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Some problems of algorithmic randomness on product space

PR BRI AT & B A (Hayato Takahashi)
The Institute of Statistical Mathematics.

1 Introduction

Intuitively, a sequence is random if it is not covered by a large class of null
sets . A definition of random sequences depends on a class of null sets.

Martin-L6f randomness [12] is one of the definitions of randomness and
defined by sequences that are not covered by null sets with effective manner.
It is known that Martin-Lof random sequences satisfy many laws of probabil-
ity one, for example ergodic theorem, martingale convergence theorem, and
so on. In this paper, we study Martin-L6f random sequences with respect to
a probability on product space 2 x , where Q is the set of infinite binary
sequences. In particular, we investigate the following problems:

1. randomness and monotone complexity on product space (Levin-Schnorr
theorem for product space)

2. conditional probability and Fubini’s theorem for individual random se-
quences.

3. section of random set vs. relativized randomness.

4. decomposition of complexity and independence of individual random
sequences.

. 5. Bayesian statistics for individual random sequences.

The above problems are property of product space. Besides above prob-
lems, we show classification of random set by likelihood ratio test, which is
necessary for 4 and 5.

2 Randomness and complexity

First we introduce Martin-Lof randomness on . Let S be the set of finite
binary strings. Let £ be the set of infinite binary sequences with product
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topology. For z € S, let A(z) := {zw : w € N}, where rw is the concate-
nation of x and w. Let B be the o-algebra generated by {A(z)},cs. Let
(P, B,?) be a probability space. We write P(x) := P(A(z)) for z € S, then
we have P(z) = P(z0) + P(z1) for all z. Let N, Q, and R be the set of nat-
ural numbers, rational numbers, and real numbers, respectively. P is called
computable if there exists a computable function p : S x N — Q such that
Vz € SVk € N |P(z) — p(z,k)| < 1/k. A set A C S is called recursively
enumerable (r.e.) if there is a computable function f : N — § such that
f(N) = A. For A C S, let A:= Uzgeal(z). Aset U C N x S is called
(Martin-Lof) test with respect to P if 1) U is r.e., 2) Upqy C U, for all n,
where U, = {z : (n,z) € U}, and 3) P(U,) < 27". In the following, if P is
obvious from the context, we say that U is a test. A test U is called universal
if for any other test V, there is a constant ¢ such that Vn V. C U,.

Theorem 2.1 (Martin-Lof[12]) If P is a computable probability, a uni-
versal test U exists.

In [12], the set (N2, U,)¢ (complement of the limit of universal test) is defined
to be random sequences with respect to P, where U is a universal test.
We write RY := (N%,U,)°. Note that for two universal tests U and V,
N, U, = N, V, and hence R¥ does not depend on the choice of a universal
test.

For x = (z!,---,z*) € S, let A(x) := A(z!) x --- x A(z*). Let P
be a computable probability on (Bgx, 2*), where Bgx is the Borel-o-algebra
generated by {A(x)}xest- The computability of P is defined in the same way.
Since there is a bijection f : S — S* such that f and f~! are computable,
we can define a Martin-Lof test and a universal Martin-Lof test with respect
to a computable probability on QF in the same way. As in [12], we can
show that a universal test U exists for a computable probability on QF. Let
REP = (N, U,)° C QF. We call R? the set of random sequences (or points)
with respect to P.

Remark 1 We see that there is a bijection g : § — Ur<ooS* such that g
and g—! are computable. Hence, we can define a universal test with respect
to a computable probability on (Bge,2*°) in the same way. In this paper,
we primarily study the random points of computable probabilities on the
finite dimensional product space QF with product topology. For algorithmic
randomness on other separable metric spaces including 2>, see [9].
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2.1 Complexity

Next, we introduce monotone complexity and we characterize R by it. In
the following discussion, we generalize the monotone complexity defined in
[10, 19] in a natural way. Let |s| be the length of s € § and 5 := 18l0s.
|A| = 0, where X is the empty word, and |z%°| = oo for 2®° € Q. For
s=(s',...,5%) € (SUN)*, set

Is| := |s*| + - -- + |s*].

We writez C y for z,y € SUQ, if z is a prefix of y. For ™ € Q, set A(z™) :=
{z*}, and for x = (z!,- - ,z*) € (SUN)*, set A(x) = A(z!) x -- - x A(z¥).
Fory = (y',---,9*) € (SUQ)*, wewritex Ty ifz! C ¢!, .- ,zF C ¢¥, ie,
xCy e A(x) D A(y). x and y are called comparable if x C y or y C x.
Let A C S*. x € (SUQ)* is called least upper bound of Aif Vy € A, y C x
and if Vy € A, y C z then x C 2. The least upper bound of A is denoted
by sup A. The sup A exists iff NxeaA(x) # 0. Note that if A(x)NA(y) #0
then there is z such that A(x) N A(y) = A(z). Thus if NgesA(X) # 0, there
is y € (SUQ)F such that NycaA(x) = A(y) and sup A = y. For example,
sup{(A,0), (0, A)} = (0,0) and sup{z|z C z*°} = z*°.

In the following, when k is clear from the context, we use bold-faced
symbols such as 1) x>, y* to denote an element of QF, 2) x, y, s to denote
an element of S* or (S U Q)* (we will specify which space we consider), and
3) A to denote (\,--- ,A) € S* for k > 1, and A(A) = QF. Further, we write
P(x) for P(A(x)).

