
A Matlab Problem-Solving Environment for
Nonlinear Systems Education in

Mathematics, Physics and Engineering

Akemi G\’alvez Tomida
Department of Applied Mathematics and Comp. Sciences

University of Cantabria, Avda. de los Castros
s/n, E-39005, Santander, Spain

galveza@unican.es

Abstract
Currently, European countries are in the process of rethinking their Higher Edu-

cation systems due to harmonization efforts initiated by Bologna’s declaration. This
scenario of reforms demands a completely new approach to the instructional process.
A major issue in this context is the development of better, updated educational
tools and materials specially adapted to the topics under study. This work reflects
author’s experience in developing a problem-solving environment designed for a first
course on nonlinear systems for undergraduate students of Mathematics, Physics
and Engineering. In this paper the architecture of this computer system along with
a description of its main functionalities are briefly reported.

1 Introduction
Bologna’s declaration - seen today as the well-known synonym for the whole process
of reformation in the area of higher education-was signed in 1999 by 29 European
countries with the objective to create “a European space for higher education in order
to enhance the employability and mobility of citizens and to increase the intemational
competitiveness of European higher education” [1]. Its upmost goal is the commitment
freely taken by each signatory country to reform its own higher education system in
order to create overall convergence at European level. This process encompasses the
adoption of a common framework of readable and comparable degrees as well as the
introduction of undergraduate and postgraduate levels in all countries along with ECTS
(European Credit Transfer System) credit systems to ensure a smooth transition from
one country’s system to another one, thus enforcing free mobility of students, teachers
and administrators among the European countries.

Unquestionably, Bologna’s declaration opened the door to a completely new scenario
for higher education in Europe. Nowadays, the European countries are in the midst of
the process of restructuring their higher education system in order to fulfill the objectives
of the declaration. At this time, the developments focus especially on academic aspects,

数理解析研究所講究録
第 1624巻 2009年 129-143 129

such as the definition of the new curricula and grading systeins. However, the upcoming
changes go far beyond these structural changes, as the personal development of students
and teachers is also at the root of this new concept of education. For instance, students
in this new model are no longer passive actors of the learning process. On the contrary,
Bologna’s declaration emphasizes the concept of self-learning so that students are getting
more and more involved in their own learning.

An important issue in this process is to provide students with a good collection of
scholar materials that enable them to accomplish the learning process by themselves.
During the last few years, the author has been involved in the development of computer
software for a first course on nonlinear systems for undergraduate students of Mathemat-
ics, Physics and Engineering. As a result, a new Matlab problem-solving environment
designed to attain the demands of this new situation has been created from scratch. In
this paper the architecture of this computer system along with a description of its main
functionalities are briefly reported.

2 Nonlinear (Chaotic) Systems
The analysis of chaotic dynamical systems is one of the most challenging tasks in Com-
putational Science. Because the chaotic systems are essentially nonlinear, their behavior
is much more complicated than that of linear systems. In fact, even the simplest chaotic
systems exhibit a bulk of different behaviors that can only be $f\iota illy$ analyzed with the
help of powerful hardware and software resources.

The range of different phenomena associated with the nonlinear systems is extremely
varied. Chaos can be found in almost any field, ranging from chemical reactions to elec-
tronic circuits and lasers [2, 11], meteorology [16], ecology [18], etc. Nonlinearity appears
in both discrete and continuous systems, which are described by iterated functions and
differential equations, respectively [15, 19]. That means that the accurate analysis of
such chaotic systems requires specialized mathematical tools and techniques, designed
to account for the kind of system involved. This challenging issue has motivated an in-
tensive development of programs and packages aimed at analyzing the range of different
phenomena associated with the chaotic systems.

Among these programs and packages, those based on computer algebra systems (CAS)
are receiving increasing attention during the last few years. Recent examples can be
found, for instance, in [3, 4, 5, 6, 8] for Matlab, in [7, 9, 10, 12, 13, 14, 21] for Mathematica
and in [22] for Maple, to mention just a few examples. In addition to their outstanding
symbolic features, the CAS also include optimized numerical routines, nice graphical
capabilities and- in a few cases such as in Matlab- the possibility to generate appealing
GUIs (Graphical User Interfaces).

