f(x(t))}{\partial x(t)}\delta x(t)+f(x(t))\delta\alpha(t)+\delta\eta(t)$ (7)

Equation (7) shows us that there are two (independent) driving forces for the dynamics
of the state behavior given by the last two summands on the right hand side of Eqn. (7).
Thus, we can consider two sensitivities, a noise sensitivity $\delta x(t)/\delta\eta(t)$ and a pammeter

flmction sensitimty $\delta x(t)/\delta\alpha(t)$ .
Let us follow the argumentation as in $[$10, 11$]$ and introduce an adjoint function $\phi(t)$ .

We can then multiply Eqn. (7) on both sides with $\phi(t)$ and obtain

$\phi(t)\frac{d}{dt}\delta x(t)=\alpha(t)\phi(t)\frac{\partial f(x(t))}{\partial x(t)}\delta x(t)+\phi(t)f(x(t))\delta\alpha(t)+\phi(t)\delta\eta(t)$ . (8)
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If we define $T$ as the time of interest, we can integrate both sides as

$/^{T} \emptyset(t)\frac{d}{dt}\delta x(t)dt0^{\Gamma}=/^{T}0[\alpha(t)\phi(t)\frac{\partial f(x(t))}{\partial x(t)}\delta x(t)+\phi(t)f(x(t))\delta\alpha(t)+\phi(t)\delta\eta(t)]dt(9)$

and apply integration by parts on the term on the left hand side of Eqn. (9) to remove
the dependence on $d\delta x(t)/dt$ . By replacing the left hand side of Eqn. (9), we now have

$[ \phi(t)\frac{d}{dt}\delta x(t)]_{0_{\acute{0^{T}}}}^{\tau_{-}}\frac{d\phi(t)}{dt}\delta x(t)dt$

(10)

$=/^{T}0[ \alpha(t)\phi(t)\frac{\partial f(x(t))}{\partial x(t)}\delta x(t)+\phi(t)f(x(t))\delta\alpha(t)+\phi(t)\delta\eta(t)]dt$

which can be rewritten by inserting the limits $0$ and $T$ of the integration as

$\phi(T)\delta x(T)-\phi(0)\delta x(0)-\int_{0}^{T}\frac{d\phi(t)}{dt}\delta x(t)dt$

(11)

$= \int_{0}^{T}[\alpha(t)\phi(t)\frac{\partial f(x(t))}{\partial x(t)}\delta x(t)+\phi(t)f(x(t))\delta\alpha(t)+\phi(t)\delta\eta(t)]dt$.

Since we can assume that there is initially no perturbation, i.e., $\delta x(O)=0$ , this leads
us to the final formulation as shown in Eqn. (12).

$\phi(T)\delta x(T)$
.

$=. \acute{0^{T}}[\frac{d\phi(t)}{dt}+\alpha(t)\frac{\partial f(x(t))}{\partial x(t)}]\delta x(t)dt+\acute{0^{T}}\phi(t)f(x(t))\delta\alpha(t)dt+\acute{0^{T}}\phi(t)\delta\eta(t)dt$

(12)

Let us now specify the adjoint function $\phi(t)$ by the following differential equation

$\frac{d\phi(t)}{dt}=-\alpha(t)\frac{\partial f(x(t))}{\partial x(t)}\phi(t)$ (13)

such that the first summand on the right hand side of Eqn. (12) is eliminated, and define
the boundary condition $\phi(T)=1$ . Thus, we now have the simplified form of

$\delta x(T)=\acute{0^{T}}\phi(t)f(x(t))\delta\alpha(t)dt+/\emptyset(t)\delta\eta(t)dt0^{T}$ . (14)

With Eqn. (14), we can now easily obtain the functional derivatives

$\frac{\delta x(T)}{\delta\alpha(t)}=\phi(t)f(x(t))$ $\frac{\delta x(T)}{\delta\eta(t)}=\phi(t)$ (15)
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which describe the sensitivity of the system state in terms of the adjoint function $\phi(t)$ .
It should be noted that the functional derivative means that both time variables $t$ and $T$

may differ and the formulation in Eqn. (15) is directly represented by the definition of the
functional derivatives. Basically, these terms indicate how a past change of a parameter
value affects the current system state. If we know the sensitivity with respect to noise,
we can directly obtain the sensitivity to the dynamics of the parameter function.

