On Nunokawa's Lemma

Mamoru Nunokawa

Abstract

I. S. Jack [1] proved the following lemma:

Let w(z) be regular in the unit disc, w(0) = 0. Then if w(z) attains its maximum value on the circle |z| = r at a point z_1 , then we can write

$$z_1w'(z_1)=kw(z_1)$$

where k is real and $1 \le k$. Many and many mathematicians applied the above lemma and obtained numerous interesting results. In this paper, we will obtain a lemma which may be connected intimately to the Jack's lemma.

1 Basic geometrical property

Property 1 Let $\varphi(z)$ be analytic in |z| < 1, $\varphi(z) \neq 0$ in |z| < 1 and suppose that

$$\min_{|z| \le r} |\varphi(z)| = |\varphi(z_0)|$$

and

$$\max_{|z| \le r} |\varphi(z)| = |\varphi(z_1)|$$

where 0 < r < 1 and $|z_0| = |z_1| = r$. Then we have

$$\frac{z_0\varphi'(z_0)}{\varphi(z_0)} = \operatorname{Re}\frac{z_0\varphi'(z_0)}{\varphi(z_0)} = \left(\frac{d\arg \varphi(z)}{d\theta}\right)_{\theta=\theta_0} < 0$$

and

$$\frac{z_1\varphi'(z_1)}{\varphi(z_1)} = \operatorname{Re}\frac{z_1\varphi'(z_1)}{\varphi(z_1)} = \left(\frac{d\arg \varphi(z)}{d\theta}\right)_{\theta=\theta_1} > 0$$

where $z=re^{i\theta},~0 \leqq \theta < 2\pi,~z_0=re^{i\theta_0}~$ and $z_1=re^{i\theta_1}.$

A proof of Property 1 is trivial by considering geometrical property.

2 Nunokawa's lemma

Lemma 1 Let $\varphi(z)$ be analytic in |z| < 1, $1 < \varphi(0)$ and suppose that there exists a point z_0 , $|z_0| < 1$ such that

$$1 < |\varphi(z)|$$
 for $|z| < |z_0|$
 $1 = |\varphi(z_0)|$ and $\varphi(z_0) \neq -1$

or

$$\min_{|z| \le |z_0|} |\varphi(z)| = |\varphi(z_0)| = 1 \ne -\varphi(z_0).$$

Then we have

$$\frac{z_0\varphi'(z_0)}{\varphi(z_0)} = \operatorname{Re}\frac{z_0\varphi'(z_0)}{\varphi(z_0)} \le -\frac{\varphi(0) - 1}{\varphi(0) + 1}.$$

Proof. Let us put

(1)
$$\varphi(z) = \frac{1 + p(z)}{1 - p(z)} \quad \text{for } |z| < |z_0|.$$

Then it follows that

$$p(z) = \frac{\varphi(z) - 1}{\varphi(z) + 1}$$

and

$$0 < p(0) = \frac{\varphi(0) - 1}{\varphi(0) + 1} = \operatorname{Re} \frac{\varphi(0) - 1}{\varphi(0) + 1} < 1.$$

From the hypothesis of the Lemma 1 and (1), we have

$$0 < \operatorname{Re} p(z)$$
 for $|z| < |z_0|$

and

$$0=\mathrm{Re}\ p(z_0).$$

Putting

$$\Phi(z) = \frac{p(0) - p(z)}{p(0) + p(z)}, \quad \Phi(0) = 0$$

and applying the same method as the proof of [2], we have

$$|\Phi(z)| < 1$$
 for $|z| < |z_0|$

and

$$|\Phi(z_0)|=1$$

and therefore

$$\frac{z_0\Phi'(z_0)}{\Phi(z_0)} = \frac{-2p(0)z_0p'(z_0)}{p(0)^2 - p(z_0)^2} = \frac{-2p(0)z_0p'(z_0)}{p(0)^2 + |p(z_0)|^2} \ge 1.$$

It shows that

$$-z_0p'(z_0) \ge \frac{1}{2} \left(\frac{p(0)^2 + |p(z_0)|^2}{p(0)} \right).$$

From (1) and Lemma 1, we have

$$\frac{z_0\varphi'(z_0)}{\varphi(z_0)} = \operatorname{Re} \frac{z_0\varphi'(z_0)}{\varphi(z_0)} \\
= \frac{2z_0p'(z_0)}{1 - p(z_0)^2} \\
= \frac{2z_0p'(z_0)}{1 + |p(z_0)|^2} \\
\leq -\frac{1}{p(0)} \left(\frac{p(0)^2 + |p(z_0)|^2}{1 + |p(z_0)|^2}\right) \\
= -\frac{p(0)}{p(0)^2} \left(\frac{p(0)^2 + |p(z_0)|^2}{1 + |p(z_0)|^2}\right) \\
= -p(0) \left(\frac{p(0)^2 + |p(z_0)|^2}{p(0)^2 + p(0)^2|p(z_0)|^2}\right) \\
< -p(0) \\
= -\left(\frac{\varphi(0) - 1}{\varphi(0) + 1}\right).$$

It completes the proof.

Applications of this lemma will be obtained by me and my friends.

References

- [1] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc. (2), 3 (1971), 469-474.
- [2] M. Nunokawa, On properties of Non-Carathéodory functions, Proc. Japan Acad. Vol. 68, Ser. A, No.6 (1992), 152-153.

Mamoru Nunokawa
Emeritus Professor of University of Gunma
Hoshikuki-cho 798-8, Chuou-Ward,
Chiba city 260-0808
Japan
e-mail: mamoru_nuno@doctor.nifty.jp