Some subordination criteria concerning Sălăgean operator

Kazuo Kuroki and Shigeyoshi Owa

Abstract

Applying Sălăgean operator, for the class \mathcal{A} of analytic functions f(z) in the open unit disk \mathbb{U} which are normalized by f(0) = f'(0) - 1 = 0, the generalization of an analytic function to discuss the starlikeness is considered. Furthermore, from the subordination criteria for Janowski functions generalized by some complex parameters, some interesting subordination criteria for $f(z) \in \mathcal{A}$ are given.

1 Introduction, definition and preliminaries

Let \mathcal{A} denote the class of functions f(z) of the form:

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$

Furthermore, let \mathcal{P} denote the class of functions p(z) of the form:

(1.2)
$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$$

which are analytic in \mathbb{U} . If $p(z) \in \mathcal{P}$ satisfies Re(p(z)) > 0 $(z \in \mathbb{U})$, then we say that p(z) is the Carathéodory function (cf. [1]).

A function $f(z) \in \mathcal{A}$ is said to be starlike of order α in \mathbb{U} if it satisfies

(1.3)
$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some α ($0 \le \alpha < 1$). We denote by $\mathcal{S}^*(\alpha)$ the subclass of \mathcal{A} consisting of all functions f(z) which are starlike of order α in \mathbb{U} .

Similarly, if $f(z) \in A$ satisfies the following inequality

(1.4)
$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (z \in \mathbb{U})$$

for some α ($0 \le \alpha < 1$), then f(z) is said to be convex of order α in \mathbb{U} . We denote by $\mathcal{K}(\alpha)$ the subclass of \mathcal{A} consisting of all functions f(z) which are convex of order α in \mathbb{U} . As usual, in the present investigation, we write

$$S^*(0) \equiv S^*$$
 and $K(0) \equiv K$.

The classes $S^*(\alpha)$ and $K(\alpha)$ were introduced by Robertson [7].

By the familiar principle of differential subordination between analytic functions f(z) and g(z) in \mathbb{U} , we say that f(z) is subordinate to g(z) in \mathbb{U} if there exists an analytic function w(z) satisfying the following conditions:

$$w(0) = 0 \quad \text{and} \quad |w(z)| < 1 \qquad (z \in \mathbb{U}),$$

such that

$$f(z) = g(w(z))$$
 $(z \in \mathbb{U}).$

We denote this subordination by

$$f(z) \prec g(z) \qquad (z \in \mathbb{U}).$$

In particular, if g(z) is univalent in \mathbb{U} , then it is known that

$$f(z) \prec g(z)$$
 $(z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$

For $p(z) \in \mathcal{P}$, we introduce the following function

(1.5)
$$p(z) = \frac{1 + Az}{1 + Bz} \qquad (-1 \le B < A \le 1)$$

which has been investigated by Janowski [3]. Thus, the function p(z) given by (1.5) is said to be the Janowski function.

Here, for some A and B $(-1 < B < A \le 1)$, the function p(z) given by (1.5) is analytic and univalent in \mathbb{U} and p(z) maps the open unit disk \mathbb{U} onto the open disk given by

$$\left| p(z) - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2}.$$

Thus, it is clear that

(1.6)
$$\operatorname{Re}(p(z)) > \frac{1-A}{1-B} \ge 0 \qquad (z \in \mathbb{U}).$$

Also, if we take B = -1 in (1.5), then we see that

(1.7)
$$p(z) = \frac{1 + Az}{1 - z} \qquad (-1 < A \le 1)$$

is analytic and univalent in \mathbb{U} and the domain $p(\mathbb{U})$ is the right half-plane satisfying

(1.8)
$$\operatorname{Re}(p(z)) > \frac{1}{2}(1-A) \ge 0.$$

Hence, we see that the Janowski function maps the open unit disk U onto some domain which is on the right half-plane.

