On the strongly starlikeness of starlike functions

Mamoru Nunokawa

Abstract

It is the purpose of the present paper to prove that if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ is analytic in |z| < 1 and if

$$1 + \text{Re} \frac{zf''(z)}{f'(z)} > \frac{1+\alpha}{2}$$
 in $|z| < 1$

where $0 \le \alpha < 1$.

Then f(z) is strongly starlike of order $(1-\alpha)$ or

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}(1-\alpha) \quad \text{in } |z| < 1.$$

1 Introduction

Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be convex in $\mathbb{E} = \{z \mid |z| < 1\}$, that is, f(z) is analytic in \mathbb{E} and maps \mathbb{E} univalently onto a convex domain. It is well known that the necessary and sufficient condition for the convexity of f(z) is

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > 0 \quad \text{in } \mathbb{E}.$$

On the other hand, let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be starlike in \mathbb{E} , that is, f(z) is analytic in \mathbb{E} and maps \mathbb{E} univalently onto a starlike domain which is starshaped with respect to the origin. It is well known that the necessary and sufficient condition for the starlikeness of f(z) is

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0$$
 in \mathbb{E} .

Sheil-Small [2] proved the following theorem.

Theorem A Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ be starlike in \mathbb{E} , let $C(r, \theta) = \{f(te^{i\theta}) \mid 0 \le t \le r\}$ and let $T(r, \theta)$ be the total variation of arg $f(te^{i\theta})$ on $C(r, \theta)$, so that

$$T(r, heta) = \int_0^r \left| rac{\partial}{\partial t} \arg f(te^{i heta})
ight| dt.$$

Then we have

$$T(r,\theta) < \pi$$
.

2 Theorem

Theorem 1 Let f(z) be convex in \mathbb{E} and suppose that

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > \frac{1 + \alpha}{2} \quad \text{in } \mathbb{E},$$

where $0 \le \alpha < 1$.

Then f(z) is starlike in \mathbb{E} and strongly starlike of order $(1-\alpha)$ or

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}(1-\alpha)$$
 in \mathbb{E} .

Proof. Let us put

(1)
$$1 + \frac{zf''(z)}{f'(z)} = \left(\frac{1+\alpha}{2}\right) + \left(1 - \frac{1+\alpha}{2}\right) \frac{zg'(z)}{g(z)}$$

where $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ is analytic in \mathbb{E} .

Then, from the hypothesis of the theorem, g(z) is starlike in \mathbb{E} . From (1), we have

(2)
$$\frac{f''(z)}{f'(z)} = \left(\frac{1-\alpha}{2}\right) \left(\frac{g'(z)}{g(z)} - \frac{1}{z}\right)$$

and integrating (2) along the straight line from the origin to z, then it follows that

$$\int_0^z \frac{f''(\zeta)}{f'(\zeta)} d\zeta = \int_0^z \left(\frac{1-\alpha}{2}\right) \left(\frac{g'(\zeta)}{g(\zeta)} - \frac{1}{\zeta}\right) d\zeta$$

and so on

$$\log f'(z) = \left(\frac{1-\alpha}{2}\right) \log \frac{g(z)}{z}$$

or

$$f'(z) = \left(\frac{g(z)}{z}\right)^{\frac{1-lpha}{2}}.$$

Then we have

(3)
$$\frac{zf'(z)}{f(z)} = \frac{z\left(\frac{g(z)}{z}\right)^{\frac{z-\alpha}{2}}}{\int_0^z \left(\frac{g(\zeta)}{\zeta}\right)^{\frac{1-\alpha}{2}} d\zeta}$$
$$= \frac{1}{\int_0^z \left(\frac{z}{\zeta}\right)^{\frac{1-\alpha}{2}} \left(\frac{g(\zeta)}{g(z)}\right)^{\frac{1-\alpha}{2}} \frac{d\zeta}{z}}$$

where $z = re^{i\theta}$, $\zeta = te^{i\theta}$ and $0 \le t \le r$. From (3), it follows that

(4)
$$\frac{zf'(z)}{f(z)} = \left(\int_0^1 t^{\frac{\alpha-1}{2}} \left(\frac{g(tz)}{g(z)}\right)^{\frac{1-\alpha}{2}} dt\right)^{-1}$$

Then, from Theorem A, we have

$$-\pi < \arg\left(\frac{g(tz)}{g(z)}\right) < \pi$$

where $0 \le t \le 1$.

Putting

$$s = t^{\frac{\alpha-1}{2}} \left(\frac{g(tz)}{g(z)} \right)^{\frac{1-\alpha}{2}},$$

then we have

(6)
$$\arg s = -\left(\frac{1-\alpha}{2}\right) \arg\left(\frac{g(tz)}{g(z)}\right)$$

and from (4), we have

(7)
$$\arg \frac{zf'(z)}{f(z)} = -\arg \left(\int_0^1 s \ dt\right).$$

Then form (5) and (6), we have

(8)
$$|\arg s| < \frac{\pi}{2}(1-\alpha)$$
 in \mathbb{E} .

From the property of integral mean (see e.g. [1, Lemma 1]) and from (8), we have

(9)
$$\left| \arg \left(\int_0^1 s \ dt \right) \right| < \frac{\pi}{2} (1 - \alpha) \quad \text{in } \mathbb{E}.$$

Then, form (7) and (9), we have

$$\left|\arg \frac{zf'(z)}{f(z)}\right| < \frac{\pi}{2}(1-\alpha) \quad \text{in } \mathbb{E}.$$

This completes the proof of Theorem 1.

References

- [1] Ch. Pommerenke, On close-to-convex functions, Trans. Amer. Math. Soc., 114 (1965), 176-186.
- [2] T. Sheil-Small, Some conformal mapping inequalities for starlike and convex functions, J. London Math. Soc., 1 (1969), 577-587.

Mamoru Nunokawa
Emeritus Professor of University of Gunma
Hoshikuki-cho 798-8, Chuou-Ward,
Chiba city 260-0808
Japan

e-mail: mamoru_nuno@doctor.nifty.jp