In this paper, we describe a problem-solving environment for the analysis of chaotic
dynamical systems. The program, an improvement of the system reported in [5, 6] and
implemented in the popular CAS Matlab, is suitable for both discrete and continuous
chaotic systems. To this purpose, specialized symbolic and numerical libraries have been
developed. Further, to provide end-users with a nice navigation and intuitive access to
the main methods and routines, a powerful graphical user interface (also described in
this paper) has been implemented. To show the good performance of this proposal, some
illustrative examples are also reported.

130

Figure 1: Architecture of the system.

3 Program Architecture and Implementation

3.1 Program Architecture
Figure 1 shows the architecture of the program described in this paper. It consists of two
interconnected layers:

131

1. a $nume^{J}r^{v}ical$-symbolic layer it is basically a collection of numerical and symbolic
libraries containing the commands, functions and routines implemented to perform
numerical and symbolic tasks.

2. a graphical user interface (GUI) layer. this component is responsible for input/output
windowing, display of graphical output and smooth interaction with the user.

3.1.1 Numerical-symbolic layer

The nuinerical-symbolic layer is comprised of three different modules, according to the
distinct processes (numerical, symbolic and graphical) to be carried out:

1. a set of numericd librames containing the implementation of the commands, func-
tions and routines for the numerical tasks. They have been implemented in the
native Matlab programming language. To this aim we take advantage of the large
collection of numerical routines available in the Matlab kernel such libraries are con-
nected with. These standard Matlab routines provide extensive control on different
options and are fully optimized to offer the highest level of performance.

2. a set of symbolic routines and functions. They have been implemented by using the
Symbolic Math Toolbox that provides access to several Maple routines for symbolic
tasks. This symbolic module is more important than it might seem at first sight;
for instance, system equations are inputted symbolically so that some functional
operators (such as derivatives) can be effectively applied. Further, some additional
operators (string manipulation, forward/backward symbolic object-string conver-
sion, symbol replacement and assigmnent, etc.) have also been used for symbolic
purposes. It is worthwhile to mention that the Symbolic Math Toolbox is less pow-
erful than the Maple kemel system it comes from. Fortunately, it is also possible
to connect the kemels of Matlab and Maple for very specialized symbolic tasks.

3. some graphical commands. The powerful Matlab graphical capabilities exceed those
comunonly available in other CAS such as Mathematica and Maple. Although our
current needs do not require applying them at full extent, they avoid the users the
tedious and time-consuming task to implement many routines for graphical output
by themselves. Some nice viewing features such as $3D$ rotation, zooming in and
out, labeling, scaling, coloring and others are also automatically inherited from the
Matlab graphical and windowing systems.

3.1.2 Graphical user interface layer

Although the libraries in previous layer are often enough to meet our computational needs,
end-users might be challenged for using them properly unless they are really proficient
on both Matlab syntax and functionalities and our implemented routines. This limita-
tion can be overcome by creating a GUI; a well-designed GUI uses readily recognizable
visual cues to help the user navigate efficiently through information. Matlab provides a
powerful mechanism to generate GUIs by using the so-called guide $(GUI$ Development
Ehvironment). This feature is not commonly available in many other CAS so far. Al-
though its implementation requires - for complex interfaces - a high level of expertise,

132

it allows end-users to deal with our libraries with a minimal knowledge and input, thus
facilitating its efficient use and dissemination.

Based on this discussion, a GUI layer has been implemented. Some examples of
typical windows of our GUI are depicted in upper part of Figure 1. Some windows are
for user interaction-typicalIy input acquisition, parameter tuning and option selection
tasks. Others are windows to display graphical output. All them allow an effective
use of powerful interface tools designed according to the type of entities being displayed
(e.g., drop-down menu for a choice list, check buttons for Boolean options, text boxes
for displaying messages, dialog boxes for input/output user interaction, etc.). Additional
functionalities are provided in hidden menus or in separate windows which can be invoked
at will if needed so as to keep the main window streamlined and uncluttered. For instance,
all graphical output is displayed in separate windows so that the information is better
organized and flows in a natural and intuitive way. As a result, the system presents a
GUI that is both aesthetic and very functional to the user.