And, as the generalization of Janowski function, Kuroki, Owa and Srivastava [2] have discussed the function

$$p(z) = \frac{1 + Az}{1 + Bz}$$

for some complex parameters A and B which satisfy one of following conditions

$$\begin{cases} (i) |B| < 1, A \neq B, \text{ and } \operatorname{Re}(1 - A\overline{B}) \ge |A - B| \\ (ii) |B| = 1, A \neq B, |A| \le 1, \text{ and } 1 - A\overline{B} > 0. \end{cases}$$

First, for some complex numbers A and B which satisfy the following condition

(i)
$$|B| < 1$$
, $A \neq B$, and $Re(1 - A\overline{B}) \ge |A - B|$,

the function $p(z) = \frac{1+Az}{1+Bz}$ is analytic and univalent in $\mathbb U$ and p(z) maps the open unit disk $\mathbb U$ onto the open disk given by

$$\left| p(z) - \frac{1 - A\overline{B}}{1 - |B|^2} \right| < \frac{|A - B|}{1 - |B|^2}.$$

Thus, it is clear that

(1.9)
$$\operatorname{Re}(p(z)) > \frac{\operatorname{Re}(1 - A\overline{B}) - |A - B|}{1 - |B|^2} \ge 0 \qquad (z \in \mathbb{U}).$$

Also, for some complex numbers A and B which satisfy the following condition

(ii)
$$|B| = 1$$
, $A \neq B$, $|A| \leq 1$, and $1 - A\overline{B} > 0$,

the function $p(z) = \frac{1+Az}{1+Bz}$ is analytic and univalent in $\mathbb U$ and the domain $p(\mathbb U)$ is the right half-plane satisfying

(1.10)
$$\operatorname{Re}(p(z)) > \frac{1 - |A|^2}{2(1 - A\overline{B})} \ge 0.$$

Hence, we see that the generalized Janowski function maps the open unit disk U onto some domain which is on the right half-plane.

We define the following differential operator due to Sălăgean [8]. For a function f(z) and $j = 1, 2, 3, \dots$,

(1.11)
$$D^{0}f(z) = f(z) = z + \sum_{n=2}^{\infty} a_{n}z^{n},$$

(1.12)
$$D^{1}f(z) = Df(z) = zf'(z) = z + \sum_{n=2}^{\infty} na_{n}z^{n},$$

(1.13)
$$D^{j}f(z) = D(D^{j-1}f(z)) = z + \sum_{n=0}^{\infty} n^{j}a_{n}z^{n}.$$

Also, we meditate the following integral operator

(1.14)
$$D^{-1}f(z) = \int_0^z \frac{f(\zeta)}{\zeta} d\zeta = z + \sum_{n=2}^\infty n^{-1} a_n z^n,$$

(1.15)
$$D^{-j}f(z) = D^{-1}(D^{-(j-1)}f(z)) = z + \sum_{n=2}^{\infty} n^{-j}a_n z^n$$

for any negative integers.

Then, for $f(z) \in \mathcal{A}$ given by (1.1), we know that

(1.16)
$$D^{j}f(z) = z + \sum_{n=2}^{\infty} n^{j} a_{n} z^{n} \quad (j = 0, \pm 1, \pm 2, \cdots).$$

Using the above operator $D^{j}f(z)$, we consider the subclass $\mathcal{S}_{j}^{k}(\alpha)$ of \mathcal{A} as follows:

$$\mathcal{S}_{j}^{k}(\alpha) = \left\{ f(z) \in \mathcal{A} : \operatorname{Re}\left(\frac{D^{k}f(z)}{D^{j}f(z)}\right) > \alpha \quad (z \in \mathbb{U} \, ; \, 0 \leq \alpha < 1) \right\}.$$

Remark 1.1 Noting

$$\frac{D^1 f(z)}{D^0 f(z)} = \frac{z f'(z)}{f(z)}, \quad \frac{D^2 f(z)}{D^1 f(z)} = \frac{z \big(z f'(z)\big)'}{z f'(z)} = 1 + \frac{z f''(z)}{f'(z)},$$

we see that

$$S_0^1(\alpha) \equiv S^*(\alpha), \quad S_1^2(\alpha) \equiv \mathcal{K}(\alpha) \qquad (0 \le \alpha < 1).$$