Let FF C S7 x S* and F, := {x|(s,x) € F}. Assume that:
al) Vs € 87, A € F,.
al) Vs € §7, sup Uy Fy exists, i.e., Nxey, ., F, AX) # 0.

Set

f(s) :=sup U Fy for s € (SUQ). (1)
s’'Cs, 8/'cSi
We see that f: (SUQ) — (SUQ)* and f is monotonically increasing, i.e.,
s'Cs= f(s') C f(s).

Conversely, let f : (SU Q) — (S UQN)* be a monotonically increasing

function, and set . :

F = {(s,x) € ¥ x S*|x C f(s)}-

Then sup F; = f(s), F satisfies a0 and al, and the function defined by F
coincides with f.
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Now assume that
a2) F is a r.e. set.
Then the function f defined by (1) is called computable monotone function.

The monotone complexity with respect to computable monotone function
F:(SUN)T — (SUN) is defined as follows:

Kmy(x|y) := min{|p|jx C f(p,¥)},

where p € (SUQ)*, y € (SUQ), and x € (SUQ)*. If there is no p
such that x T f(p,y), then Km(x|y) := oo. A p whose length attains
Kmg(x|y) is called optimal code for K'ms(x|y). For each fixed dimension
k,j, a computable monotone function u : (S U Q) — (S U Q)F is called
optimal if for any computable monotone function f : (S U Q)*+ — (S U
)%, there is a constant c¢ such that Km,(x]y) < Kms(x|y) + ¢ for all
x € (SUQ)F, y e (SuN). We can construct an optimal function in the
following manner. First, observe that there is a r.e. set F/ C N x S+ x §J
such that 1) F; = {(s,x)|(¢,s,%x) € F'} satisfies conditions a0-a2 and is
defined for all ¢ € N, and 2) for each F' that satisfies conditions a0-a2,
there is 7 such that F = F;. Next, set F* := {(c(¢,8),x)|(¢,s,x) € F'},
where c(i,s) = (is!,s2,--- ,s*t7) for s = (s',5%,--- ,s*7), and computable
monotone function u : (S U Q)¥* — (S U N)* is defined by F* via (1). In
such a case, we see that u is optimal. In the following discussion, we fix an
optimal function u for each dimension and let Km(x|y) := Km,(x|y) and
Km(x) := Km,(x).
By definition, we have

Proposition 2.1 1) Monotonicity: x C z = Km(x|ly) < Km(zly), and
y C z = Km(x|y) > Km(x|z).

 2) Kraft inequality: Yy, Y . ca 2-KmXly) < 1 for prefiz-free set A C (SUQ)F,

where A is called prefiz-free if A(x) N A(y) =0 forx,y € A,x#Yy.

8) Conditional sub-additivity: 3c Vx € S*,y € S, Km(x,y) < Km(x|y) +

Km(y) +c.

Theorem 2.2 (Levin-Schnorr[10, 15, 16]) Let P be a computable prob-
ability on Q. Then, z° € RF iff sup,,~ — log P(z) — Km(z) < oo.

Next we show a weak form of Levin-Schnorr theorem for product space.
Before proving the theorem, we need conditions. Let A C S*.
Condition 1) if x,y € A then, x and y are comparable or A(x)NA(y) = 0.
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Condition 2) there is > is a recursive function f : S* x N — A such that for
any x € S*, A(x) = f (x N) and f(x,N) is prefix-free.

For example, S satisfies conditions 1 and 2. {(z,y)||z| = |y|} satisfies
conditions 1 and 2. {(z, )|z € S} satisfy condition 1 but it does not satisfy

2. {(z,y)llz| = |yl + 1 or |z| = |y| — 1} satisfies 2 but it does not satisfy 1:
in particular, S? itself satisfies 2 but it does not satisfy 1.

Lemma 2.1 a) If A satisfies condition 1 then for any B C A there is a
C C B such that C is prefiz-free and B = C.

b) If a r.e. set A satisfies condition 2 then for any r.e. B C S*, there is a
r.e. C C A such that C is prefiz-free and B = C.

Let A(x™) := {x € S*|x € A, x C x*}.

Theorem 2.3 (Levin-Schnorr theorem on product space) Let P be a
computable probability on QF. If a r.e. set A C S* satisfies conditions 1 and
2, then x* € RP iff sup,c A(x) — log P(x) — Km(x) < oo.

Proof) If x> ¢ RF, then for each n, there is a r.e. set S, such that x> € S,
and P(5,) < 2. Smce Sy, is a r.e. set, by Lemma 2.1 b, we can construct
a r.e. prefix-free set S), such that S, C A and S’ = S,. Let P’ be a mea-
sure such that P/(x) = P(x)2" for x € S/, and 0 otherwise; then, we have
ZXESA P'(x) < 1. Since S}, is a r.e. set, by applying Shannon-Fano-Elias
coding to P’, we see that there is a sequence {x(n)} of prefix of x* such that
Vn x(n) € A and Je;, c; > OV Km(x(n)) < —log P(x(n)) —n+K(n)+¢; <
—log P(x(n)) — n + 2logn + ¢, where K is the prefix complexity.
Conversely, let

Up, = {x|x € A, Km(x) < —log P(x) — n}.