3.2 Implementation issues
Regarding the implementation, thuis program has been developed by the author in Matlab
$v2007b[17]$ running on Windows XP operating system by using a PC with Intel Core
2 Duo processor at 2.4 GHz. and 2 GB of RAM. However, the program supports many
different platforms, such as PCs (with Windows $9x$, 2000, NT, Me, XP and Vista) and
UNIX workstations. A version for Apple Macintosh with Mac OS X system is also
available provided that Mac Xll (the implementation of the X Window System that
makes it possible to run Xll-based applications in Mac OS X) is properly installed and
configured. Figures in this paper correspond to the PC platform version.

The graphical tasks are performed by using the Matlab GUI for the higher-level func-
$tion\llcorner s$ (windowing, menus, or input) while the built-in graphics Matlab commands are
applied for rendering purposes. The numerical kernel has been implemented in the na-
tive Matlab programming language, and the symbolic kernel has been created by using
the commands of the Symbolic Math Toolbox.

4 Discrete Systems
The program described in previous section is well suited for dealing with both discrete
and continuous dynammical systems. This section illustrates the use of this software for
the case of discrete systems.

4.1 Fixed points and stability
Given an iterated map defined by a function $f(x)$, a fixed point x^{*} of $f(x)$ is a point that
is mapped to itself by the function, $i.e$. $f(x^{*})=x^{*}$. Let’s consider for example the logistic
map given by $x_{n+1}=\lambda x_{n}(1-x_{n})$, where $n\in$ IN and λ is a system parameter, usually
taking values on the interval [0,4]. The logistic map became popular following a seminal
paper by the biologist Robert May in 1976 [18], where he introduced the discrete version
of a demographic model due to Verhulst. Roughly, $x_{n}\in[0,1]$ represents the population
at year n , evolving from x_{0} , the initial population value. Depending on the λ value, the

133

a $arrow$

ffi $\zeta xmbs$ $Io*$ M

Systr Equim

$x(n\cdot 1)$.
$|mt,dQ^{\cdot}Y(n).t\uparrow Y(\cap))$

$Pu 6tcr$

Dynmcd $Sy\#-$ Andvsis $\llcorner Y\sim unov\in xp\alpha*$

$\Re..bllityotFlx\cdot dPo1mF|xedP\alpha|s.$

.
$\theta*\iota_{V}$

. $|\overline{\underline{Co\mathfrak{m}pu!\epsilon}}|\wedge$
$p_{Qn’\alpha r}lrdPr$

$x(0)\Rightarrow$

lxdPc $l1$) ≈ 0 $\vee \mathfrak{n}$. $\vee lh$.
$b\cdot(l\cdot\cdot bd\cdot)$ ~ 1 $–\triangleright$ St $b1$.

$lmbd$. $-l$ or $1\cdot*bd\cdot\cdot l$ $–\triangleright S\cdot ddl$. $\infty\alpha\backslash$

$b\cdot\prime l\cdot\cdot bd\cdot)$ $\triangleright\downarrow--\succ Un*t\cdot b1$.
$l\cdot\wedge bd\cdot\cdot$ 0 $-\succ$ $S\backslash lp\cdot r*CUlo$

.. $c\alpha_{W}\alpha m$ $-$

$PxdPt(Z)$ $\cdot t1\cdot*bd\cdot-1)/1\cdot\cdot bd$.
$WP\alpha t$ $x(0)$.

$b*(\tilde{-}*1\cdot\cdot bd*\}$ 4 1 $–>$ St $*b1$.
$1\cdot lbd$. . 1 or lmbda . 3 $–$, Saddle I

$b\cdot t-Z+1\cdot*bd\cdot)$ $\succ 1--\geq un\mathfrak{s}C$ ab $l\circ$

$1\cdot-bd$. . $Z–\backslash$ Supa r $*1$. $p\sim’\alpha ervdr$.

$a\dagger^{-}uc\circ 0\alpha\vee-$

$rwPo t$ $x(0)$.
$p_{rdn\alpha*r}$

vn . $\vee fh$.
$|\overline{\alpha \text{く}}|$

xh . $x\prime \mathfrak{n}=$

$|\overline{(\supset\ltimes}|$

$\#rSp\kappa oCrW$

$\square 1D$ ロ 20 $\square 3D$

$i\urcorner 1-Po t$ $x(0)$.
$P\alpha’\alpha uw\iota r$.