Remark 1.2 For some α ($0 \le \alpha < 1$), we find

$$\frac{D^k f(z)}{D^j f(z)} \prec \frac{1 + (1 - 2\alpha)z}{1 - z} \iff \operatorname{Re}\left(\frac{D^k f(z)}{D^j f(z)}\right) > \alpha \qquad (z \in \mathbb{U}).$$

In our investigation here, we need the following lemma concerning the differential sub-ordination given by Miller and Mocanu [5] (see also [6, p. 132]).

Lemma 1.3 Let the function q(z) be analytic and univalent in \mathbb{U} . Also let $\phi(\omega)$ and $\psi(\omega)$ be analytic in a domain C containing $q(\mathbb{U})$, with

$$\psi(\omega) \neq 0 \qquad (\omega \in q(\mathbb{U}) \subset \mathcal{C}).$$

Set

$$Q(z) = zq'(z)\psi(q(z))$$
 and $h(z) = \phi(q(z)) + Q(z)$,

and suppose that

(i) Q(z) is starlike and univalent in \mathbb{U} ;

and

$$(ii) \qquad \qquad \operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) = \operatorname{Re}\left(\frac{\phi'\big(q(z)\big)}{\psi\big(q(z)\big)} + \frac{zQ'(z)}{Q(z)}\right) > 0 \qquad (z \in \mathbb{U})$$

If p(z) is analytic in \mathbb{U} , with

$$p(0) = q(0)$$
 and $p(\mathbb{U}) \subset \mathcal{C}$,

and

$$\phi(p(z)) + zp'(z)\psi(p(z)) \prec \phi(q(z)) + zq'(z)\psi(q(z)) =: h(z) \qquad (z \in \mathbb{U}),$$

then

$$p(z) \prec q(z) \qquad (z \in \mathbb{U})$$

and q(z) is the best dominant of this subordination.

By making use of lemma 1.3, Kuroki, Owa and Srivastava [2] have investigated some subordination criteria for the generalized Janowski functions and deduced the following lemma.

Lamma 1.4 Let the function $f(z) \in A$ be so chosen that $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$. Also, let α $(\alpha \neq 0)$, β $(-1 \leq \beta \leq 1)$, and some complex parameters A and B which satisfy one of following conditions

$$(i) |B| < 1, A \neq B, \text{ and } \operatorname{Re}(1 - A\overline{B}) \geq |A - B| \text{ be so that}$$

$$\frac{\beta(1 - \alpha)}{\alpha} + \frac{(1 + \beta)\left\{\operatorname{Re}\left(1 - A\overline{B}\right) - |A - B|\right\}}{1 - |B|^2} + \frac{1 - \beta}{1 + |A|} + \frac{1 + \beta}{1 + |B|} - 1 \geq 0,$$

(ii)
$$|B| = 1$$
, $A \neq B$, $|A| \leq 1$, and $1 - A\overline{B} > 0$ be so that
$$\frac{\beta(1-\alpha)}{\alpha} + \frac{(1+\beta)(1-|A|^2)}{2(1-A\overline{B})} + \frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geq 0.$$

If

(1.17)
$$\left(\frac{zf'(z)}{f(z)}\right)^{\beta} \left(1 + \alpha \frac{zf''(z)}{f'(z)}\right) \prec h(z) \qquad (z \in \mathbb{U}),$$

where

$$h(z) = \left(\frac{1+Az}{1+Bz}\right)^{\beta-1} \left\{ (1-\alpha)\frac{1+Az}{1+Bz} + \frac{\alpha(1+Az)^2 + \alpha(A-B)z}{(1+Bz)^2} \right\},\,$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz} \qquad (z \in \mathbb{U}).$$

2 Subordinations for the class defined by Sălăgean operator

Applying Sălăgean operator for $f(z) \in \mathcal{A}$, we deduced the following subordination criterion for the generalized Janowski function.

