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1 Introduction

DEA models are commonly recast as a linear programming (LP) problem, which is easy to
compute the efficiency measurement and to find an optimal projection and and a reference
set. Their outputs of the LP problem are useful to measure activity performance level of each
Decision making unit (DMU) and to propose feasible improvement targets for an inefficient
DMU. Computational practicality of the DEA models plays a key role of the popularity over
various applications. The LP formulation appears in radial measurement DEA models (e.g.,
CCR and BCC) and non-radial ones (e.g., AM, RAM, SBM and ERGM).

Development of the axiomatic foundations of efficiency measurement began with F\"are and
Lovell [5], who suggested three desirable axioms for efficiency indices: homogeneity, monotonic-
ity, and indication of efficient input/output vectors. To meet the axiomatic foundations, F\"are
and Lovell [5] introduced an input-oriented non-radial model which was later extended in F\"are et
al [6] into ajointly aggregate measure of output and input efficiency. The DEA model extended
by F\"are et al [6] is not reduced to the LP formulation. The efficiency measure of the model is
referred to as Russell Measure (RM).

The nonlinearity of RM is an obstacle for DEA users. Therefore, various modified RM are
developed in [3, 11, 12] and used in [7, 9, 10, 17]. For example, Pastor et al [11] propose Enhanced
Russell Graph Efficiency Measure (ERGM) incorporating the analytical feature of RM into the
LP formulation.

The LP formulations can not avoid an occurrence of multiple optimal solutions. The existence
of multiple optimal solutions is a potential problem in a multi-stage approach such as the two-
phase computational procedure for finding a max-slack solution in the radial DEA models [4, 14]
and Returns to scale (RTS) measurement in the non-radial measurement DEA models [1, 13].
Inputs of the last stage of the multi-stage approach are optimal solutions that are obtained in the
preceding stages. Hence, the last stage output depends on the choice of optimal solutions in the
preceding stages. If some preceding stages have multiple optimal solutions and an altemative
one is chosen, the last stage may reach a different conclusion.

Recently, such a shortcoming of the LP formulation is overcome by Sueyoshi and Sekitani,
who develop a primal-dual DEA approach [13, 14] for checking occurrence of multiple optimal
solutions of RAM or radial DEA models.

Does the RM including nonlinearity also have the shortcoming? The corresponding answer is
“ yes” since the occurrence of multiple reference sets is independent of the choice of an efficiency
measurement [14]. Therefore, the RM DEA model also suffers from the problem of multiple
optimal solutions. Moreover, the primal-dual DEA approach [13, 14] can not be directly applied
to the RM DEA model because of the difference between the LP and non-LP formulations.

The aim of this paper is to analyze the nonlinearity of RM and to develop a computational
method of both solving the RM DEA model and checking the uniqueness of an optimal projection
and and a reference set. As will be shown, the nonlinearity of RM is a convex function and the
RM DEA model is a convex programming problem that can be exactly solved by a standard
optimization technique such as a steepest descent method or the newton method [2]. Therefore,
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DEA users may deal with the RM DEA model as easily as the LP formulations of DEA models.
This paper is organized as follows: Section 2 introduces a nonlinear formulation of the RM

DEA model and a certain type of the uniqueness of its optimal solution. Section 3 shows a
necessary and sufficient condition of the occurrence of multiple optimal solutions, that lead to
multiple projection points and multiple reference sets. The multiple reference sets are indepen-
dent of the choice of an efficiency measurement. Section 4 proposes a two-stage approach and
shows how to solve the RM DEA model for an illustrative example The final section concludes
with future research.

2 Some properties of Russell measure

Suppose that we have $n$ DMUs (decision making units) where each DMUj, $j=1,$ $\ldots,n$ , produces
the same $s$ outputs in (possibly) different amounts, $y_{rj}(r=1, \ldots, s)$ , using the same $m$ inputs,
$x_{ij}$ $(i=1, \ldots , m)$ , also in (possibly) different amounts. In the sequel, we assume that every
DMUj has $x_{ij}>0$ for all $i=1,$ $\ldots,$ $m$ and $y_{rj}>0$ for all $r=1,$ $\ldots,$

$s$ . The specific DMU to be
currently evaluated is listed by the subscript $k$”.