By Lemma 2.1 a, there is a prefix-free set U/, C U, such that U ! = U,, and
hence P(U,) = P(U 2) < Doxepn 27K < 277 where the lst inequality
follows from Proposition 2.1 2. Since U, is a r.e. set, {U,} is a test and
NnUn C (RP)°. m

The author do not know whether the right-hand-side of 2) of Theorem 2.3
is replaced with sup,,~ —log P(x) — Km(x) < oo for k > 2. Recall that
S* (k > 2) itself daes not satisfy condition 1.

In order to show a coding theorem, we introduce a class of partition. Let
fi : N - NU{0},1 < ¢ < k be monotonically increasing total recursive
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functions, and f := (f1,..., fe—1). Then, set
AL = {(z",...,2") € S*|f(n) = (I2'],..., ="},
and A := U, Af. f is called partition function.

Lemma 2.2 If f is unbounded then AS satisfies conditions 1 and 2.

If P is a computable probability on €2, then by applying arithmetic coding,
we have:
sup Km(z) + log P(z) < oo. (2)
z€S

For more information on Shannon-Fano-Elias coding and arithmetic coding,

see [7]. Further, see [19] for the proof of Theorem 2.2 and (2). If P is a
computable probability on ¥, for k > 2, then the situation is different and
it is not known whether (2) holds in the case of multiple dimensions. However
if we restrict the domain of x to Af, we have

Lemma 2.3 Let P be a computable probability on Q*. Then, for any k-
dimensional partition function f,

sup Km(x) + log P(x) < oo.
x€AS

Thus, by Theorem 2.3, we have:

Corollary 2.1 Let P be a computable probability on QF. Then, for any k-
dimensional unbounded partition function f,

x* e R’ & sup |log P(x)+ Km(x)| < oo.
x€AS (x°)

In [6], a conditional complexity K, that is monotone with the conditional
argument is defined.

3 Martingale and conditional probability

Let P be a computable probability on Q. Let S, := {s||s| = n} for n € N.
Let F,, be the algebra generated by {A(z)|z € S,.} and Fo := o(U,Fy). Let
X, : 2 — R be a measurable function with respect to F,, i.e., X,, takes a
constant value on A(z) for |z] = n. Let X,(z) := Xn(z*) for z*° € A(x)
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and € Sp. {Xn}nen is called 1) submartingale if Vn, E(X,|Fn_1) >
Xn-1, P —a.s., and 2) martingale if Vn, E(X,|Fn_1) = X,_1, P —a.s. Let

D = {z € S|P(z) > 0}.

We say that a submartingale {X,} is computable if there is a computable
function A : Nx DxN — Q such that VnVz € S,NDVk, |A(n, z, k)—X,(z)| <
1/k. In the above definition, X,, need not be computable on S,,. We require
that X,, is computable on S, N D. For example, let P and Q be computable
probabilities on €2, then % is a computable martingale in this sense. The
following theorem shows martingale convergence theorem holds for individual
random sequences. The proof is along the lines of the classical proof.

Theorem 3.1 (Doob) Let {X,} be a computable submartingale. Assume
that sup, E(|Xn|) < co. If 2 € RE, then lim,_,c Xn (™) exists and
sup, | Xn(z*)| < co.

Let P be a computable probability on X xY = Q2. Let Px and Py be its
marginal distributions on X and Y, respectively, i.e., Px(z) = P(z,)\) and
Py (y) = P(\,y) for z,y € S. Let

Pew) it Py(y) > 0

Plew) ’={ "M, R =0

and
P(z|y™) == lim_ P(zly),
Yy— Yy

for y>* € § if the right-hand side exists. It is known that P(:|y*) is a
probability measure on (2 for almost all y* with respect to Py. Since P(z|y)
is a computable martingale for fixed z, by Theorem 3.1, we have a slightly
stronger result as follows:

Theorem 3.2 Ify™ € RFY, then P(z|y*) ezists for all z € S, and P(-|y>)
is a probability measure on (Bg, ).

3.1 Fubini’s theorem

Since P(z,-) is absolutely continuous relative to Py for a fixed z, by Radon-
Nikodym theorem, we have

P(z,y) = , )P(mly”)dPy(yw),
Ay
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forz, ye€ S. Forasubset AC X XY and y™® €Y, set
Ay = {57](2™,4) € A}.
Ay is called y™-section of A. For example, RE. = {z°|(z*°,y>*) € RF}.
Since P(RF) = 1, we have
1 = P(RF) = /ﬂ P(RE.|y™)dPy (y™).

Therefore, P(R}.|y®) = 1 for almost all y> with respect to Py. In the
following, we present stronger results. )

For simplicity, set Uy := (MpUpn)ye. Since RF = (N,U,)¢, we have
R5°° = (Uye)“.

~ Theorem 3.3 {y> | P(U,=|y>®) > 0} C (RF¥)e.

Corollary 3.1 Ify™ € RPr, then 3 P((Un)ye|y™®) < oo.

Lemma 3.1 RY C RPx x R¥¥.

