# Some properties of fractional calculus operators for certain analytic functions

#### Shigeyoshi Owa

Department of Mathematics, Kinki University Higashi-Osaka, Osaka 577-8502, Japan owa@math.kindai.ac.jp

#### **Abstract**

Using the fractional calculus operator  $D_z^{\lambda}f(z)$  (fractional derivatives and fractional integrals) for functions f(z) which are analytic in the open unit disk  $\mathbb{U}$ , a new fractional operator  $\Omega^{\lambda}f(z)$  of f(z) is defined by  $\Omega^{\lambda}f(z) = \Gamma(2-\lambda)z^{\lambda}D_z^{\lambda}f(z)$  for any real  $\lambda$ . This operator  $\Omega^{\lambda}f(z)$  is the generalization operator of Sălăgean derivative operator and Libera integral operator for f(z). With this fractional operator  $\Omega^{\lambda}f(z)$ , some subclasses of f(z) are defined by subordinations. The object of the present paper is to discuss some problems for functions f(z) belonging to these classes. Finally, a new fractional operator  $O_{\gamma,z}^{\lambda}f(z)$  for f(z) is introduced by using the fractional calculus operator. This new fractional operator is the generalization of some historical operators.

### 1 Introduction and Preliminaries

Let A denote the class of functions f(z) of the form

$$(1.1) f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk  $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ . For  $f(z) \in \mathcal{A}$ , we define the following fractional calculus operator (fractional integrals and fractional derivatives) given by Owa [5] (also by Owa and Srivastava [6]).

**Definition 1.1** The fractional integral of order  $\lambda$  is defined, for a function  $f(z) \in A$ , by

(1.2) 
$$D_z^{-\lambda} f(z) = \frac{1}{\Gamma(\lambda)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta \qquad (\lambda > 0),$$

where the multiplicity of  $(z-\zeta)^{\lambda-1}$  is removed by requiring  $\log(z-\zeta)$  to be real when  $z-\zeta>0$ .

**Definition 1.2** The fractional derivative of order  $\lambda$  is defined, for a function  $f(z) \in \mathcal{A}$ , by

$$(1.3) D_z^{\lambda} f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \left\{ \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta \right\} (0 \le \lambda < 1),$$

where the multiplicity of  $(z-\zeta)^{-\lambda}$  is removed by requiring  $\log(z-\zeta)$  to be real when  $z-\zeta>0$ .

2000 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Analytic function, fractional integral, fractional derivative, fractional calculus operator, Sălăgean operator, Libera operator.

**Definition 1.3** Under the hypotheses of Definition 1.2, the fractional derivative of order  $n+\lambda$  is defined, for a function  $f(z) \in \mathcal{A}$ , by

(1.4) 
$$D_z^{n+\lambda} f(z) = \frac{d^n}{dz^n} \left( D_z^{\lambda} f(z) \right) \qquad (0 \le \lambda < 1; n = 0, 1, 2, \cdots).$$

Remark 1.1 From Definition 1.1, Definition 1.2 and Definition 1.3, we see that

$$D_{z}^{-\lambda}z^{j} = \frac{\Gamma(j+1)}{\Gamma(j+\lambda+1)}z^{j+\lambda} \qquad (\lambda > 0),$$

$$D_z^{\lambda} z^j = \frac{\Gamma(j+1)}{\Gamma(j-\lambda+1)} z^{j-\lambda} \qquad (0 \le \lambda < 1),$$

and

$$D_z^{n+\lambda} z^j = \frac{\Gamma(j+1)}{\Gamma(j-n-\lambda+1)} z^{j-n-\lambda} \qquad (0 \le \lambda < 1; n = 0, 1, 2, \cdots).$$

Therefore, we say that

$$D_z^{\lambda} z^j = rac{\Gamma(j+1)}{\Gamma(j-\lambda+1)} z^{j-\lambda}$$

for any real  $\lambda$ . This gives us that, for  $f(z) \in \mathcal{A}$ ,

$$D_z^{\lambda} f(z) = \frac{z^{-\lambda}}{\Gamma(2-\lambda)} \left( z + \sum_{n=2}^{\infty} \frac{\Gamma(2-\lambda)\Gamma(n+1)}{\Gamma(n-\lambda+1)} a_n z^n \right)$$

for any real  $\lambda$ .