Following F\"are and Lovell [5] and Cooper et al [3]; the RM for the kth DMU $(k=1, \ldots,n)$
can be formulated as follows:

$\min$ $\frac{1}{m+s}(\sum_{i=1}^{m}\theta_{i}+\sum_{r=1}^{s}\frac{1}{\phi_{r}})$

s.t. $- \sum_{j=1}^{n}x_{ij}\lambda_{j}+\theta_{i}x_{ik}\geq 0$ $(i=1, \ldots,m)$

$\sum_{j=1}^{n}y_{rj}\lambda_{j}-\phi_{r}y_{rk}\geq 0$ $(r=1, \ldots, s)$

(1)

$\theta_{i}\leq 1$ $(i=1, \ldots,m)$
$\phi_{r}\geq 1$ $(r=1, \ldots,s)$
$\lambda_{j}\geq 0$ $(j=1, \ldots,n)$ .

The variables ( $\theta_{i}$ and $\phi_{r}$ ) indicate the level of efficiency/inefficiency related to the ith input
and the rth output, respectively. The variables $(\lambda_{j}$ for $j=1,$ $\ldots,$

$n)$ are used for a structural
connection among DMUs in the input-output space.

The RM model (1) attains the equalities of the first and second inequality constraints as
follows:
Proposition 1. Let $(\theta^{*}, \phi^{*}, \lambda^{*})$ be an optimal solution of (1), then we have

$- \sum_{j=1}^{n}x_{ij}\lambda_{j}^{*}+\theta_{i}^{*}x_{ik}=0$ for all $i=1,$ $\ldots,m$ (2)

$\sum_{j=1}^{n}y_{rj}\lambda_{j}^{*}-\phi_{r}^{*}y_{rk}=0$ for all $r=1,$ $\ldots,$
$s$ . (3)

For a given optimal solution of the RM (1) model, we define a projection point of DMU$k$ as
follows:
Deflnition 1. For an optimal solution $(\theta^{*},\phi^{*}, \lambda^{*})$ of (1), we define a pair of

$x^{*}=(\theta_{1^{X}1k}^{*}, \cdots,\theta_{m}^{*}x_{mk}),$ $y^{*}=(\phi_{1}^{*}y_{1k}, \cdots,\phi_{\epsilon}^{*}y_{\epsilon k})$ (4)

as a projection of $DMU_{k}.$ A projection of $DMU_{k}$ is denoted by $(x^{*},y^{*})$ .
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Note that a projection point depends on the choice of an optimal solution of the RM (1)
model. Hence, the projection point is not unique if multiple optimal solutions occurs on the RM
(1) model. This paper defines a production possibility $P$ set and its efficiency frontier $EF$ as
follows:

Deflnition 2. The production possibility set $\dot{u}$ defined as

$P=\{(x,y)$ $\lambda_{j}y_{r}x_{i}\geq\sum_{n ,\leq\sum}j=1x_{ij}\lambda_{j}\geq 0j=1ny_{rj}\lambda_{j}$ $i=1,\ldots.\cdot’ mj=1,nr=1,.\cdot.\cdot,’ s\}$ . (5)

The efficiency frvntier is defined as

$EF=\{\begin{array}{lllll} thereis no(\overline{x},\overline{y})\in P(x,y)\in P suchtha(-x,y)\leq(-\ae,\overline{y})and(\overline{x}^{\frac{t}{y}})\neq(x,y) \end{array}\}$ . (6)

The next proposition guarantees that any projection point of the RM model (1) always exists
on the efficiency frontier $EF$ ;

Proposltion 2. Any projection of $DMU_{k}$ belongs to the efficiency flvntier. That is $(x^{*}, y^{*})\in$

$EF$.