Corollary 3.2 P(Rl.|y®) =1 ify™ € RFY. REc =0 ify™ ¢ REY.
Corollary 3.3 RPX = U eerry R

Note that except for trivial cases, RY # RFx x RF¥. For example, let
Vz,y, P(z,y) := Px(z)Px(y) for a computable probability Px. Let G :=
{(z=,z™)|z> € Q}. If P(G) = 0 then we see that G N RF = §, and hence
RP £ RFPx x RFx.

For proofs, see [17]. In [20], Theorem 3.3 is shown for product probability,
P = PxPy.

4 Section of random set vs. relativized ran-
domness

In this section we compare section of random set with relativized randomness.
Let Py~ be a probability on 2. We say that Py~ is computable relative to
y>® € Q if there is a function A¥” : § x N — Q such that

Ve € SVk €N, |A¥ (z,k) — Py (z)| < 1/K, (3)
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where AY” is computable by a Turing machine with an auxiliary tape that
contains y°.

Similarly, we say that a set UY™ C S is a r.e. set relative to y™ if U¥™ is
the range of a computable function relative to y™. Let P, be a computable
probability relative to y*°; then, we can define a relativized test UY™ of P,co.
Similarly to Theorem 2.1, we can show that a relativized universal test exists
as follows:

Theorem 4.1 (relativized version of Martin-L6f theorem) Let Py be
a computable probability relative to y™ on Q. Then, a universal test relative
to y*>° exists.

Let {U¥”} be a relativized universal test with respect to Py~ and y*°, and
let

REv>= ™ . (nnf]g‘” )c.

Note that the relativized universal test {U¥” } depends on Py~ and y*.
Recall that if y>° € Rf¥, then the conditional probability P(-|y>) exists
(Theorem 3.2). By Corollary 3.1, we have

Theorem 4.2 Let P be a computable probability on X x Y (= Q?) and
Py be the marginal distribution on Y. If P(-|y™®) is computable relative to
y™® € RFY | then RE(W™)v™ < RFw.

In order to show the converse inclusion of the above theorem, we intro-
duce a stronger notion of relative computability. Let A¥~ be the relative
computable function appeared in (3). In the course of the computation of
AY” (z, k), it uses only finite prefix of y°. Thus there is a partial computable
function A such that

Vz € SVkeN Iy C y™, A (z,k) = A(z, k,y), (4)

and if A(z,k,y) is defined then A(z,k,y) = A(z,k,y’) for all ¥ such that
yCy.

Similarly, let U¥™ be a relativized universal test of Py=; then, there is a
computable function B¥” relative to y*™ and a partial computable function -
B such that

Vn, U¥" = {z € §|3i, B¥ (i,n) = z},

and
Vi,n, Jy C y™, BY" (i,n) = B(i,n,y). (5)
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If B(i,n,y) is defined then B(i,n,y) = B(i,n,y’) for all y such that y C Y.
We say that the family {Pjw},= is uniformly computable in R¥Y if 1)
P, is a computable probability relative to y* for all ¥ € RFY and 2) (4)

holds for all y>® € RFY i.e., there is a partial computable function A such
that

Vy® € RFY Vo € S Vk € N Jy C y™, A (z,k) = A(z,k,y). (6)

Theorem 4.3 Let P be a computable probability on X x Y (= Q?) and Py

be the marginal distribution on Y. If {P(:|y™®)}y~ is uniformly computable
in RFY, then REw = RECW™IV™ for y> € RFY.

For proofs, see [17]. Note that section of random set is determined by
global probability P and relativized randomness is determined locally by
conditional probability.

5 Likelihood ratio test

Let P and @Q be computable probabilities on 2. Let

r(z) = 29, if P(z) >0 7
0, if P(z)=0

for z € S. We see that r is a computable martingale. By the martingale
convergence theorem for algorithmically random sequences, we have

Corollary 5.1 RFP C {z°°|limg .z r(z) < 00}.

Lemma 5.1 Let P and Q be computable probabilities on Q.
1) : RPNRP = RPN {2°°]0 < limg_ze 7(z) < 00}.
2) : RPN (R = RF N {z|lim,_z r(z) = 0}.

Proof) 1) If z° € RP N'RY, then a) by Corollary 5.1, limg_gee 7() < 00
and limg_,ge 7 1(z) < 00, and b) P(z) > 0 and Q(z) > 0 for z C z*; thus,
0 < limg_,geo 7(z) < 00. Conversely, if £° € RF N {z™|0 < limg_z 7(z) <
oo}, by Theorem 2.2, sup,, — log P(z) — Km(z) < 00 and sup,ge | —
log Q(z) + log P(z)| < co. Thus, sup,e 4z=) — log @(z) — Km(z) < oo and
we have z° € RY.

2) By 1, we have RF N (R9)° = RPN (RPN R = RPN ({limr =
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0} U{limr = oo}) = R¥ N {limr = 0}, where the last equality follows from
Corollary 5.1. =
For other proof, see [3]. From the above lemma, we have the following:

Theorem 5.1 Let P and Q be computable probabilities on Q.