$\overline{\infty\alpha \text{く}}|$

$\overline{\infty c\infty}|||\overline{ckoe}||\overline{\}sr}|$

Figure 2: Fixed points and stability of the logistic map.

system evolves among a number of different situations, from the population eventually
dying to stabilizing or changing chaoticaly (see [18] for more details).

The program described in this paper can compute the fixed points of any iterated
map. To do so, we must enter the system equation as shown in Figure 2. Note that
the equation is given in a mathematical-looking way so that it can be subsequently
processed for further symbolic-numerical calculations. For instance, we can also analyze
the stability of fixed points, by computing the eigenvalue of the fixed point, given by:

$\phi=[\frac{df(x)}{dx}]_{x=x^{*}}$ The fixed point is stable if $|\phi|<1$, neutral if $|\phi|=1$, unstable if

$|\phi|>1$, and superstable if $|\phi|=0$. The fixed points for the logistic map are: $x=0$ and
$\lambda-1$

$x=\overline{\lambda}$
. Figure 2 shows the fixed points of the logistic map along with their stability

analysis in terms of the λ parameter.

4.2 Bifurcation diagrams
Depending on the λ value, the logistic map evolves among a number of different situa-
tions. This behavior is better analyzed by using the bifurcation diagram, which shows

134

Figure 3: Bifurcation diagram of the logistic map on: (left) interval $[0,4]$; (right) interval
[3.82, 3.86].

Figure 4: Bifurcation diagram of the cubic map on the interval [1, 4] for the initial
conditions: (left) $x_{0}=0.5$; (right) $x_{0}=-0.5$.

the possible long-term values (fixed points or periodic orbits) of a system as a function
of a system parameter. Figure 3 (left) shows the bifurcation diagram of the logistic map
for $\lambda\in[0,4]$. The initial input consists of the initial point x_{0} and the initial and final
values of the system parameter. The bifurcation diagram is a fractal: if you zoom in on
the value $\lambda=3.825$ and focus on one branch of the diagram, the situation nearby looks
like a shrunk and slightly distorted version of the whole diagram, as shown in Figure 3
(right). This is an example of the deep and ubiquitous connection between chaos and
fractals.

An interesting scenario appears when the branches in the bifurcation diagram do

135

Figure 5: (left) Lyapunov exponent of the logistic map on the interval $[0,4]$; (right) close
up on the interval [3.2, 4].

depend on the initial values of the system variable, x_{0} . This happens, for instance, for
the cubic map, given by: $x_{n+1}=(1-\mu)x_{n}+\mu x_{n}^{3}$. This system has two fixed points of

the form $x_{1,2}=\pm\sqrt{\frac{\mu-1}{3\mu}}$, meaning that there is no single value to display the whole

bifurcation diagram. Figure 4 displays the two bifurcation diagrams associated with
this map, obtained from two different initial conditions for the system variable, namely
$x_{0}=0.5$ (left) and $x_{0}=-0.5$ (right). As the reader can see, there are two missing
branches of the period-4 orbits in each diagram, so both pictures are complementary
each other.

4.3 Lyapunov exponents
One indication of chaoticity is the so-called sensitivity to initial conditions, meaning
that two initially closed arbitrary trajectories diverge exponentially over the time. The
Lyapunov exponent (LE) of a dynamical system is the number that characterizes the
rate of separation of these infinitesimaJly close trajectories along a given direction. Of
course, the rate of separation can be different for different orientations of initial separation
vector, leading to as many Lyapunov exponents as the number of dimensions of the phase
space. LEs are intensively applied to analyze the behavior of nonlinear systems, since
they indicate if small displacements of trajectories are along stable or unstable directions.
In short, a negative LE is an indicator of regular (stable) behavior while a positive LE
means that the orbit is unstable and chaotic.