Theorem 2.1 Let the function $f(z) \in A$ be so chosen that $\frac{D^{j}f(z)}{z} \neq 0$ $(z \in \mathbb{U})$. Also, let α $(\alpha \neq 0)$, β $(-1 \leq \beta \leq 1)$, and some complex parameters A and B which satisfy one of following conditions

(i)
$$|B| < 1$$
, $A \neq B$, and $Re(1 - A\overline{B}) \ge |A - B|$ be so that

$$\frac{\beta(1-\alpha)}{\alpha} + \frac{(1+\beta)\{\text{Re}(1-A\overline{B}) - |A-B|\}}{1-|B|^2} + \frac{1-\beta}{1+|A|} + \frac{1+\beta}{1+|B|} - 1 \ge 0,$$

(ii)
$$|B| = 1$$
, $A \neq B$, $|A| \leq 1$, and $1 - A\overline{B} > 0$ be so that

$$\frac{\beta(1-\alpha)}{\alpha} + \frac{(1+\beta)(1-|A|^2)}{2(1-A\overline{B})} + \frac{(1-\beta)(1-|A|)}{2(1+|A|)} \ge 0.$$

If

$$(2.1) \qquad \left(\frac{D^k f(z)}{D^j f(z)}\right)^{\beta} \left\{ (1-\alpha) + \alpha \left(\frac{D^k f(z)}{D^j f(z)} + \frac{D^{k+1} f(z)}{D^k f(z)} - \frac{D^{j+1} f(z)}{D^j f(z)}\right) \right\} \prec h(z),$$

where

$$h(z) = \left(\frac{1+Az}{1+Bz}\right)^{\beta-1} \left\{ (1-\alpha)\frac{1+Az}{1+Bz} + \frac{\alpha(1+Az)^2 + \alpha(A-B)z}{(1+Bz)^2} \right\},\,$$

then

$$\frac{D^k f(z)}{D^j f(z)} \prec \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U}).$$

Proof. If we define the function p(z) by

$$p(z) = \frac{D^k f(z)}{D^j f(z)} \qquad (z \in \mathbb{U}),$$

then p(z) is analytic in \mathbb{U} with p(0) = 1. Further, since

$$zp'(z) = \left(\frac{D^k f(z)}{D^j f(z)}\right) \left(\frac{D^{k+1} f(z)}{D^k f(z)} - \frac{D^{j+1} f(z)}{D^j f(z)}\right),$$

the condition (2.1) can be written as follows:

$$\left\{p(z)\right\}^{\beta}\left\{(1-\alpha)+\alpha p(z)\right\}+\alpha z p'(z) \left\{p(z)\right\}^{\beta-1} \prec h(z) \qquad (z \in \mathbb{U})$$

We also set

$$q(z) = \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U}),$$

and

$$\phi(\omega) = \omega^{\beta} (1 - \alpha + \alpha \omega), \text{ and } \psi(\omega) = \alpha \omega^{\beta - 1}$$

for $\omega \in q(\mathbb{U})$. Then, it is clear that the function q(z) is analytic and univalent in \mathbb{U} and have a positive real part in \mathbb{U} for the conditions (i) and (ii).

Therefore, ϕ and ψ are analytic in a domain \mathcal{C} containing $q(\mathbb{U})$, with

$$\psi(\omega) = \alpha \omega^{\beta-1} \neq 0 \qquad (\omega \in q(\mathbb{U}) \subset \mathcal{C}).$$