RPN (RO = (RPURP) N {z lim_r(z) = 0}. (7)
(RFNR? = (REURP)N {2 lim_r(z) = oco}. (8)
RPNR? = (RFURY N {z=[0 < Jim_r(z) < oo}, (9)

5.1 Absolute continuity and mutual singularity

By Lebesgue decomposition theorem, there exists N € F, such that P(N) =
0 and

VC € Fin, Q(C) = f r(z°)dP + Q(C N N). (10)
C

We write (a) P L @ if P and @ are mutually singular, i.e., there exist A
and B such that ANB =0, P(A) =1, and Q(B) =1, and (b) P < Q if
P is absolutely continuous with respect to @, i.e., VC € Fpo Q(C) =0 =
P(C)=0.

Remark 2 By (10), we have (a) P L Q iff P({limr = 0}) = 1, and (b)
P <« Q iff P({limr = 0}) = 0; for example, see [14].
The following theorem appeared in pp. 103 of [13] without proof.

Theorem 5.2 (Martin-Lof) Let P and Q be computable probabilities on
Q. Then, RFNRY=0if P L Q.

Proof) Since P(RF) = Q(R?) = 1, only if part follows. Conversely, assume
that P L Q. Let N := {20 < liminf,ye r(z) < limsup, e r(z) < 00}.
By Remark 2, we have P(N) = Q(N) = 0. Since 0 < liminf;r, r(z) <
0 < infzrzeo () and lim sup, o0 7(Z) < 00 € SUP e T(T) < 00, We have

N = {z*0< 1Enf r(z) < sup r(z) < oo}

x>

a,b
= UqbeQ,0<a<b<oo nz—'l Ni ’

where NM* = {, zla < r(y) < b,Vy C z,|z| = i}. Since P(N) = 0, we
have hmt P(N®) = 0. Since (N b)c N {z|P(z) > 0} is a r.e. set, we can
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approximate P(N;") from above, and there is a computable function a(n)
such that P(N%° ) < 27", Thus, N:(b) is a test of P, and hence, N C (RF)".

a(n)

Similarly, we have N C (R¥). By (9), we have REFNRC =0. m

Lemma 5.2 Let P and Q be computable probabilities on §2. Then,
RPCRe= Pk Q.

There is a counter example for the converse implication of the above lemma,
see [3].

5.2 Countable model class

In the following discussion, let {P,}nen be a family of computable probabil-
ities on €; more precisely, we assume that there is a computable function
A:Nx S x N — Q such that |A(n,z,k) — P.(z)| < 1/k for all n,k € N
and ¢ € S. Note that we cannot set {P,}nen 8s the entire family of com-
putable probabilities on §2 since it is not a r.e. set. Let a be a computable
positive probability on N, i.e., Vna(n) > 0 and }_ a(n) = 1. Then, set
P :=3 a(n)P, We see that P is a computable probability. The follow-
ing lemma shows that the set of random sequences of a discrete mixture of
computable probabilities are the union of their random sets.

Lemma 5.3 RF = U, RM.

Let 3 be a computable probability on N such that 1) 8(n) > 0 if n # n* and
B(n*) = 0, and 2) Y, B(n) = 1. Then, set

= Z B(n)P,.

We see that P~ is a computable probability. By Theorem 5.1 and Lemma. 5.3,
we have

Lemma 5.4
R Fnn nn¢n* (RP" )c = (UnRP") N {zoo' Hm, .,z P~ (.’E)/Pn* (m) = 0}.

Now let
fi(z) := arg max a(n)P,(r).
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Then we can show that

xllglm P (z)/Py(z) =0 = zﬁglm n(z) = n*.
Thus we have

R Cppns (RP)° C (2| lim_ () = '},

which shows that if z° is random with respect to Rf»* and it is not random
with respect to other models then 7 classifies its model. Estimation of models
by 7 is called MDL model selection, for more details, see [1, 2]. Note that by
Theorem 5.2, if { P} are mutually singular, then R»* Ny (RF)¢ = REn~,
and by Lemma 5.2, if Py & P, then R Npupe (RF)C £ 0.

6 Decomposition of complexity
It is known that

sup. |K (z,y) — K(zly, K(y)) — K(y)| < oo, (11)
Y

where K is the prefix Kolmogorov complexity [5, 8]. If we eliminate K (y)
from K(z|y, K(y)) in (11), then it is not asymptotically bounded, i.e.,

sup |K(z,y) — K(zly) — K(y)| = oo.
z,y€S
For more details, see [8]. Since |Km(Z,7) — K(z,y)| = O(), |Km(Z) —
K(z)| = O(1), and |Km(z|g) — K(z|y)| = O(1) (recall that T = 1*l0z), we
have
sup, |Km(z,y) — Km(zly) — Km(y)| =oc0. (12)
The above equation shows that there is a sequence of strings such that left-
hand side of the above equation is unbounded. However, if we restrict strings
to prefixes of random sequences z°,y* with respect to some computable
probability, then we can show that (12) is bounded for a sufficiently large
prefix of (z*,y*) under a condition (see Theorem 6.1 below).
Let Km(z|y®) := lim,_,,c Km(z|y). Recall that Km(z|y) is decreasing
as y — y*°. Then set

a(z,y>,c) = inf{y|Vy, y T ¢ C y* Km(z|y') — Km(z|y™) < c},
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for ¢ > 0. Since K'm always takes an integer value, we see that a(z,y*,c)

always takes a finite prefix y of y* for ¢ > 0. Roughly speaking, if c is

small then o has almost the same information that y* has regarding z. For

example, if = A and ¢ = 0, then y* contains no information about z.
Next, let

Bz, y*°, c) == inf{y|Vy, y C ¥’ C y*°, |log P(z|y™) — log P(z|y)| < c},

for y® € R ¢ > 0. Since P(zly) — P(z|y™) for y>* € RFY, B(z,v*,c)
takes a finite value for all z and 0 < c¢. Intuitively, 3 is a convergence rate of
P(zly). For example, if P(z|y) = P(z), then 8 = \.