The RM model (1) has an advantage of the existence of any projection point on $EF$ that is not
guaranteed on any radial measurement such as CCR or BCC.

As defined in (4), the projection$(x^{*}, y^{*})$ depends on $\lambda^{*}$ of an optimal solution $(\theta^{*}, \phi^{*}, \lambda^{*})$ ,
however, $\lambda^{*}$ is not in one to one correspondence with the projection pint $(x^{*},y^{*})$ . This phe-
nomenon is caused by multiple reference sets [13]. Note that multiple reference sets may occurs
on any DEA model. The remaining part of the optimal solution $(\theta^{*}, \phi^{*}, \lambda^{*})$ , that is $(\theta^{*}, \phi^{*})$ , is
in one to one correspondence with $(x^{*}, y^{*})$ .
Propositlon 3. Let $(\overline{\theta}^{*},\overline{\phi}^{*},\overline{\lambda}^{*})$ and $(\hat{\theta}^{*},\hat{\phi}^{*},\hat{\lambda}^{*})$ be distinct optimal solutions of (1). Let $(\overline{x}", \overline{y}^{*})$

be a projection of $DMU_{k}$ generated by $(\overline{\theta}^{*},\overline{\phi}^{*})$ and $(\hat{x}^{*},\hat{y}^{*})$ by $(\hat{\theta}^{*},\hat{\phi}^{*})$ , then $(\overline{\theta}^{*},\overline{\phi}^{*})\neq(\hat{\theta}^{*},\hat{\phi}^{*})$

if and only if $(”, \overline{y}^{*})\neq(\hat{x}", \hat{y}^{*})$ .
The objective function of the RM model (1) is a convex function and the output-part of the

objective function is a strictly convex function.

Proposition 4. Let

$(\theta, \phi)=(\theta_{1}, \cdots,\theta_{m},\phi_{1}, \cdots,\phi_{\delta})$ (7)

and $\Omega=\{(\theta, \phi)|(\theta, \phi)>0\}$ . Let

$f( \theta, \phi)=\frac{1}{m+s}(\sum_{i=1}^{m}\theta_{i}+\sum_{r=1}^{s}\frac{1}{\phi_{r}})$ (8)

and suppose that $(\theta^{1}, \phi^{1}),$ $(\theta^{2}, \phi^{2})\in\Omega$ , then

(i) $f((1-\alpha)(\theta^{1}, \phi^{1})+\alpha(\theta^{2},\phi^{2}))\leq(1-\alpha)f(\theta^{1},$ $\phi^{1})+\alpha f(\theta^{2},$ $\phi^{2})$ for all $\alpha\in(0,1)$ .
(ii) $f((1-\alpha)(\theta^{1} , \phi^{1})+\alpha(\theta^{2}, \phi^{2}))=(1-\alpha)f(\theta^{1},\phi^{1})+\alpha f(\theta^{2}, \phi^{2})=$ for all $\alpha\in(0,1)\Leftrightarrow$

$\phi_{r}^{1}=\phi_{r}^{2}$ for all $r=1,$ $\cdots,$ $s$ .
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(iii) $f((1-\alpha)(\theta^{1}, \phi^{1})+\alpha(\theta^{2}, \phi^{2}))<(1-\alpha)f(\theta^{1},$ $\phi^{1})+\alpha f(\theta^{2},$ $\phi^{2})$ for all $\alpha\in(0,1),$ $\Leftrightarrow$

there exists an index $\overline{r}\in\{1, \cdots, s\}$ such that $\phi_{r}^{1}\neq\phi_{f}^{2}$ .
Proposition 4 means that the RM model (1) has a unique optimal output-part $\phi^{*}$ of all

optimal solutions $(\theta^{*}, \phi^{*}, \lambda^{*})$ . Furthermore, it follows from Proposition 3 that the projection
point $(x^{*}, y^{*})$ has the uniqueness of an output-part $y^{*}$ .