Our program allows us to compute the Lyapunov exponents in a very easy way; the
initial input is given by the initial point for the system variable and the interval for the
system parameter. Figure 5 (left) depictes the Lyapunov exponent of the logistic map
for the system parameter on the interval $[0,4]$. Comparison of this picture with Figure 3
(left) shows that negative values for the LE are an indication of regular behavior, while
positive values are associated with chaotic motion. Note also that the LE tends to-oo

136

Figure 6: Cobweb plot of the logistic map: (left) $\lambda=3.235;$ (right) $\lambda=4$.

for $\lambda=2$, meaning the existence of a superstable fixed point. Figure 5 (right) shows
a magnification of the figure on the left for the interval [3.2, 4]. We can see that the
LE is positive for $\lambda>3.569\ldots$ except by the existence of some periodic windows, thus
explaining very well the bifurcation diagram in Figure 3 (left).

4.4 Cobweb plot
A cobweb plot is a graphical procedure especially suited to analyze the qualitative be-
haviour of one-dimensional iterated fumctions. Cobweb plots are useful because they allow
to determine the long-term evolution of an initial condition under repeated application
of a map. Figure 6 shows two cobweb plots for the logistic map and the initial conditions
$\lambda=3.235$ (left), and $\lambda=4$ (right). The first one shows the case of a period-2 orbit
(represented by a rectangle) while the second case is a chaotic orbit.

4.5 Phase space graph
A very powerful strategy to analyze chaotic systems is to use the so-called phase space
graph By this we mean a collection of pictures associated with the orbit of a given point
x_{0} and embedded into different n-dimensional spaces. For $n=1$ we get the signal of the
orbit, i.e. the sequence of iterates $\{x_{n}\}_{n}$ over the time. Such sequence is usually called
the time serees. For $n=2$ the graph is obtained by representing the sequence of iterates
$\{x_{n+1}\}$ vs. $\{x_{n}\}$, for $n=3$, we represent the sequence of iterates $\{x_{n+2}\}$ vs. $\{x_{n+1}\}$ and
$\{x_{n}\}$ and so on.

Figure 7 uses the phase space graph to analyze the chaotic behavior of the logistic
map for $\lambda=4$. These pictures illustrate perfectly how the chaotic behavior looks like. On
the left, the signal of the orbit is displayed. As discussed above, a characteristic of chaos
is that chaotic systems exhibit a great sensitivity to initial conditions. A common source
of such sensitivity to initial conditions is that the map represents a repeated folding and
stretching of the space on which it is defined. The $n=2$ phase space graph for the

137

Figure 7: (left to right) lD, $2D$ and $3D$ phase space graph for the logistic map.

logistic map, represented in Fig. 7 (middle), gives a two-dimensional phase diagram of
the logistic map showing the quadratic curve of its iterated equation. We can also embed
the same sequence in a $3D$ phase space, in order to investigate a deeper structure of the
map. Figure 7 (right) shows how initially nearby points begin to diverge, particularly in
those regions corresponding to the steeper sections of the plot.

5 Continuous Systems
In this section we show some applications of the program through illustrative examples
for the case of continuous systems. In thuis work we restrict ourselves to the case of finite-
dimensional flows, whuich are mathematically described by systems of ordinary differential
equations.

5.1 Symbolic-numerical analysis

Figures 8-11 show screenshots of a typical session for analyzing $3D$ continuous systems.
The session workflow is as follows: firstly, the user inputs the system equations expressed
symbolically. For instance, in Figure 8 we consider the famous Lorenz system [16], given
by: $(x’, y’, z’)=(\sigma(y-x), (R-z)x-y, xy- bz)$ where $\sigma,$ R and b are the system
parameters. The program includes a module for the computation of the Jacobian matrix
and the equilibrium points of any finite-dimensional flow. The Jacobian matrix is a
square matrix whose entries are the partial derivatives of the system equations with
respect to the system variables. If no value for the system parameters is provided, the
computation is performed symbolically and the corresponding output depends on those
system parameters. The equilibrium points and the eigenvalues and eigenvectors of the
system can also be computed in a similar way.