Since a(z,y*,c) and B(z,y™,c) are comparable, let

’Y(-’L', y°°, C) = sup{a(a:, yoo’ C), ,B(SL', yoo’ C)}

We say that v is (z*°, y*°)-recursively increasing if there is a monotonically
increasing recursive function g : N — N such that 3cVz C z°, |[v(z,y*°,¢)| <
g{|z|). g is called recursive upper function.

Theorem 6.1 Let P be a computable probability on Q?. Let (z*°,y>®) € RF.
Assume that P(-|y™) is computable relative to y>™ € RY and v is (°°,y*>)-
recursively increasing. Let g be a recursive upper function. Then for the
partition function f(n) = (n,g(n)), we have

sup |[Km(z,y) — Km(z|y) — Km(y)| < oo. (13)
(z,y)eAf (z%°,y>)

Proof) Assume that (z°°,y*®) € R¥. By Corollary 2.1, we have

sup |log P(z,y) + Km(z,y)| < oo, (14)
(z,w)EAS (x™°,y)
and
sup |log Py(y) + Km(y)| < oo, (15)
yCy™

where (15) follows from that (z°,y>) € RY = y>* € RfY.
Since 3c,Vz,y, Km(z,y) < Km(zly) + Km(y) + ¢ (Proposition 2.1 3), we
have

sup —log P(zly) — Km(zly) < oo. (16)
(x’y)eA,f(zoo’yoo)
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Since (z,y) € Af(z,y*) implies ¥(z,y*°, c) C y, we have

—log P(zly) > —logP(z|y™)—c (17)
> Km(z|ly>*) —c—c (18)
= Km(z|y) — 2¢ - c;. (19)

Here, (17) follows from B(z,y™,c) C Y(z,y>,c), (18) follows from that
P(-ly*®) is a relative computable probability on 2, where ¢; is a constant
independent from z, and (19) follows from a(z,y™,c) C Y(z,y*°,c). Thus
we have

sup |log P(zly) + Km(z|y)| < oo. (20)
(@,y)€AS (z°°,y>)
By (14), (15), and (20), we have the theorem. m

6.1 Relativized randomness

Next we compare a pair of randomness with relativized randomness. If
P(-ly*) is computable relative to y>, let RP(W*):¥> be the set of random
sequences with respect to P(:|y*). Then we have the relativized version of
Levin-Schnorr theorem.

Theorem 6.2 (relativized version of Levin-Schnorr thereom) Let
P(-|y>) be a computable probability relative to y° on Q. Then,
RECW=1Y™ = {2 sup, ;e | log P(z|y™®) + Km(z|y™®)| < oo}.

The following corollary is shown in Theorem 4.3 under the uniform com-
putability assumption. We show the same equivalence under the assumption
that v is (z*, y*)-recursively increasing.

Corollary 6.1 Let P be a computable probability on Q2. Assume that P(-|y>)
is computable relative to y>° € RFY and v is (z°°, y™®)-recursively increasing.
Then we have (z*°,y*®) € RY iff = € RECWT)v™

Proof) Let f(n) = (n,g(n)), where g is a recursive upper function. Since
(z,y) € A (2>, y>) implies v(z, y™, c) C y, we have
sup | log P(zly) — log P(z|y™)| < oo,
(zy)eAS (x> ,y>)

and
sup |Km(zly) — Km(z|y™)| < co.
(my)eAS (zo°,y>)
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Assume that (z*°,y*) € RF. From (20), we have

sup |log P(z|y™) + Km(z|y™)| < oo. (21)

x>

From Theorem 6.2, we have the only if part. The converse implication follows
from Corollary 3.1. [ ]

6.2 Independence

Let
a(z™,y>,c) = sup ofz,y>,c),
z[Cx®

and
B(z>,y>,c) := sup B(z,y>,c).

zCx>°
We may say that if 30 < ¢ < oo, |a(z®,y™,c)| < oo, then z*° and y= are
algorithmically independent, and if 30 < ¢ < oo, |B(z*,y*, ¢c)| < oo, then
> and y™ are stochastically independent. In fact, we have

Theorem 6.3 Let P be a computable probability on Q* and (z*°,y>) € RF.
A: The following statements (1), (2), and (3) are equivalent:

(1) 30 < ¢ < 00, |B(z>=,y*,c)| < oo.

(2) (z°,y>®) € RV, where Q is a computable probability on Q? defined by
Q(z,y) := Px(z)Py(y) for all z,y € S.

(8) For any A C S? that satisfies Condition 1 and 2,

SUP(z,y)cA(z>,y>) IKm(a:, y) - Km(x) - Km(y)l < 0.

B: Assume that = € RECW™)v™ and there is a monotonically increasing
recursive function g : N — N such that 3cVz T z*°, |a(z,y>,c)| < g(|zf).
The statements (1), (2), and (3) are equivalent to

(4) 30 < c < oo, |afz™,y*°,c)| < oo.