The RM model (1) has two advantages of the existence of all projection points on the
efficiency frontier $EF$ and the uniqueness of output-part of all projection points. The uniqueness
is caused by the non-linear term of the output-part, $\sum_{r=1}^{\epsilon}1/\phi_{r}$ , in the objective function of (1).
Since the output-part $\sum_{r=1}^{l}1/\phi_{r}$ is strictly convex, the RM model (1) can be solved exactly. In
fact, Sueyoshi and Sekitani [15] show the solvability of the RM model (1) by reducing (1) into
a Second-Order Cone Programming (SOCP) problem.

3 A characterization of multiple solutions

This section discusses examination of multiple projections and finding of multiple reference sets.
Since the RM model (1) is a convex programming problem, it is easy to find an optimal solution
of (1) by using the steepest descent algorithm [2] which is a typical nonlinear programming
method, instead of SOCP.

Let $(\theta^{*}, \phi^{*},\lambda^{*})$ be an optimal solution of (1), then the problem (1) replacing $\phi$ with $\phi^{*}$ is
equivalent to

$\min$
$\sum^{m}\theta_{i}i=1_{n}$

s.t. $-$
$\sum_{j=1,n}x_{ij}\lambda_{j}+\theta_{i}x_{ik}\geq 0(i=1, \ldots,m)$

(9)

$\sum_{j=1}y_{rj}\lambda_{j}-y_{r}^{*}\geq 0$
$(r=1, \ldots, s)$

$0\leq\theta_{i}\leq 1$ $(i=1, \ldots,m)$
$\lambda_{j}\geq 0$ $(j=1, \ldots, n)$ .

where $y^{*}=(\phi_{1}^{*}y_{1k}, \cdots, \phi_{\epsilon}^{*}y_{\epsilon k})$ .
Any optimal solution of the RM model (1) satisfies the following properties:

Proposition 5. Let $(\theta^{*}, \phi^{*}, \lambda^{*})$ be an optimal solutions of (1) and let $\gamma^{*}be$ the optimal objective
fimction value of (9) then $\sum_{i=1}^{m}\theta_{\dot{*}}^{*}=\gamma^{*}$ and $\theta_{*}^{*}>0$ for all $i=1,$ $\ldots,$ $m$ .

Hkom propositions 1 and 5, a projection point set $\Omega_{k}$ of DMU$k$ is equivalently given as follows:

$\{(\theta_{1}x_{1k}, \cdots,\theta_{m}x_{mk},y^{*})$ $\sum_{j=1}^{n}^{\sum_{j=1}^{n}}0\leq\theta_{i}\leq.1\lambda_{j_{j=1}^{i=1}}x_{ij}.\lambda\sum_{\geq 0}^{m}i=1\theta\iota,-i=1r=1’,,-..\sum_{n)}i\frac{m-}{\theta}1\theta_{i}^{*}y_{rj}.\lambda jj_{l}^{=}=y_{r}^{*}mm^{i^{X}ik}s,,\}$ . (10)
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The linear programming problem (9) is a dual form of

max. $\sum_{r=1}^{s}w_{r}y_{r}^{*}-$
$\sum_{i=1_{\delta},m}^{m}u_{i}$

s.t. $- \sum_{i=1}v_{1}x_{ij}+\sum_{r=1}w_{r}y_{rj}\leq 0j=1,$ $\ldots,n$

(11)
$v_{i}x_{ik}-u\leq 1$ $i=1,$ $\ldots,m$

$v_{i}\geq 0$ $i=1,$ $\ldots,$ $m$

$w_{r}\geq 0$ $r=1,$ $\ldots,$
$s$

$u_{\dot{\tau}}\geq 0$ $i=1,$ $\ldots,m$ .
Furthermore, it follows from Proposition 5 that the dual problem (11) can be simplified by
eliminating dual variables $u$ and it is reduced into (12) as follows:

Proposition 6. Let $(v^{*}, w^{*}, u^{*})$ be an optimal solution of (11) and let $(v, w)$ be an optimal
solution of

max. $\sum_{r=1}^{t}w_{r}y_{r}^{*}-\sum_{i=1_{l}}^{m}v_{i}x_{ik}+m$

$s.t$. $- \sum_{i=1}^{m}vx+\sum_{r=1}w_{r}y_{rj}\leq 0j=1,$
$\ldots,$

$n$ (12)

$v_{i}x_{ki}\geq 1$ $i=1,$ $\ldots,$ $m$

$w_{r}\geq 0$ $r=1,$ $\ldots,$
$s$

then $(v^{*}, w^{*})$ is an optimd solution of $(1l)$ and $(v, w,u)$ is an optimal solution of (41),
where $u_{i}^{\#}=v_{i}^{\#}x_{ik}-1$ for all $i=1,$ $\ldots$ , $m$ .
The pair problem between (11) and (9) satisfies the Strong Complementary Slackness Condi-
tions (SCSC):
There exists a pair of an optimal solution $(\overline{\theta},\overline{\lambda})$ of (9) and an optimal solution $(\overline{v}$ , th, $\overline{u})$ of (11)
such that

$\overline{\lambda}_{j}+\sum_{i=1}^{m}\overline{v}_{i}x_{tj}-\sum_{r=1}^{\epsilon}\overline{w}_{r}y_{rj}>0j=1,$ $\ldots,n$ (13)

$\overline{v}_{i}-\sum_{j=1}^{n}x_{1j}\overline{\lambda}_{j}+\overline{\theta}_{i}x_{ik}>0i=1,$ $\ldots,$ $m$ (14)

$\overline{w}_{r}+\sum_{j=1}^{n}y_{rj}\overline{\lambda}_{j}-y_{r}^{*}>0r=1,$ $\ldots,$
$s$ (15)

$(\overline{v}:x_{ik}-1)+(1-\overline{\theta}_{i})=\overline{v}_{1}x_{ik}-\overline{\theta}_{i}>0i=1,$ $\ldots,m$ (16)

IFYom Proposition 6, the above SCSC also are valid between (12) and (9). It follows from
Proposition 3, (14) and (15) that $\overline{v}>0$ and $\overline{w}>0$ . Two conditions (13) and (16) play the key
role of characterizing multiple optimal solutions as follows:

Proposition 7. Let $(\overline{\theta}^{*},\overline{\lambda}^{*})$ and $(\overline{v}^{*},\overline{w}^{*})$ be an optimal solution pair of (9) and $(1l)$ satish-
$ing(13)$ and $(1\theta)$ . Choose arbitrarily an optimal solution $(\theta^{*}, \lambda^{*})$ of (9) and an optimal solution
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$(v^{*}, w^{*})$ of (11), then

$\{j|\lambda_{j}^{*}>0\}\subseteq$ $\{j|\overline{\lambda}_{j}^{*}>0\}$

$= b|\sum_{i=1}^{m}\overline{v}_{i}^{*}x_{ij}=\sum_{r=1}^{s}\overline{w}_{r}^{*}y_{rj}\}$ (17)
$\subseteq\{j|\sum_{i=1}^{m}v_{i}^{*}x_{ij}=\sum_{r=1}^{\theta}w_{r}^{*}y_{rj}\}$

and

$\{i|\overline{\theta}_{i}^{*}=1\}\subseteq\{i|\theta_{i}^{*}=1\}$ . (18)

Proposition 7 means that any optimal solution $(\theta^{*}, \phi^{*}, \lambda^{*})$ of the RM model (1) satisfies