In view of Remark 1.1, we introduce the following fractional operator  $\Omega^{\lambda} f(z)$  for  $f(z) \in \mathcal{A}$  by

(1.5) 
$$\Omega^{\lambda} f(z) = \Gamma(2 - \lambda) z^{\lambda} D_{z}^{\lambda} f(z)$$
$$= z + \sum_{n=1}^{\infty} \frac{\Gamma(2 - \lambda) \Gamma(n+1)}{\Gamma(n-\lambda+1)} a_{n} z^{n}$$

for any real  $\lambda$  and

(1.6) 
$$\Omega^{\lambda_1 + \lambda_2} f(z) = \Gamma(2 - \lambda_1 - \lambda_2) z^{\lambda_1 + \lambda_2} D_z^{\lambda_2} \left( D_z^{\lambda_1} f(z) \right)$$
$$= z + \sum_{n=2}^{\infty} \frac{\Gamma(2 - \lambda_1 - \lambda_2) \Gamma(n+1)}{\Gamma(n - \lambda_1 - \lambda_2 + 1)} a_n z^n$$
$$= \Omega^{\lambda_2 + \lambda_1} f(z)$$

for any real  $\lambda_1$  and  $\lambda_2$ .

Remark 1.2 We note that

$$\Omega^0 f(z) = f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 
$$\Omega^1 f(z) = \Omega f(z) = z f'(z) = z + \sum_{n=2}^{\infty} n a_n z^n,$$

and

$$\Omega^{j}f(z) = \Omega\left(\Omega^{j-1}f(z)\right) = z + \sum_{n=2}^{\infty} n^{j}a_{n}z^{n} \qquad (j=1,2,3,\cdots)$$

which was called Sălăgean derivative operator introduced by Sălăgean [7]. Also we see that

$$\Omega^{-1}f(z) = \frac{2}{z} \int_0^z f(t)dt = z + \sum_{n=2}^{\infty} \frac{2}{n+1} a_n z^n$$

and

$$\Omega^{-j}f(z) = \Omega^{-1}\left(\Omega^{-j+1}f(z)\right) = z + \sum_{n=2}^{\infty} \left(\frac{2}{n+1}\right)^{j} a_{n}z^{n} \qquad (j=1,2,3,\cdots)$$

which was called Libera integral operator defined by Libera [4]. Thus, our operator  $\Omega^{\lambda} f(z)$  is the generalization operator of Sălăgean derivative operator and Libera integral operator.

Libera integral operator is generalized as Bernardi integral operator given by Bernardi [1] as follows:

$$\frac{1+\gamma}{z^{\gamma}}\int_0^z f(t)t^{\gamma-1}dt = z + \sum_{n=2}^{\infty} \frac{1+\gamma}{n+\gamma}a_n z^n \qquad (\gamma = 1, 2, 3, \cdots).$$

This means that our fractional operator and Bernardi integral operator are the generalization of Libera integral operator.

## **2** Properties of the class $\mathcal{A}(\alpha, \beta, \gamma; \lambda)$

For two analytic functions f(z) and g(z) in  $\mathbb{U}$ , f(z) is said to be subordinate to g(z), written  $f(z) \prec g(z)$ , if there exists an analytic function w(z) in  $\mathbb{U}$  which satisfies w(0) = 0, |w(z)| < 1 ( $z \in \mathbb{U}$ ), and f(z) = g(w(z)). If g(z) is univalent in  $\mathbb{U}$ , then this subordination  $f(z) \prec g(z)$  is equivalent to f(0) = g(0) and  $f(\mathbb{U}) \subset g(\mathbb{U})$  (cf. see Duren [3]).