Proof) A: (1) = (2): First, we show that

lim Px(z) Py (y)

< 00. | 22
@) —(e>y>) P (il:, y) (22)

0<

Since (z*°,y>®) € RF, by Theorem 5.1 (it is easy to extend the theorem for

computable probability on Q x Q), lim(g,y)—(zee,y) 5’%‘5&%’3‘9 exists and is
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finite. Thus, we have to show that it is positive. For simplicity, let 8 =
B(z>®,y*°,c). We have

. Px(m)Py(y) . Px(:l?) _ . Px(’E)
Lim = lim ———~"—— > 927¢ lim
o= Ploy) | owm Paly=) = 0 evie PliB(z,y,0)
> 272 |im Px(z)

- LT P(xll@oo) ’

where the first equality follows from that P(z|y™) exists for y®© € R¥¥. On
the other hand, since |3*°| < 0o, we have z° € RF(IF™) gand = ¢ RFx.
Therefore, by Theorem 5.1, lim,_, ;0 }—)%"—g% > 0, and (22) holds. From The-
orem 5.1, we have the statement (2).

(2) = (3): Let A be a partition that satisfies Condition 1 and 2. By Theo-

rem 2.3, we have

sup —log Px(z) — log Py (y) — Km(z,y) < oo.
(z.y)€A(z>,¥>) '

Since 1) £ € RPx and y* € RFY¥, and 2) Px and Py are computable proba-

bilities on €2, we have sup -, | Km(z)+log Px(z)| < 00, and sup,,« |[Km(y)+
log Py(y)| < co. On the other hand,

dec > 0Vz,y € § Km(z,y) < Km(zly) + Km(y) +c < Km(z) + Km(y) +c.
(28)

Thus, we have statement (3).

(3) = (1): Let A = {(z,9)||z| = |y|}. Since (z*,y>®) € RF, z*° ¢ RFPx,

and y*° € R, by Corollary 2.1, we have sup( e sz yoo) [EM(Z,y) +

log P(z,y)| < 00, Sup, -, | Km(z)+log Px(z)| < 0o, and sup, - |Km(y)+

log Py (y)| < oo. Thus we have

JcV(z,y) € A(z™®,y*®), 27° < F XI(D?I:I’D ;’)(y)

Since (z°°,y*) € RF, by Theorem 5.1, lim g, 3))— (zo0,yo0) P—"%)iﬂ exists and
is finite. In particular, from (24), we have

< 2. (24)

) 0 /o oo, 00 —-c P (m)PY(y)
eI,y V() C (z,y) © (2%,97),27° < XP(w,y)

ie., dV(z,y) T (z°,y*) |log Px(z) — log P(z|y)| < ¢, which shows the
statement (1).

< 25,
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B: (3) = (4): Let f = (n,g(n)). By (23) and statement (3), we have
SUD(; v Af (oo yooy KM(@) — Km(zly) < oo. Since (z,y) € Af(z%,y™) im-
plies a(z,y*,c) T y, we have Sup, ,)c.af (ze 4y Km(zly) — Km(z|y™) < c.
Since Km(z) > Km(z|y) > Km(z|y*), we have ¢, a(z™®,y*,c) = A.

(4) = (2): By Theorem 5.1, it is enough to show (22). Since (z*,y*) € R,
the limit exists and is finite. Thus it is enough to show

Px(z)Pr(y) _ Px(z)

0< lim = lim ————,
(@p)—(z=y=) P(z,y) z—z= P(z|y>)

(25)

Since z*° € RFx and z*° € RP(W™)¥*  from Theorem 6.2, we have

SUDP, e | Km(x) + log Px(z)| < oo and

SUP, 5 | log P(z|y™) + Km(z|y>)| < co. Hence from the statement (4), we
have (25). ]

7 Bayesian statistics

Let P be a computable probability on X x Y and Px, Py be its marginal
distributions as before. In Bayesian statistical terminology, if X is a sample
space, then Py is called mixture distribution, and if Y is a parameter space,
then Py is called prior distribution. In this section, we show that section
of random set satisfies many theorem of Bayesian statistics and it is natural
as a definition of random set with respect to conditional probability from
Bayesian statistical point of view.

7.1 Optimality of Bayes code

A universal coding obtained by applying arithmetic coding to Px is called
Bayes coding. It is known that Bayes coding is optimal for P(-|y*)-almost
all samples for almost all ¥ with respect to Py, see [2]. We have a slightly
stronger result.

Corollary 7.1 The following three statements are equivalent:
(1) x> € RFx.

(2) Sup, g — log Px(z) — Km(x) < oo.

(3) Jy> € RfY, z=° € fo.

Proof) (1) < (2) follows from Theorem 2.2. (1) & (3) follows from Corol-
lary 3.3. [ ]
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7.2 Consistency of posterior distribution

In this section, we show a consistency of posterior distribution for algorith-
mically random sequences. We see that the classification of random sets by
likelihood ratio test (see Section 5) plays an important role in this section.

Theorem 7.1 Let P be a computable probability on X XY, where X =Y =
1. Assume that m(y) > 0 for ally € S. The following siz statements are
equivalent:

(1) P(ly) L P(|z) if A(y) NA(2) =0 fory,z € S.