$\{j|\lambda_{j}^{*}>0\}\subseteq\{j|\overline{\lambda}_{j}^{*}>0\}$ (19)

and

$\{i|\overline{\theta}_{i}^{*}=1\}\subseteq\{i|\theta_{i}^{*}=1\}$ (20)

for a optimal solution $(\overline{\theta}^{*},\overline{\lambda}^{*})$ specified in Proposition 7. The set inclusion of (19) implies that
$\{j|\overline{\lambda}_{j}^{*}>0\}$ is a unique maximal of any reference set $\{j|\lambda_{j}^{*}>0\}$ . Similarly, the set inclusion
of (20) implies that $\{i|\overline{\theta}_{\dot{*}}^{*}=1\}$ is a unique minimal of $\{j|\overline{\lambda}_{j}^{*}>0\}$ . By using the maximal refer-

ence set $\{j|\overline{\lambda}_{j}^{*}>0\}$ and the minimum set $\{i|\overline{\theta}_{\dot{*}}^{*}=1\}$ , we develop two discriminant equations
for multiple projection and multiple reference sets as follows:

Proposition 8. Suppose that $(\overline{\theta}^{*},\overline{\lambda}^{*})$ is an optimal solution of (9) $satis\hslash ing(1S)$ and (16) forsome optimal solution of (12). Let

$J^{+}$ $=$ $\{j|\overline{\lambda}_{j}^{*}>0\}$ and (21)
$I^{+}$ $=$ $\{i|\overline{\theta}_{i}^{*}=1\}$ . (22)

Let $X^{+}=[x_{j}|j\in J^{+}]$ and $Y^{+}=[y_{j}|j\in J^{+}]$ . Let $e_{i}$ be a unit vector whose $ith$ element is 1

and let $e= \sum_{i=1}^{m}e_{i}^{T}$ . Let $E^{+}=[e_{i}|i\in I^{+}]^{T}$ and let diag$(x_{k})=\{\begin{array}{lll}x_{lk} 0 \ddots 0 x_{mk}\end{array}\}$ . Let $|I^{+}|$

be the number of elements of $I^{+}$ and let 1 be an $|I^{+}|$ vector whose element is all 1, then consider
a $lir_{\phi}.ar$ equation system

$\{\begin{array}{ll}-X^{+} diag(x_{k})Y^{+} 00 E^{+}0 e\end{array}\}\{\begin{array}{l}\lambda^{+}\theta\end{array}\}=\{\begin{array}{ll}0 y^{*} 1 \sum_{i\in I} \overline{\theta}_{i}^{*}\end{array}\}$ , (23)

where $\lambda^{+}=(\lambda_{j}|j\in J^{+})^{T}$ . Let rank$(k)$ be the rank of the coefficient matrix $\{\begin{array}{ll}-X^{+} diag(x_{k})Y^{+} 00 E^{+}0 e\end{array}\}$

of $(B3)$ and let $(\theta^{*},\lambda")$ be an optimal solution of (9), then
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1. $(\theta^{*},\lambda^{*})$ is unique if and only if
rank$(k)=|J^{+}|+m$ . (24)

That is, $DMU_{k}$ has a unique prvjection and a unique reference set.

2. Let $x_{i}^{+}$ be the $ith$ row vector $ofX^{+}and$ let $X^{++}kan|I^{+}|x|J^{+}|$ matrix whose row vectors
are $\{x_{i}^{+}|i\in I^{+}\}$ , then

rank $\{\begin{array}{l}X^{+}Y^{+}\end{array}\}=$ rank $\{\begin{array}{l}X^{++}Y^{+}x_{\dot{i}}^{+}\sum_{i\in I\backslash I+}/x_{ki}\end{array}\}$ (25)

if and only if $\theta^{*}$ is unique. That is, $DMU_{k}$ has.a unique projection.

4 Finding an optimal solution with two conditions of SCSC

Consider a linear programming problem combined with (9) and (12) as follows:

max. $\eta$

s.t. all constraints of (9).
all constraints of (12).

