On geometric properties of certain multivalent functions with real coefficients

Hitoshi Saitoh

Department of Mathematics, Gunma National College of Technology, Maebashi, Gunma 371-0837, Japan saitoh@nat.gunma-ct.ac.jp

Abstract

Let $\mathcal{T}(p)$ be the class of analytic functions with real coefficients in the open unit disk \mathbb{U} . For f(z) belonging to the class $\mathcal{T}(p)$, some sufficient conditions for p-valently starlikeness and p-valently convexity are discussed.

1 Introduction

Let $\mathcal{A}(p)$ be the class of functions

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p}$$
 (1.1)

which are analytic in the open unit disk $\mathbb{U} = \{z : |z| < 1\}$.

We denote by $\mathcal{S}^*(p)$ and $\mathcal{K}(p)$ the subclasses of $\mathcal{A}(p)$ whose members map \mathbb{U} onto domain which are p-valently starlike and p-valently convex.

A function $f(z) \in \mathcal{A}(p)$ is said to be p-valently starlike in \mathbb{U} if and only if

$$\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > 0 \qquad (z \in \mathbb{U}). \tag{1.2}$$

Similarly, $f(z) \in \mathcal{A}(p)$ is said to be p-valently convex in \mathbb{U} if and only if

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > 0 \qquad (z \in \mathbb{U}). \tag{1.3}$$

Let us define $\mathcal{T}(p)$ the class of analytic functions with real coefficients, that is,

$$\mathcal{T}(p) = \left\{ f(z) \in \mathcal{A}(p) \middle| f(z) = z^p + \sum_{n=1}^{\infty} a_{n+p} z^{n+p}, \quad a_{n+p} \in \mathbb{R} \right\}$$
 (1.4)

where $\mathbb R$ is the set of real numbers. Then it follows that $\mathcal T(p)\subset \mathcal A(p)$.

Furthermore, let us define \mathcal{P} the class of analytic functions in \mathbb{U} , that is,

$$\mathcal{P} = \left\{ p(z) \,\middle|\, p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k, \ \operatorname{Re} p(z) > 0 \right\}. \tag{1.5}$$

 $p(z) \in \mathcal{P}$ is called Caraéodory function.

2 Preliminaries

For our results, we prepare the next lemmas.

Lemma 1 (Nunokawa [3]) Let $p(z) \in \mathcal{P}$ and suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\operatorname{Re} p(z) > 0 \quad for \quad |z| < |z_0|$$
 (2.1)

$$\operatorname{Re} p(z_0) = 0$$
 and $p(z_0) \neq 0$.

Then we have

$$\frac{z_0 p'(z_0)}{p(z_0)} = ik (2.2)$$

where k is real and $|k| \ge 1$.

Lemma 2 (Saitoh [5]) Let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ be analytic in \mathbb{U} and all coefficients p_i are real numbers.

Suppose that

$$\operatorname{Re}\left\{p(z) + \alpha z p'(z)\right\} > 0 \quad in \quad \mathbb{U}$$
 (2.3)

where $\alpha \geq 1$. Then we have

$$1 + \operatorname{Re}\left\{\frac{zp'(z)}{p(z)}\right\} > 0 \quad in \quad \mathbb{U}. \tag{2.4}$$

Lemma 3 (Nunokawa [2]) Let $f(z) \in A(p)$ and suppose

$$p + \operatorname{Re} \frac{z f^{(p+1)}(z)}{f^{(p)}(z)} > 0 \quad in \quad \mathbb{U}. \tag{2.5}$$

Then f(z) is p-valent in \mathbb{U} and

$$k + \text{Re}\frac{zf^{(k+1)}(z)}{f^{(k)}(z)} > 0 \quad in \quad \mathbb{U},$$
 (2.6)

for $k = 0, 1, 2, \dots, p-1$. This shows that $f(z) \in \mathcal{K}(p)$ and $f(z) \in \mathcal{S}^*(p)$.

Lemma 4 (Owa-Nunokawa [4]) Let p(z) be analytic in \mathbb{U} with p(0) = 1, $p'(0) = \cdots = p^{(n-1)}(0) = 0$. If

$$\operatorname{Re}\{p(z) + \alpha z p'(z)\} > \beta \quad in \quad \mathbb{U},$$
 (2.7)

then

$$\operatorname{Re}\{p(z)\} > \beta + (1-\beta)\left\{2\int_{0}^{1} \frac{1}{1+\rho^{n\operatorname{Re}(\alpha)}}d\rho - 1\right\} \quad in \quad \mathbb{U}, \tag{2.8}$$

where $\alpha \neq 0$, $Re(\alpha) \geq 0$ and $\beta < 1$.