Let us define the subclass  $\mathcal{A}(\alpha, \beta, \gamma; \lambda)$  of  $\mathcal{A}$  consisting of functions f(z) which satisfy

(2.1) 
$$\alpha \frac{\Omega^{\lambda} f(z)}{z} + \beta \frac{\Omega^{1+\lambda} f(z)}{z} \prec \frac{1 + (1 - 2\gamma)z}{1 - z} \qquad (z \in \mathbb{U})$$

for some real  $\alpha(\alpha > 0)$ ,  $\beta(\beta > 0)$ , and  $\gamma(0 \le \gamma < \alpha + \beta)$ .

For  $f(z) \in \mathcal{A}(\alpha, \beta, \gamma; \lambda)$ , we have

**Theorem 2.1** A function  $f(z) \in A$  is in the class  $f(z) \in A(\alpha, \beta, \gamma; \lambda)$  if and only if

(2.2) 
$$f(z) = z + \frac{2(\alpha + \beta - \gamma)}{\Gamma(2 - \lambda)} \int_{|x|=1} \left( \sum_{n=2}^{\infty} \frac{\Gamma(n+1-\lambda)}{n!(\alpha + n\beta)} z^n \right) d\mu(x),$$

where  $\mu(x)$  is the probability measure on  $X = \{x \in \mathbb{C} : |x| = 1\}$ .

Corollary 2.1 If  $f(z) \in \mathcal{A}(\alpha, \beta, \gamma; \lambda)$ , then

(2.3) 
$$|a_n| \leq \frac{2(\alpha + \beta - \gamma)|\Gamma(n + 1 - \lambda)|}{n!(\alpha + n\beta)|\Gamma(2 - \lambda)|} \qquad (n \geq 2).$$

Equality holds true for f(z) given by

$$f(z) = z + \frac{2(\alpha + \beta - \lambda)}{\Gamma(2 - \lambda)} \left( \sum_{n=2}^{\infty} \frac{\Gamma(n+1-\lambda)}{n!(\alpha + n\beta)} z^n \right).$$

Next, we derive

**Theorem 2.2** If  $f(z) \in \mathcal{A}(\alpha, \beta, \gamma; \lambda)$ , then

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < 1 - \mu$$

for  $|z| < r_0$ , where

(2.5) 
$$r_0 = \inf_{n \ge 2} \left( \frac{(n-2)!(1-\mu)(\alpha+n\beta)|\Gamma(2-\lambda)|}{2(n-\mu)(\alpha+\beta-\gamma)|\Gamma(n+1-\lambda)|} \right)^{\frac{1}{n-1}} (0 \le \mu < 1).$$

Therefore, f(z) is starlike of order  $\mu$  for  $|z| < r_0$ .

**Theorem 2.3** If  $f(z) \in A$  satisfies

$$\sum_{n=2}^{\infty} \left( \sum_{j=1}^{m} \frac{\alpha_j |\Gamma(2-\lambda_j)|}{|\Gamma(n+1-\lambda_j)|} \right) n! |a_n| \leq \sum_{j=1}^{m} \alpha_j - \beta$$

for some real  $\alpha_j(\alpha_j \geq 0)$ ,  $\lambda_j$ , and  $\beta(0 \leq \beta < \sum_{j=1}^m \alpha_j)$ , then

$$\operatorname{Re}\left(\sum_{j=1}^{m} \alpha_{j} \frac{\Omega^{\lambda_{j}} f(z)}{z}\right) \prec \frac{1 + (1 - 2\beta)z}{1 - z} \qquad (z \in \mathbb{U}).$$

# 3 Properties for the classes $\mathcal{S}_{\lambda}^*$ and $\mathcal{K}_{\lambda}$

Let us consider the following linear transformation w of  $\zeta$  for a fixed  $z \in \mathbb{U}$  by

Then, we observe that  $|\zeta| < 1$  corresponds to |w| < 1 and  $\zeta = 0$  corresponds to w = z. Letting  $F(z) = \Omega^{\lambda} f(z)$ , we introduce