Also, for the function Q(z) given by

$$Q(z) = zq'(z)\psi(q(z)) = \frac{\alpha(A-B)z(1+Az)^{\beta-1}}{(1+Bz)^{\beta+1}},$$

we obtain

(2.2)
$$\frac{zQ'(z)}{Q(z)} = \frac{1-\beta}{1+Az} + \frac{1+\beta}{1+Bz} - 1.$$

Furthermore, we have

$$\begin{split} h(z) &= \phi \big(q(z) \big) + Q(z) \\ &= \left(\frac{1+Az}{1+Bz} \right)^{\beta} \left(1 - \alpha + \alpha \frac{1+Az}{1+Bz} \right) + \frac{\alpha (A-B)z(1+Az)^{\beta-1}}{(1+Bz)^{\beta+1}} \end{split}$$

and

(2.3)
$$\frac{zh'(z)}{Q(z)} = \frac{\beta(1-\alpha)}{\alpha} + (1+\beta)q(z) + \frac{zQ'(z)}{Q(z)}.$$

Hence.

(i) For the complex numbers A and B such that

$$|B| < 1, A \neq B, \text{ and } \operatorname{Re}(1 - A\overline{B}) \ge |A - B|,$$

it follows from (2.2) and (2.3) that

$$\operatorname{Re}\left(\frac{zQ'(z)}{Q(z)}\right) > \frac{1-\beta}{1+|A|} + \frac{1+\beta}{1+|B|} - 1 \ge 0,$$

and

$$\begin{split} \operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > \frac{\beta(1-\alpha)}{\alpha} + \frac{(1+\beta)\left\{\operatorname{Re}\left(1-A\overline{B}\right) - |A-B|\right\}}{1-|B|^2} \\ + \frac{1-\beta}{1+|A|} + \frac{1+\beta}{1+|B|} - 1 \geqq 0 \qquad (z \in \mathbb{U}). \end{split}$$

(ii) For the complex numbers A and B such that

$$|B|=1$$
, $|A| \leq 1$, $A \neq B$, and $1-A\overline{B} > 0$,

from (2.2) and (2.3), we get

$$\operatorname{Re}\left(\frac{zQ'(z)}{Q(z)}\right) > \frac{1-\beta}{1+|A|} + \frac{1}{2}(1+\beta) - 1 = \frac{(1-\beta)(1-|A|)}{2(1+|A|)} \ge 0,$$

and

$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > \frac{\beta(1-\alpha)}{\alpha} + \frac{(1+\beta)(1-|A|^2)}{2(1-A\overline{B})} + \frac{(1-\beta)(1-|A|)}{2(1+|A|)} \ge 0 \qquad (z \in \mathbb{U}).$$

Since all conditions of Lemma 1.3 are satisfied, we conclude that

$$\frac{D^k f(z)}{D^j f(z)} \prec \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U}),$$

which completes the proof of Theorem 2.1.

Letting k = j + 1 in Theorem 2.1, we obtain

Corollary 2.2 Let the function $f(z) \in A$ be so chosen that $\frac{D^j f(z)}{z} \neq 0$ $(z \in \mathbb{U})$. Also, let α $(\alpha \neq 0)$, β $(-1 \leq \beta \leq 1)$, and some complex parameters A and B which satisfy one of following conditions

(i)
$$|B| < 1$$
, $A \neq B$, and $\text{Re}(1 - A\overline{B}) \ge |A - B|$ be so that
$$\frac{\beta(1 - \alpha)}{\alpha} + \frac{(1 + \beta)\{\text{Re}(1 - A\overline{B}) - |A - B|\}}{1 - |B|^2} + \frac{1 - \beta}{1 + |A|} + \frac{1 + \beta}{1 + |B|} - 1 \ge 0,$$

(ii)
$$|B| = 1$$
, $A \neq B$, $|A| \leq 1$, and $1 - A\overline{B} > 0$ be so that
$$\frac{\beta(1-\alpha)}{\alpha} + \frac{(1+\beta)(1-|A|^2)}{2(1-A\overline{B})} + \frac{(1-\beta)(1-|A|)}{2(1+|A|)} \geq 0.$$