3 Main results

First, we prove

Theorem 1 Let $f(z) \in A(p)$ and suppose that

$$\operatorname{Re}\left\{f^{(p)}(z) + \alpha z f^{(p+1)}(z)\right\} > -\frac{p!}{2}\alpha \qquad (z \in \mathbb{U})$$
(3.1)

for some α ($\alpha > 0$). Then we have

$$\operatorname{Re}\left\{f^{(p)}(z)\right\} > 0 \qquad (z \in \mathbb{U}). \tag{3.2}$$

Proof. If there exists a point $z_0 \in \mathbb{U}$ such that

$$\operatorname{Re} \frac{f^{(p)}(z)}{p!} > 0 \quad for \quad |z| < |z_0|$$

and

$$\operatorname{Re} \frac{f^{(p)}(z_0)}{p!} = 0$$
 and $\frac{f^{(p)}(z_0)}{p!} \neq 0$,

then from Lemma 1, we have

$$z_0 f^{(p+1)}(z_0) \leq -\frac{p!}{2} \left(1 + \left| \frac{f^{(p)}(z_0)}{p!} \right|^2 \right).$$

This contradicts the assumption (3.1) and completes the proof.

Now, we prove

Theorem 2 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} .

Suppose that

$$\operatorname{Re}\left\{\frac{(1-\alpha p + \alpha j)f^{(j)}(z) + \alpha z f^{(j+1)}(z)}{z^{p-j}}\right\} > 0 \qquad (z \in \mathbb{U})$$
(3.3)

where $\alpha \geq 1$. Then we have

$$j + \operatorname{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)} > 0 \qquad (z \in \mathbb{U})$$
(3.4)

for $j = 0, 1, 2, \dots, p$.

Proof. Let $p(z) = \frac{(p-j)!f^{(j)}(z)}{p!z^{p-j}}$. Applying Lemma 2,

$$1 + \alpha \text{Re} \frac{z f^{(j+1)}(z) - (p-j) f^{(j)}(z)}{f^{(j)}(z)} > 0 \qquad (z \in \mathbb{U}).$$

Therefore, we obtain

$$j + \operatorname{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)} > p - \frac{1}{\alpha} \ge p - 1 > 0 \qquad (z \in \mathbb{U}).$$

Putting j = 0 in Theorem 2, we have

Corollary 1 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} .

Suppose that

$$\operatorname{Re}\left\{\frac{(1-\alpha p)f(z)+\alpha zf'(z)}{z^{p}}\right\} > 0 \qquad (z \in \mathbb{U})$$
(3.5)

where $\alpha \geq 1$. Then we have

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0 \qquad (z \in \mathbb{U}),$$

that is $f(z) \in \mathcal{S}^*(p)$.

Letting j = 1 in Theorem 2, we have

Corollary 2 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} .

Suppose that

$$\operatorname{Re}\left\{\frac{(1-\alpha p+\alpha)f'(z)+\alpha zf''(z)}{z^{p-1}}\right\} > 0 \qquad (z \in \mathbb{U})$$
(3.6)

where $\alpha \geq 1$. Then we have

$$1 + \operatorname{Re} \frac{zf''(z)}{f'(z)} > 0 \qquad (z \in \mathbb{U}),$$

that is $f(z) \in \mathcal{K}(p)$.

Next we prove

Theorem 3 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} .

Suppose that

$$\operatorname{Re}\left\{\frac{(1-\alpha p+\alpha j)f^{(j)}(z)+\alpha z f^{(j+1)}(z)}{z^{p-j}}\right\} > 0 \qquad (z \in \mathbb{U})$$
(3.7)

for $j = 2, 3, \dots, p$, where $\alpha \ge 1$. Then we have

$$k + \operatorname{Re} \frac{zf^{(k+1)}(z)}{f^{(k)}(z)} > 0$$

for $k = 0, 1, 2, \dots, j - 1$. Therefore, we have $f(z) \in \mathcal{S}^*(p)$ and $f(z) \in \mathcal{K}(p)$.

Proof. From Theorem 2,

$$j + \operatorname{Re} \frac{zf^{(j+1)}(z)}{f^{(j)}(z)} > 0 \qquad (z \in \mathbb{U})$$

for $j = 0, 1, 2, \dots, p$. If $j \ge 2$, using Lemma 3, we show that

$$k + \operatorname{Re} \frac{zf^{(k+1)}(z)}{f^{(k)}(z)} > 0 \qquad (z \in \mathbb{U})$$

for $k = 0, 1, 2, \dots, j - 1$. In the case of k = 0 and k = 1, we have $f(z) \in \mathcal{S}^*(p)$ and $f(z) \in \mathcal{K}(p)$.

Putting j = p in Theorem 3, we obtain

Corollary 3 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} .