Figure 8 shows the symbolic Jacobian matrix for the Lorenz system, which depends
not only on the system parameters but also on the system variables. Once some parameter
values are given ($\sigma=10,$ $R=60$ and $b=8/3$ in this example), the Lyapunov exponents
(LE) of the system can be numerically computed. To this purpose, a numerical integration
method is applied [20]. The corresponding options and parameter values are shown in
Figure 9. The numerical values of these LE are 1.4, 0.0012 and-15 respectively. Their
graphical representation over the time is depicted in Figure 10.

138

Figure 8: Symbolic Jacobian matrix for the Lorenz system.

Roughly speaking, LEs are a generalization of the eigenvalues for nonlinear flows. In
particular, a negative LE indicates that the trajectory evolves along the stable direction
for this variable (and hence, regular behavior for that variable is obtained) while a positive
value indicates a chaotic behavior.

5.2 Visualization of chaotic attractors
Since in our example we find positive LE, the system exhibits a chaotic behavior. This
fact is evidenced in Figure 11 (left) where the corresponding attractor and the equilibrium
points of the Lorenz system for our choice of the system parameters are displayed. Their
corresponding numerical values are shown in the main window of Figure 9. Finally, Figure
11 (right) shows the evolution of the system variables over the time from $t=0$ to $t=50$.

In order to display the attractor and/or the evolution of the system variables over the
time (like in Figure 11), some kind of numerical integration is required. The program in
this paper allows end-users to choose different numerical integration methods [20], includ-
ing the classical Euler and 2nd- and $4th$-order Runge-Kutta methods (implemented by
the author) along with some more sophisticated methods from the Matlab kemel such as
ode45, ode23, ode113, ode $15s$, ode$23s$, ode$23t$ and ode$23tb$ (see [17] for details). Some
input required for the numerical integration (such as the initial point and the integration
time) is also given at this stage. By pressing the “Numerical Integration settings” button,
some additional options (such as the absolute and relative error tolerance, the initial and

139

Ek $E\cross wvusI’*$ M

Systm $E\eta udW$.
-.

x . $\Psi^{\mathfrak{n}obx|}$

μ $R.\nu*x.$.
:. $xyb^{\backslash }$

$-\sim-7_{\}$

System wrdrs

$1rA9dlrTm$

ur. 0 $M\sim$ 50

$|n_{C}9dr$ Nethod

ode45 $su|r9$ $|$

$h\star$. An $u\cdot\cdot\n$ one wndos

y^{1}
. $Sr*$ am Seveiel axes

$p|$
$\mathbb{E}aeh1\cdot e\mathfrak{n}$ one $1W1\omega$

OK $|$

Cm $|$ $cb,$. $|$ $H*$ $|$

Figure 9: Equilibrium points and Lyapunov exponents for the Lorenz system.

Figure 10: Temporal evolution of the Lyapunov exponents for the Lorenz system.

maximum stepsize and refinement, the computation speed and others) can be set up in a
separate window. Then the user proceeds with the graphical representation stage, where
he$/she$ can display the attractor of the dynamical system and/or the evolution of any of
the system variables over the time. Such variables can be depicted on the same or on
different axes and windows. The“Graphical Representation settings” button opens a new
window where different graphical options such as the line width and style, markers for the
equilibrium points, and some coloring options can be defined. The result is the graphical

140

Figure $\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\cdot r_{O^{r}C17}lrs)^{r}SCem$. $(|_{t^{J}}fC)c\dagger\iota$ aot $1C_{Cv}^{\neg}fCractol$. and equilibrium points; (right) tempo-
ral $evolutt_{O^{n}}o^{f}s\gamma sCc\tau r\iota var\iota$ ablcs.

Figure 12: Chaotic attractors of $3D$ flows: (top-left) Lorenz system; (top-right) R\"ossler
system; (bottom-left) Van-der-Pol Duffing oscillator; (bottom-right) Chua’s circuit.

141

output shown in Figure 11 where the chaotic attractor and the temporal evolution of the
system variables are displayed.

Figure 12 shows the chaotic attractors of four distinct nonlinear flows: Lorenz system
for weather forecasting, R\"ossler chemical reaction, Van-der-Pol Duffing oscillator and
Chua’s electronic circuit (see [19] for further information about these systems).