If

(2.2)
$$\left(\frac{D^{j+1}f(z)}{D^{j}f(z)}\right)^{\beta} \left(1 - \alpha + \alpha \frac{D^{j+2}f(z)}{D^{j+1}f(z)}\right) \prec h(z),$$

where

$$h(z) = \left(\frac{1+Az}{1+Bz}\right)^{\beta-1} \left\{ (1-\alpha)\frac{1+Az}{1+Bz} + \frac{\alpha(1+Az)^2 + \alpha(A-B)z}{(1+Bz)^2} \right\},\,$$

then

$$\frac{D^{j+1}f(z)}{D^{j}f(z)} \prec \frac{1+Az}{1+Bz} \qquad (z \in \mathbb{U}).$$

Remark 2.3 Setting j = 0 in Corollary 2.2, we obtain Lamma 1.4 proven by Kuroki, Owa and Srivastava [2].

Also, if we assume that $\alpha = 1$, $\beta = A = 0$, and $B = \frac{1-\mu}{1+\mu}e^{i\theta}$ $(0 \le \mu < 1, 0 \le \theta < 2\pi)$, Corollary 2.2 becomes the following corollary.

Corollary 2.4 If
$$f(z) \in \mathcal{A}\left(\frac{D^{j}f(z)}{z} \neq 0 \text{ in } \mathbb{U}\right)$$
 satisfies

$$\frac{D^{j+2}f(z)}{D^{j+1}f(z)} \prec \frac{1+\mu - (1-\mu)e^{i\theta}z}{1+\mu + (1-\mu)e^{i\theta}z} \qquad (z \in \mathbb{U}; \ 0 \le \theta < 2\pi)$$

for some μ $(0 \le \mu < 1)$, then

$$\frac{D^{j+1}f(z)}{D^{j}f(z)} \prec \frac{1+\mu}{1+\mu+(1-\mu)e^{i\theta}z} \qquad (z \in \mathbb{U}).$$

From the above corollary, we have

$$\operatorname{Re}\left(\frac{D^{j+2}f(z)}{D^{j+1}f(z)}\right) > \mu \quad \Longrightarrow \quad \operatorname{Re}\left(\frac{D^{j+1}f(z)}{D^{j}f(z)}\right) > \frac{1+\mu}{2} \qquad (z \in \mathbb{U} \; ; \; 0 \leq \mu < 1).$$

Thus, we see that

$$f(z) \in \mathcal{S}_{j+1}^{j+2}(\mu) \implies f(z) \in \mathcal{S}_{j}^{j+1}\left(\frac{1+\mu}{2}\right) \implies f(z) \in \mathcal{S}_{j-1}^{j}\left(\frac{3+\mu}{4}\right)$$

$$\implies \cdots \implies f(z) \in \mathcal{S}_{1}^{2}\left(\frac{2^{j}-1+\mu}{2^{j}}\right)$$

$$\implies f(z) \in \mathcal{S}_{0}^{1}\left(\frac{2^{j+1}-1+\mu}{2^{j+1}}\right) \qquad (z \in \mathbb{U}; 0 \leq \mu < 1).$$

In particular, we find

$$\begin{split} f(z) &\in \mathcal{S}_{j+1}^{j+2}(\mu) \implies f(z) \in \mathcal{K}\left(\frac{2^{j}-1+\mu}{2^{j}}\right) \\ &\implies f(z) \in \mathcal{S}^{*}\left(\frac{2^{j+1}-1+\mu}{2^{j+1}}\right) \qquad (z \in \mathbb{U}\,;\, 0 \leqq \mu < 1). \end{split}$$

And, taking j=0 and $\mu=0$, we find the fact that every convex function is starlike of order $\frac{1}{2}$. This fact is well-known as the Marx-Strohhäcker theorem in Univalent Function Theory (cf. [4], [9]).

3 Subordination criteria for other analytic functions

In this section, by making use of Lemma 1.3, we consider some subordination criteria concerning analytic function $\frac{D^j f(z)}{z}$ for $f(z) \in \mathcal{A}$.