3.2 State-Dependent Activity Function
The previous section considered simply the time-dependent dynamics of the growth func-
tion $\alpha(t)$ . This implies that the activity is in fact independent of the system state.
However, a more realistic assumption is when $\alpha(x(t), t)$ is a function of the system state.
This corresponds to the case where the system’s output actually influences the activity,
see Eqn. (16).

$\frac{d}{dt}x(t)=f(x(t))\alpha(x(t),t)+\eta(t)$ (16)

The dynamics of the perturbation of state $x(t)$ can be now formulated as follows.

$\frac{d}{dt}\delta x(t)=\delta f(x(t))\alpha(x(t), t)+f(x(t))\delta\alpha(x(t),t)+\delta\eta(t)$

$=[ \frac{\partial f(x(t))}{\partial x(t)}\alpha(x(t), t)+f(x(t))\frac{\partial\alpha(x(t),t)}{\partial x(t)}]\delta x(t)+\delta\eta(t)$ (17)

In order to evaluate Eqn. (17), we need to decompose $x(t)$ to its reference trajectory
$\overline{x}(t)$ , which describes the “average” dynamical behavior and can be obtained by experi-
ments or simulations, and its perturbation $\delta x(t)$ .

$x(t)=\overline{x}(t)+\delta x(t)$ (18)

Inserting $\overline{x}(t)$ into Eqn. (17), we now obtain

$\frac{d}{dt}\delta x(t)=[\frac{\partial f(\overline{x}(t))}{\partial x(t)}\alpha(\overline{x}(t), t)+f(\overline{x}(t))\frac{\partial\alpha(\overline{x}(t),t)}{\partial x(t)}]\delta x(t)+\delta\eta(t)$

$=A(\overline{x}(t))\delta x(t)+\delta\eta(t)$ . (19)

We can repeat the same method as in Section 3.1, by multiplying Eqn. (19) with an
adjoint function $\phi(t)$ and integrating by parts.

$\phi(t)\frac{d}{dt}\delta x(t)=\phi(t)A(\overline{x}(t))\delta x(t)+\phi(t)\delta\eta(t)$

$\Leftrightarrow$ $\int_{0}^{T}\phi(t)\frac{d}{dt}\delta x(t)dt=\int_{0}^{T}\phi(t)\mathcal{A}(\overline{x}(t))\delta x(t)dt+\int_{0}^{T}\phi(t)\delta\eta(t)dt$

$\Leftrightarrow$ $[ \phi(t)\delta x(t)]_{0}^{T}=\int_{0}^{T}[\frac{d\phi(t)}{dt}+\phi(t)A(\overline{x}(t))]$ $\delta x(t)dt+\int_{0}^{T}\phi(t)\delta\eta(t)dt$

ア

$\Leftrightarrow$ $\phi(T)\delta x(T)=\int\phi(t)\delta\eta(t)dt$

$0$
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Defining the adjoint function dynamics as

$\frac{d\phi(t)}{dt}=-\phi(t)A(\overline{x}(t))$ (20)

as well as setting agaih the boundary condition $\phi(T)=1$ leads to a sensitivity value that
only depends on the perturbation of the noise terms $\eta(t)$ .

$\delta x(T)=/^{T}\phi(t)\delta\eta(t)dt0$ (21)

With Eqn. (21), we can now easily obtain the functional derivative expressing the noise
sensitivity.

$\frac{\delta x(T)}{\delta\eta(t)}=\phi(t)$ (22)

4 Numerical Evaluations
Let us now consider some numerical experiments of the previously discussed stability
analysis. So far we only considered generic formulations of the involved functions, but
now need to take specific functions into account. For this we use a definition as given in
[7] for an N-dimensional system state. Let function $f$ be defined as

$f(x_{i}(t))=S( \sum_{j=1}^{N}w_{ij}x_{j}(t))-x_{i}(t)$ $i=1,$ $\ldots,$
$N$ (23)

where $S$ is a sigmoid function, such as the logistic function in Eqn. (24), where $c$ is a
constant.

$S(z)= \frac{1}{1+e^{-cz}}$ (24)

For the sake of simplicity, we assume in the following that $N=2$ . We assume the weights
$w_{ij}$ to be self-activatory $(w_{ij}=1$ for $i=j)$ and mutually inhibitory $(w_{ij}=-1$ for $i\neq j)$ ,
as well as constant over time as shown in the weight matrix $W=(w_{ij})_{2x2}$ below.