(3.2) 
$$g(\lambda;\zeta) = \frac{F(w) - F(z)}{F'(z)(1-|z|^2)} \qquad (\zeta \in \mathbb{U}),$$

where w is given by (3.1). It follows that  $g(\lambda; 0) = 0$  and  $g'(\lambda; 0) = 1$ . This implies that  $g(\lambda; \zeta) \in \mathcal{A}$  if  $f(z) \in \mathcal{A}$ . For  $f(z) \in \mathcal{A}$ , we say that  $f(z) \in \mathcal{S}^*_{\lambda}$  if f(z) satisfies

(3.3) 
$$\frac{\Omega^{1+\lambda}f(z)}{\Omega^{\lambda}f(z)} \prec \frac{1+z}{1-z} \qquad (z \in \mathbb{U}).$$

Further, let  $f(z) \in \mathcal{K}_{\lambda}$  if f(z) satisfies  $\Omega^{1+\lambda} f(z) \in \mathcal{S}_{\lambda}^*$ .

Now, we derive

Theorem 3.1 If  $f(z) \in \mathcal{S}_{\lambda}^*$ , then

$$\left|D_{z}^{n}\Omega^{\lambda}f(z)\right| \leq \frac{n!(n+|z|)}{(1-|z|)^{n+2}} \qquad (z \in \mathbb{U})$$

for  $n = 0, 1, 2, \cdots$ . Equality holds true for f(z) defined by

$$f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1-\lambda)}{\Gamma(2-\lambda)\Gamma(n)} z^n.$$

Corollary 3.1 If  $f(z) \in \mathcal{S}_{\lambda}^*$ , then

$$\begin{split} |D_z^{\lambda}f(z)| & \leq \frac{|z|}{|z|^{\lambda}(1-|z|)^2|\Gamma(2-\lambda)|}, \\ |D_z^{1+\lambda}f(z)| & \leq \frac{1}{|z|^{\lambda}(1-|z|)^2|\Gamma(2-\lambda)|} \left(|\lambda| + \frac{1+|z|}{1-|z|}\right), \end{split}$$

and

$$|D_z^{2+\lambda} f(z)| \leq \frac{1}{|z|^{\lambda} (1-|z|)^2 |\Gamma(2-\lambda)|} \left( \frac{|\lambda(\lambda-1)|}{|z|} + \frac{2|\lambda|}{|z|} \left( |\lambda| + \frac{1+|z|}{1-|z|} \right) + \frac{2(2+|z|)}{(1-|z|)^2} \right)$$

for  $z \in \mathbb{U}$ .

Corollary 3.2 If  $f(z) \in \mathcal{S}_0^*$ , then

(3.5) 
$$|f^{(n)}(z)| \le \frac{n!(n+|z|)}{(1-|z|)^{n+2}} \qquad (z \in \mathbb{U}).$$

Equality is attended for Keobe function  $f(z) = \frac{z}{(1-z)^2}$ .

**Theorem 3.2** If  $f(z) \in \mathcal{K}_{\lambda}$ , then

(3.6) 
$$|D_z^n \Omega^{\lambda} f(z)| \leq \frac{n!}{(1-|z|)^{n+1}} (z \in \mathbb{U})$$

for  $n = 0, 1, 2, \cdots$ . Equality is attended for f(z) given by

$$f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1-\lambda)}{\Gamma(2-\lambda)\Gamma(n+1)} z^{n}.$$

Corollary 3.3 If  $f(z) \in \mathcal{K}_{\lambda}$ , then

$$|D_z^{\lambda}f(z)| \leq rac{|z|}{|z|^{\lambda}(1-|z|)|\Gamma(2-\lambda)|},$$

$$|D_z^{1+\lambda}f(z)| \leq \frac{1}{|z|^{\lambda}(1-|z|)|\Gamma(2-\lambda)|} \left(|\lambda| + \frac{1}{1-|z|}\right),$$

and

$$|D_z^{2+\lambda} f(z)| \leq \frac{1}{|z|^{\lambda} (1-|z|) |\Gamma(2-\lambda)|} \left( \frac{|\lambda(\lambda-1)|}{|z|} + \frac{2|\lambda|}{|z|} \left( |\lambda| + \frac{1}{1-|z|} \right) + \frac{2}{(1-|z|)^3} \right)$$

for  $z \in \mathbb{U}$ .