Acknowledgments
The author would like to express her sincere acknowledgment and appreciation to Prof.
Setsuo Takato for his kind invitation to participate in this RIMS workshop and visit the
lovely city of Kyoto, and for creating such a friendly atmosphere during all my stay in
Japan. I really hope we can meet again very soon.

This research has been supported by the Computer Science National Program of
the Spanish Ministry of Education and Science, Project Ref. #TIN2006-13615 and the
University of Cantabria.

References
[1] The Bologna Declaration on the European space for higher education: an explanation.

Association of European Universities&EU Rectors’ Conference (1999) pp. 4 (available
at: $http.\cdot//ec.europa.eu/education/policies/educ/bologna/bologna.pdf)$.

[2] Chua, L.O., Komuro, M., Matsumoto, T.: The double-scroll family. IEEE $\mathcal{I}hnsac-$

tions on Circuits and Systems, 33, (1986) 1073-1118.

[3] Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: A Matlab package for nu-
merical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software,
29(2) (2003) 141-164

[4] Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Numerical continuation of fold bifurca-
tions of limit cycles in MATCONT. Lecture Notes in Computer Science, 2657 (2003)
701-710

[5] G\’alvez, A.: Numerical-symbolic Matlab program for the analysis of three-dimensional
chaotic systems. Lectures Notes in Computer Science, 4488 (2007) 211-218

[6] G\’aJvez, A.: Matlab toolbox and GUI for analyzing one-dimensional chaotic maps.
Intemational Conference on Computational Science and Applications, ICCSA2008,
IEEE Computer Society Press, Los Alamitos, CA, (2008) 211-218.

[7] G\’aJvez, A., Iglesias, A.: Symbolic/numeric analysis of chaotic synchronization with a
CAS. Future Genemtion Computer Systems 25(5) (2007) 727-733

[8] Govaerts, W., Sautois, B.: Phase response curves, delays and synchronization in
Matlab. Lectures Notes in Computer Science, 3992 (2006) 391-398

[9] Guti\’errez, J.M., Iglesias, A., Gu\’emez, J., Mat\’ias, M.A.: Suppression of chaos through
changes in the system variables through Poincar\’e and Lorenz return maps. Intema-
tional Joumal of Bifurcation and Chaos, 6 (1996) 1351-1362

142

[10] Guti\’errez, J.M., Iglesias, A.: A Mathematica package for the analysis and control of
chaos in nonlinear systems. Computers in Physics, 12(6) (1998) 608-619

[11] Iglesias, A.: A new scheme based on semiconductor lasers with phase-conjugate
feedback for cryptographic communications. Lectures Notes in Computer Science,
2510 (2002) 135-144

[12] Iglesias, A., G\’alvez, A.: Analyzing the synchronization of chaotic dynamical systems
with Mathematica: Part I. Lectures Notes in Computer Science, 3482 (2005) 472-481

[13] Iglesias, A., Ga’lvez, A.: Analyzing the synchronization of chaotic dynamical systems
with Mathematica: Part II. Lectures Notes in Computer Science, 3482 (2005) 482-491

[14] Iglesias, A., G\’alvez, A.: Revisiting some control schemes for chaotic synchronization
with Mathematica. Lectures Notes in Computer Science, 3516 (2005) 651-658

[15] Lauwerier, H.A.: One-dimensional iterative maps. In: Chaos. Holden, A.V. (ed.).
Manchester University Press, Manchester (1986)

[16] Lorenz, E.N., Deterministic nonperiodic flow, Joumal of Atmospheric Sciences, 20
(1963) 130-141.

[17] The Mathworks Inc: Using Matlab. Natick, MA (1999)

[18] May, R.M.: Simple mathematical models with very complicated dynamics. Nature
261 (1976) 459-467

[19] Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge
(1993)

[20] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
(2nd edition), Cambridge University Press, Cambridge, 1992.

[21] Sarafian, H.: A closed form solution of the run-time of a sliding bead along a freely
hanging slinky. Lecture Notes in Computer Science, 3039 (2004) 319-326

[22] Zhou, W., Jeffrey, D.J. Reid, G.J.: An algebraic method for analyzing open-loop
dynamic systems. Lecture Notes in Computer Science, 3516 (2005) $586rightarrow 593$

143