$W=(\begin{array}{ll}1 -1-1 1\end{array})$ (25)

Although we now consider a two-dimensional system, the formulation of the adjoint
function can be done in the same manner as in Eqn. (13) for each $i=1,2$ independently.

4.1 Time-Dependent Activity lbnction
As we are mostly interested in the behavior when a system that is currently dominated
by noise influence converges to an attractor, we make the assumption that activity $\alpha$ is
simply a monotonically growing function in this study with $\alpha(0)=0$ and $\lim_{tarrow\infty}\alpha(t)=1$

with parameter $\beta$ indicating its steepness.

$\alpha(t)=\tanh(\beta t)$ (26)
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(a) State values $x_{i}(t)$ (b) Activity function $\alpha(t)$

(c) Noise sensitivity $\delta x_{i}(T)/\delta\eta(t)$ (d) Parameter sensitivity $\delta x_{i}(T)/\delta\alpha(t)$

Figure 3: Numeric evaluation of two-dimensional state dynamics and its sensitivities

We now perform a numeric evaluation of the state dynamics in the two-dimensional
case and compute the noise and parameter function sensitivities as described in Sec-
tion 3.1, see Fig. 3. The observation time was selected as $T=1000$ time steps and the
noise standard deviation is $\sigma=0.01$ . Figure 3(a) shows the dynamic evolution of the
states $x_{i}(t)$ over time for $\beta=0.005$ . Due to their mutually inhibitory definition, one of
the states increases from the initial condition $x_{i}(0)=0.5$ for $i=1,2$ due to the noise term
and reaches 1, while the other reaches $0$ . Since both attractors at $(0,1)^{T}$ and $($ 1, $0)^{T}$ are
stable, noise influences which attractor is eventually reached. The activity functipn $\alpha(t)$

slowly increases over time from $0$ to 1, but its effect on the convergence becomes already
negligible once $\alpha(t)$ becomes sufficiently large. Figure 3(b) also $shQWS$ how the parameter
$\beta$ influences the speed that function $\alpha(t)$ converges.

When we look at the sensitivities in Figs. 3(c) and 3(d), it becomes obvious that only
the immediate past from the observation time $T$ plays an actual role. Both figures just
show a small window of the last 20 time steps prior to $T$ for $\beta=0.005$ . Noise sensitivity
reduces exponentially toward the past, i.e., the influence of prior fluctuations becomes
less important as time passes. The sensitivity to the parameter function in Fig. 3(d) even
shows only very minor influence since $\alpha(t)$ in Fig. 3(b) has converged by the time $T$ well
to its target level at 1 for $\beta=0.005$ .
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Figure 4: Phase plot of realization of state-dependent activity function

$($a $)$ Noise sensitivity $\delta x_{i}(T)/\delta\eta(t)$ (b) Influence of $\beta$ on noise sensitivity

Figure 5: Noise sensitivity for state-dependent activity at $T=1000$

4.2 $State-Dependent$ Activity Function
Finally, let us examine the more realistic case where the state $x(t)$ actually influences the
activity $funct\dot{\iota}on\alpha(x(t), t)$ . We define the activity function to be controlled as

$\alpha(x(t), t)=\tanh(\beta x_{1}(t)t)$ (27)

which makes the system state attracted to $($ 1, $0)^{T}$ . The reference $trpJectory$ is indicated
in Fig. 4 as the dptted direct iine froin the initial $p_{1}\circ ir$}$t$ at (0.5, 0.5)ア to the attractor at
$($ 1, $0)^{T},$ $wl]ere$ tbe system will $ren\iota ain$ in spite of the $s\eta iall$ perturbatiops by $\eta(t)$ .

Figure 5 shows the numerical results fdr the same pqrameter settings as in Section 4.1.
In Fig. 5(a) we can recognize that the computation of Eqn. (22) yields almost the identical
results as when the activity $\alpha$ is simply a function of time (Fig. $3(c)$ ). The reason for
this behavior can be interpreted as follows. Since the considered system has only two
attractors, its dynamics is already very close to the reference trajectory, especially at
the considered noise amplitude. Furthermore, the observation time $T$ and the activity
adaptation rate $\beta$ play an important role on how sensitive the system is toward noise.
This is illustrated in Fig. 5(b) for different values of $\beta$ . The smaller $\beta$ gets, the higher the
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Figure 6: Sensitivity time threshold for different $\beta$

noise sensitivity becomes, since activity remains for a longer time at a lower level. If at
the observation instant $T$ the system state has already settled at an attractor, the impact
of fluctuations in the past becomes less important.