Corollary 3.4 If  $f(z) \in \mathcal{K}_0$ , then

$$|f^{(n)}(z)| \le \frac{n!}{(1-|z|)^{n+1}}$$
  $(z \in \mathbb{U}).$ 

Equality is attended for the function  $f(z) = \frac{z}{(1-z)}$ .

# 4 A new factional operator concerning with some integral operators

Let us define a new fractional operator  $O_{\gamma,z}^{\lambda}f(z)$  by

$$(4.1) O_{\gamma,z}^{\lambda} f(z) = \frac{\Gamma(\gamma + 1 - \lambda)}{\Gamma(\gamma + 1)} z^{1 + \lambda - \gamma} D_z^{\lambda} \left( z^{\gamma - 1} f(z) \right)$$

$$= z + \sum_{n=0}^{\infty} \frac{\Gamma(\gamma + 1 - \lambda) \Gamma(n + 1)}{\Gamma(\gamma + 1) \Gamma(n + \gamma - \lambda)} a_n z^n$$

for any real  $\lambda$  and  $\gamma$ .

$$(4.2) O_{\gamma,z}^{\lambda_1+\lambda_2} f(z) = \frac{\Gamma(\lambda+1-\lambda_1-\lambda_2)}{\Gamma(\gamma+1)} z^{1+\lambda_1+\lambda_2-\gamma} D_z^{\lambda_2} \left( D_z^{\lambda_1} \left( z^{\gamma-1} f(z) \right) \right)$$

$$= z + \sum_{n=2}^{\infty} \frac{\Gamma(\gamma+1-\lambda_1-\lambda_2)\Gamma(n+\gamma)}{\Gamma(\gamma+1)\Gamma(n+\gamma-\lambda_1-\lambda_2)} a_n z^n$$

$$= O_{\gamma,z}^{\lambda_2+\lambda_1} f(z)$$

for any real  $\lambda_1, \lambda_2$  and  $\gamma$ .

**Remark 4.1** From the definition for the fractional operator  $O_{\gamma,z}^{\lambda}f(z)$ , we see that

(1) If  $\gamma = 1$  and  $\lambda = 1$ , then we have Sălăgean differential operator [7]:

$$O_{1,z}^1 f(z) = z f'(z) = z + \sum_{n=2}^{\infty} n a_n z^n$$

(2) If  $\gamma = 0$  and  $\lambda = -1$ , then we have Alexander integral operator [1]:

$$O_{0,z}^{-1}f(z) = \int_0^z \frac{f(t)}{t} dt = z + \sum_{n=2}^\infty \frac{1}{n} a_n z^n$$

(3) If  $\gamma = 1$  and  $\lambda = -1$ , then we have Libera integral operator [4]:

$$O_{1,z}^{-1}f(z) = \frac{2}{z} \int_0^z f(t)dt = z + \sum_{n=2}^{\infty} \frac{2}{n+1} a_n z^n$$

(4) If  $\lambda = -1$ , then we have Bernardi integral operator [2]:

$$O_{\gamma,z}^{-1}f(z)=\frac{1+\gamma}{z^{\gamma}}\int_0^z t^{\gamma-1}f(t)dt=z+\sum_{n=2}^{\infty}\frac{1+\gamma}{n+\gamma}a_nz^n.$$

In view of Remark 4.1, we know that our fractional operator  $O_{\gamma,z}^{\lambda}f(z)$  is the generalization of some historical operators (differential operators and integral operators). Therefore, by studying this fractional operator, we get many results connecting with some operators.

### References

- [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Annals Math. 17(1915), 12 22.
- [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135(1969), 429 446.
- [3] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- [4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755 758.
- [5] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18(1978), 53 59.
- [6] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(1987), 1057 – 1077.
- [7] G. S. Salagean, Subclass of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, Lecture Notes in math. 1013, Springer-Verlag, Berlin (1983).