Suppose that

$$\operatorname{Re}\left\{f^{(p)}(z) + \alpha z f^{(p+1)}(z)\right\} > 0 \qquad (z \in \mathbb{U})$$
 (3.8)

where $\alpha \geq 1$. Then we have $f(z) \in \mathcal{S}^*(p)$ and $f(z) \in \mathcal{K}(p)$.

Let us define generalized Libera-Bernardi integral operator

$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -p)$$
 (3.9)

for $f(z) \in \mathcal{A}(p)$.

Next, we prove the following theorem.

Theorem 4 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} and satisfies $\operatorname{Re} f^{(p)}(z) > 0$ $(z \in \mathbb{U})$, then the function

$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -p)$$

belongs to $S^*(p)$ and K(p) for all c $(p-1 \leq -c < p)$.

Proof. By differentiating (3.9), we have

$$F^{(p)}(z) + \frac{1}{c+p} z F^{(p+1)}(z) = f^{(p)}(z).$$

Therefore,

$$\operatorname{Re}\left\{F^{(p)}(z) + \frac{1}{c+p}zF^{(p+1)}(z)\right\} > 0 \qquad (z \in \mathbb{U})$$

and $\frac{1}{c+p} \ge 1$ $(-p < c \le 1-p)$. Using Lemma 2 for $p(z) = \frac{F^{(p)}(z)}{p!}$, we obtain

$$1 + \frac{1}{c+p} \operatorname{Re} \frac{z F^{(p+1)}(z)}{F^{(p)}(z)} > 0 \qquad (z \in \mathbb{U}).$$

Then we have

$$p + \operatorname{Re} \frac{zF^{(p+1)}(z)}{F^{(p)}(z)} > -c \ge p-1 > 0 \qquad (z \in \mathbb{U}).$$

From Lemma 3, we have

$$k + \operatorname{Re} \frac{zF^{(p+1)}(z)}{F^{(p)}(z)} > 0 \qquad (z \in \mathbb{U})$$

for $k = 0, 1, 2, \dots, p - 1$.

Taking k = 0, we have $F(z) \in \mathcal{S}^*(p)$, also letting k = 1, we obtain $F(z) \in \mathcal{K}(p)$.

Applying c = 1 - p in Theorem 4, we can prove

Corollary 4 Let $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} and satisfies $\operatorname{Re} f^{(p)}(z) > 0$ $(z \in \mathbb{U})$, then the function

$$g(z) = \frac{1}{z^{1-p}} \int_0^z \frac{f(t)}{t^p} dt$$

belongs to $S^*(p)$ and K(p).

Applying Lemma 4, we can prove

Theorem 5 If $f(z) \in \mathcal{T}(p)$ be analytic in \mathbb{U} with $\operatorname{Re} \frac{f^{(p)}(z)}{p!} > \beta$. If the function F(z) given by (3.9), then

$$\operatorname{Re} \frac{F^{(p)}(z)}{p!} > \beta + (1 - \beta) \left\{ \int_0^1 \frac{1}{1 + \rho^{\frac{1}{\sigma + p}}} d\rho - 1 \right\} \qquad (z \in \mathbb{U}), \tag{3.10}$$

where $\beta < 1$.

Proof. By differentiating (3.9), we can show that

$$\frac{F^{(p)}(z)}{p!} + \frac{1}{c+p} \frac{zF^{(p+1)}(z)}{p!} = \frac{f^{(p)}(z)}{p!}.$$

Letting
$$p(z) = \frac{F^{(p)}(z)}{p!}$$
 and $n = 1$, $\alpha = \frac{1}{c+p}$ in Lemma 4, we have (3.10).

Putting p = 1 in Theorem 5, we obtain

Corollary 5 If $f(z) \in \mathcal{T}(1) = \mathcal{T}$ and Re f'(z) > 0, let the function F(z) given by

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -1), \tag{3.11}$$

then we have

$$\operatorname{Re} F'(z) > eta + (1-eta) \left\{ 2 \int_0^1 rac{1}{1 +
ho^{rac{1}{c+1}}} d
ho - 1
ight\}.$$

References

- [1] Bernardi S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
- [2] Nunokawa M., On the theory of multivalent functions, Tsukuba Jour. Math. 11(2) (1987), 273-286.
- [3] Nunokawa M., On properties of Non-Carathéodory functions, Proc. Japan Acad. 68 Ser. A(6) (1992), 152-153.
- [4] Owa S. and Nunokawa M., Applications of a subordination theorem, Jour. Math. Anal. Appl. 188(1) (1994), 219-226.
- [5] Saitoh H., Geometric properties of certain analytic functions with real coefficients, RIMS kôkyûroku 1579 (2008), 101-109.