Theorem 3.1 Let α ($\alpha \neq 0$), β ($-1 \leq \beta \leq 1$), and some complex parameters A and B which satisfy one of following conditions

(i) |B| < 1, $A \neq B$, and $Re(1 - A\overline{B}) \ge |A - B|$ be so that

$$\frac{\beta}{\alpha} + \frac{1-\beta}{1+|A|} + \frac{1+\beta}{1+|B|} - 1 \ge 0,$$

(ii) |B| = 1, $A \neq B$, $|A| \leq 1$, and $1 - A\overline{B} > 0$ be so that

$$\frac{\beta}{\alpha} + \frac{(1-\beta)(1-|A|)}{2(1+|A|)} \ge 0.$$

If $f(z) \in A$ satisfies

$$(3.1) \qquad \left(\frac{D^j f(z)}{z}\right)^{\beta} \left(1 - \alpha + \alpha \frac{D^{j+1} f(z)}{D^j f(z)}\right) \prec \left(\frac{1 + Az}{1 + Bz}\right)^{\beta} + \frac{\alpha (A - B)z(1 + Az)^{\beta - 1}}{(1 + Bz)^{\beta + 1}},$$

then

$$\frac{D^j f(z)}{z} \prec \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U}).$$

Proof. If we define the function p(z) by

$$p(z) = \frac{D^{j}f(z)}{z} \qquad (z \in \mathbb{U}),$$

then p(z) is analytic in \mathbb{U} with p(0) = 1 and the condition (3.1) can be written as follows:

$$\{p(z)\}^{\beta} + \alpha z p'(z) \{p(z)\}^{\beta-1} \prec h(z) \qquad (z \in \mathbb{U}).$$

We also set

$$q(z) = \frac{1 + Az}{1 + Bz} \qquad (z \in \mathbb{U}),$$

and

$$\phi(\omega) = \omega^{\beta}$$
, and $\psi(\omega) = \alpha \omega^{\beta-1}$

for $\omega \in q(\mathbb{U})$. Then, the function q(z) is analytic and univalent in \mathbb{U} and satisfies

$$\operatorname{Re} (q(z)) > 0 \qquad (z \in \mathbb{U})$$

for the condition (i) and (ii).

Thus, the functions ϕ and ψ satisfy the conditions required by Lemma 1.3. Further, for the functions Q(z) and h(z) given by

$$Q(z) = zq'(z)\psi(q(z))$$
 and $h(z) = \phi(q(z)) + Q(z)$,

we have

$$\frac{zQ'(z)}{Q(z)} = \frac{1-\beta}{1+Az} + \frac{1+\beta}{1+Bz} - 1 \quad \text{and} \quad \frac{zh'(z)}{Q(z)} = \frac{\beta}{\alpha} + \frac{zQ'(z)}{Q(z)}.$$

Then, similarly to proof of Theorem 2.1, we see that

$$\operatorname{Re}\left(\frac{zQ'(z)}{Q(z)}\right) > 0 \quad \text{and} \quad \operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > 0 \qquad (z \in \mathbb{U})$$

for the conditions (i) and (ii).

Thus, by applying Lemma 1.3, we conclude that $p(z) \prec q(z) \quad (z \in \mathbb{U})$. The proof of the theorem is completed.

In Theorem 3.1, taking $\alpha=1,\ \beta=A=0,\ \text{and}\ B=\frac{1-\nu}{\nu}e^{i\theta} \quad \left(\frac{1}{2}\leq\nu<1,\ 0\leq\theta<2\pi\right),$ we obtain the following corollary.

Corollary 3.2 If $f(z) \in A$ satisfies

$$\frac{D^{j+1}f(z)}{D^{j}f(z)} \prec \frac{\nu}{\nu + (1-\nu)e^{i\theta}z} \qquad (z \in \mathbb{U} \, ; \, 0 \leqq \theta < 2\pi)$$

for some $\nu\left(\frac{1}{2} \leq \nu < 1\right)$, then

$$\frac{D^j f(z)}{z} \prec \frac{\nu}{\nu + (1 - \nu)e^{i\theta}z} \qquad (z \in \mathbb{U}).$$