This phenomenon is further investigated in Fig. 6, where we define the threshold $\tau*$ as
the time instant where $\phi_{i}(T^{*})$ falls below 0.01. The figure shows the relationship between
the activity adaptation rate $\beta$ and $\tau*$ for the previously considered system at $T=1000$ .
We can see that if activity does not adapt fast enough, past fluctuations will influence
the system’s state for a much longer period.

5 Conclusion
In this work, we discussed the fundamental mathematical properties of the dynamics of
attractor selection inspired from biological gene expression. In general, attractor selection
dynamically switches between a “deterministic mode”, where the system converges to its
nearest attractor and a “random mode”, where the potential landscape is flattened by
the activity term. We used the formal methodology of sensitivity analysis to mathemati-
cally derive the relationship between the system state and the influencing noise terms and
activity parameter function. Furthermore, we considered two different types of activity
functions, one which is simply a function of time and another one which is dependent on
the current system state. Numerical evaluations showed that it is possible to compute
the sensitivities and that there is a high interdependence between the adaptation rate of
the activity function, which in turn governs the system state’s convergence and the noise
amplitude. This requires further detailed analytical studies in order to fine-tune a system
such that a better convergence can be designed for an implementation as a self-adaptive
control method in autonomous communication networks. Noise-driven mechanisms pro-
vide an important approach to designing robust adaptation mechanisms, e.g. Subconscious
Noise Reaction in neural network leaming as discussed in [12], and in the future we intend
to combine the attractor selection methodology with the Langevin-leaming rule for up-
dating the weight matrix. This would enable us to combine short-term dynamics through
attractor selection with an adaptation of the attractors through learning the long-term
changes in the environment.

160



Acknowledgment
Part of this research is supported by the “Special Coordination Funds for Promoting
Science and Technology: Yuragi Project” of the Ministry of Education, Culture, Sports,
Science and Technology in Japan.

References
[1] T. Yanagida, “Fluctuation as a tool of biological molecular machines,” BioSystems,

vol. 93, no. 1-2, pp. 3-7, 2008.

[2] F. Peper, L. B. Kish, K. Leibnitz, and J.-Q. Liu, (Methods to exploit noise in the
design of complex systems,” in 計測自動制御学会 システム・情報部門学術講演会
$(SSI$ 2008$)$ , (兵庫県姫路市), November 2008.

[3] A. Kashiwagi, I. Urabe, K. Kaneko, and T. Yomo, “Adaptive response of a gene
network to environmental changes by fitness-induced attractor selection,” $PLoS$ ONE,
vol. 1, no. 1, p. $e49$ , 2006.

[4] D. Dacol and H. Rabitz, “Sensitivity analysis of stochastic kinetic models,” J. Math.
Phys., vol. 25, pp. 2716-2727, September 1984.

[5] K. Leibnitz, N. Wakamiya, and M. Murata, “Biologically inspired self-adaptive multi-
path routing in overlay networks,” Commun. $\mathcal{A}CM$, vol. 49, no. 3, pp. 62-67, 2006.

[6] J. Nielsen and J. Villadsen, Bioreaction Engineering Principles. Plenum Press, 1994.

[7] C. Furusawa and K. Kaneko, “A generic mechanism for adaptive growth rate regu-
lation,” $PLoS$ Comput Biol, vol. 4, no. 1, p. $e3$ , 2008.

[8] K. Leibnitz, M. Murata, and T. Yomo, ”Attractor selection as self-adaptive control
mechanism for communication networks,” in Bio-inspired Computing and Commu-
nication Networks (Y. Xiao and F. Hu, eds.), Auerbach Publications, CRC Press,
2009.

[9] E. Aarts and J. Korst, Simulated $\mathcal{A}nnealing$ and Boltzmann Machines. Wiley, 1989.

[10] M. Koda, “Neural network leaming based on stochastic sensitivity analysis,” IEEE
Transactions on Systems, Man, and Cybemetics, Part $B$, vol. 27, pp. 132-135, Febru-
ary 1997.

[11] M. Koda, “Stochastic sensitivity analysis and Langevin simulation for neural network
learning,” Reliability Engineering and System Safety, vol. 57, no. 1, pp. 71-78, 1997.

[12] M. Koda and H. Okano, (A new stochastic learning algorithm for neural networks,”
Joumal of the Opemtions Research Society of Japan, vol. 43, pp. 469-485, December
2000.

161