(2) RPCW N RPU2 = ¢ if A(y) N A(2) =0 fory,z € S.

(8) Prix(-|z) converges weakly to Iy as x — ™ for (z°,y>) € RF, where
I is the probability that has probability of 1 at y™.

(4) Ryeo NRLw = 0 if y™ # 2.

(5) There ezists a surjective function f : RPX — R®Y such that f(z®°) = y*
for (z°,y*°) € RP.

(6) There exists f : X — Y and Y’ C Y such that m(Y') = 1 and f =
y*>°, P(/|y>®) — a.s. fory>® e Y".

Proof) (1) < (2) follows from Theorem 5.2.

(2) = (3) : If (z°,y®) € RF, then 2™ € RPW for y>° € A(y), see
Lemma 3.1. By assumption if A(y) N A(z) = 0, then z° ¢ RF(. By
Theorem 5.1, we have lim;_,; P(z|2)/P(z|y) = 0, and

R
o lm DxGle) (26)

z—z% Pyix(y|lz)

Since (26) holds for an arbitrary A(y) and A(z) such that A(y) N A(z) =0
and y> € A(y), we see that the posterior distribution Py x(:|z) converges
weakly to Iye.

(3) = (4) : obvious.

(4) = (5) : Since Rjw NRIs = 0 for y™® # 2z, we can define a function
f : X — Y such that f(z*®) = y*® for z*° € ’wa- Since by Corollary 3.3,
RPx = {z®|(z*®,y>®) € RF} and R = {y®|(z*,y>) € RF}, and we have
(5).

(5) = (6) : By theorem 3.3, we have (6).
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(6) = (1) : Let Ay := {z®|f(z®) = y>*}. Then, Ay N A, = @ for
Y™ # 2% and P(Ay=|y™) =1 for y*® € Y. Thus,
(Uymea@)Ay=) N (Uyeea(n)Aye) = 0 for A(y) N A(z) = @ and

P(UyweA(y)Aywly) = P(UyweA(z)Aymlz) = 1, which shows (1) |
Example 1 Bernoulli model: Let f(z*) := lim,(} ;. , z;)/n for z=° =
z1Z2--+. By the law of large numbers, (6) (and all the statements) are
satisfied.

7.3 Algorithmically best estimator

Theorem 7.2 Let P be a computable probability on X x Y, where X =
Y =€Q. Let f: N —> N be an unbounded increasing recursive function. Let
y>*° €Y, and let ysn) be a prefix of y*° of length f(n)

(a) If lim,_,z — log P(yf(p|T) < 00, then there is a computable function p
such that ys(z) = p(x) for infinitely many prefix x of z*°.

(b) If (z°,y>) € RF and lim,_,ze0 —log P(ys(zp]z) = 00, then there is no
computable monotone function p such that Vx C z°°, ysa) C p(z).

Proof) (a) By applying Shannon-Fano-Elias coding to P(-|z) on the finite
partition {y||y| = f(|z|)}, we can construct a computable function g and a
program p € S such that g(p,z) = y and |p| = [—log P(y|z)] + 1. Here, g
need not be a monotone function. Since |p| < oo as z — ™, there is a pg such
that g(po,z) = y for infinitely many prefix z of . Thus, p(z) := g(po, T)
satisfies (a).

(b) By considering the partition function f'(n) = (n, f(n)) in (16), if (z*°,y*>°) €
RP and limm_,moo - log P(yf(lzl)|-’”) = 00, then we have limz_moo Km(yf(|w|)|:c) =
oco. Note that in order to show (16), the condition about < is not neces-
sary. Now assume that there is a computable monotone function p such
that Vo T 2% ys(a)) E p(z). Then, lim; ;00 Km(ys(jzp)|Z) < 0o, which is a
contradiction. =

By definition, we have

_log P(yla) = —log [  P(cly™)dPy(y™) + log /Y P(aly™)dPy ().

Ay)
(27)
Let Py be a Lebesgue absolutely continuous measure. Let § be the maximum
likelihood estimator. By using Laplace approximation with suitable condi-
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tions, if § € A(y) and f(|z|) ~ }log|z|, then the right-hand-side of (27) is
asymptotically bounded, for example see [1], and we have lim,_, g0 — log P(ylz) <
00, where [y| = f(|x|). Thus, by Theorem 7.2 (a), we can compute initial

[5 log |z|]-bits of ¥ from z infinitely many times, which is an algorithmic
version of a well known result in statistics: [y> — §| = O(1//n).

Let f(-) be a large order function such that lim,— 4~ —log P(y|z) = oo
for [y| = f(|z|); for example, set f(|z|) = [log|z|]. By Theorem 7.2 (b),
there is no monotone computable function that computes initial f(|z|)-bits
of y* for all z = 2. If such a function exists, then y* is not random with
respect to P and the Lebesgue measure of such parameters is 0. On the
other hand, it is known that the set of parameters that are estimated within
o(1/y/n) accuracy has Lebesgue measure 0 [4].

Theorem 7.2 shows a relation between the redundancy of universal coding
and parameter estimation; as in [18], if we set Py to be a singular prior,
limg_,ze —log P(yf|z) < oo for a large order f. In such a case we have a
super-efficient estimator.
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