Also, making $\alpha = \beta = 1$, A = 0, and $B = \frac{1-\nu}{\nu}e^{i\theta}$ $\left(\frac{1}{2} \le \nu < 1, 0 \le \theta < 2\pi\right)$ in Theorem 3.1, we get

Corollary 3.3 If $f(z) \in A$ satisfies

$$\frac{D^{j+1}f(z)}{z} \prec \left(\frac{\nu}{\nu + (1-\nu)e^{i\theta}z}\right)^2 \qquad (z \in \mathbb{U}; \ 0 \le \theta < 2\pi)$$

for some $\nu\left(\frac{1}{2} \leq \nu < 1\right)$, then

$$\frac{D^{j}f(z)}{z} \prec \frac{\nu}{\nu + (1-\nu)e^{i\theta}z} \qquad (z \in \mathbb{U}).$$

The above corollaries derive each of the facts that

$$\operatorname{Re}\left(\frac{D^{j+1}f(z)}{D^{j}f(z)}\right)>\nu\quad\Longrightarrow\quad\operatorname{Re}\left(\frac{D^{j}f(z)}{z}\right)>\nu\qquad\left(z\in\mathbb{U}\,;\,\frac{1}{2}\leqq\nu<1\right),$$

and

$$\operatorname{Re}\sqrt{\frac{D^{j+1}f(z)}{z}}>\nu\quad\Longrightarrow\quad\operatorname{Re}\left(\frac{D^{j}f(z)}{z}\right)>\nu\qquad\left(z\in\mathbb{U}\,;\,\frac{1}{2}\leqq\nu<1\right).$$

In particular, for j = 0, we see that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right)>\nu\quad\Longrightarrow\quad\operatorname{Re}\left(\frac{f(z)}{z}\right)>\nu\qquad\left(z\in\mathbb{U}\,;\,\frac{1}{2}\leqq\nu<1\right),$$

and

$$\operatorname{Re} \sqrt{f'(z)} > \nu \quad \Longrightarrow \quad \operatorname{Re} \left(\frac{f(z)}{z} \right) > \nu \qquad \left(z \in \mathbb{U} \, ; \, \frac{1}{2} \leqq \nu < 1 \right).$$

Here, taking $\nu = \frac{1}{2}$, we find some results well-known as the Marx-Strohhäcker theorem in Univalent Function Theory (cf. [4], [9]).

Also, letting j = 1 in Corollary 3.2, we get the following fact:

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right)>\nu\quad\Longrightarrow\quad\operatorname{Re}\left(f'(z)\right)>\nu\qquad\left(z\in\mathbb{U}\,;\,\frac{1}{2}\leqq\nu<1\right).$$

References

- [1] P. L. Duren, *Univalent Functions*, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [2] K. Kuroki, S. Owa and H. M. Srivastava, Some subordination criteria for analytic functions, Bull. Soc. Sci. Lett. Lodz, Vol.52(2007). 27 36.
- [3] W. Janowski, Extremal problem for a family of functions with positive real part and for some related families. Ann. Polon. Math 23(1970), 159-177.
- [4] A. Marx, Untersuchungen uber schlichte Abbildungen, Math. Ann. 107(1932/33), 40-67.
- [5] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32(1985), 185 195.
- [6] S. S. Miller and P. T. Mocanu, Differential Subordinations, Pure and Applied Mathematics 225, Marcel Dekker, 2000.
- [7] M. S. Robertson, On the theory of univalent functions, Ann. Math. 37(1936), 374-408.
- [8] G. S. Sălăgean, Subclass of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Part 1(Bucharest, 1981), Lecture Notes in Math., vol. 1013, Springer, Berlin, 1983, pp. 362-372.
- [9] E. Strohhäcker, Beitrage zur Theorie der schlichten Funktionen, Math. Z. 37(1933), 356-380.

Kazuo Kuroki
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577-8502
Japan
E-mail: freedom@sakai.zaq.ne.jp

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502 Japan E-mail: owa@math.kindai.ac.jp