$\sum_{i=1}^{m}\theta_{i}=\sum_{r=1}^{\iota}w_{r}y_{r}^{*}-\sum_{i=1}v_{i}x_{ik}+m$ (26)

$\lambda_{j}+\sum_{:=1}v_{i}x_{ij}-\sum_{r=1}^{s}w_{r}y_{rj}\geq\eta$ $j=1,$ $\ldots,n$

$v_{i}x_{ik}-\theta_{i}\geq\eta$ $i=1,$ $\ldots,m$ .
Any optimal solution $(\overline{\theta},\overline{\lambda})$ of the primal problem (9) and any optimal solution ( $\overline{v}$ , th) of the
dual problem (12) provides a feasible solution $(\overline{\eta},\overline{\theta}, )$ , $\overline{v},\overline{w})$ of the model (26) for some $\overline{\eta}\geq 0$

and, vice versa. Hence, the model (26) is a problem to find an optimal solution pair of (9) and
(12) satisfying two conditions (13) and (16) of SCSC. The existence of an optimal solution pair of
(9) and (12) satisfying $s\csc_{-}$ guarantees the existence of a feasible solution $(\overline{\eta},\overline{\theta},\overline{\lambda},\overline{v},\overline{w})$ of (26)
with $\overline{\eta}>0$ . Since a set $\{\overline{\theta}|(\theta,\overline{\lambda})$ is an optimal solution of (9) $\}$ is compact, the model (26) has
an optimal solution. These properties of (26) are summarized into the following proposition:

Proposition 9. Let $(\overline{\eta}^{*},\overline{\theta}^{*},\overline{\lambda}^{*},\overline{v}^{*}, th’)$ be an optimal solution of (26), then $\overline{\eta}^{*}>0$ and, $(\overline{\theta}^{*},\overline{\lambda}^{*})$

and $(\overline{v}^{*},\overline{w}^{*})$ are an optimal solution of (9) and (lZ), respectively. Hence, any pair of $(\overline{\theta}^{*},\overline{\lambda}^{*})$

and $(\overline{v}^{*},\overline{w}^{*})$ satisfies $($1 $S)$ and (16).

We propose a two.stage approach of the RM model (1):

Stage 1: Solve a convex programming problem (1) by the steepest descent method and let the
optimal solution be $(\theta^{*}, \phi^{*}, \lambda^{*})$ . Set $y^{*}=(\phi_{1}^{*}y_{k1}, \cdots, \phi_{\iota}^{*}y_{j\iota})^{T}$ .

Stage 2: Solve a linear programming problem (26) and let the optimal solution be $(\overline{\eta}^{*},\overline{\theta}^{*},\overline{\lambda}^{*}.\overline{v}^{*}, th’)$ .
Set $x^{*}=(\overline{\theta}_{1}^{*}x_{1k}, \cdots,\overline{\theta}_{m}^{*}x_{km})^{T}$ . If (24) is valid, then the optimal solution of (1) is unique.
If (24) is invahid but (25) is valid, then the projection point $(x^{*}, y^{*})$ is unique and multiple
reference sets occurs. If (24) and (25) are invalid, multiple reference sets and multiple
projection occurs.
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In order to illustrate visually the existence of multiple optimal solutions and how to check it
numerically, we consider an example of 5 DMUs with three inputs and two outputs, whose data
is given in Table 1:

$\frac\frac{Table1:Input- Outputdata}{DMUABCDE}$

$\overline{x_{1}24513}$
$x_{2}$ 2 4 1 5 3
$x_{3}$ 11111
$y_{1}$ 4 8 6 6 6

$\frac{y_{2}11111}{Eff.Score11111}$

The last row of Table 1 indicates efficiency scores by the RM model (1) as follows:

min $\frac{1}{3+2}(\sum_{1=1}^{2}\theta_{i}+1+\frac{1}{\phi_{1}}+\frac{1}{1}I$

s.t. $- \sum_{j=A}^{E}x_{ij}\lambda_{j}+\theta_{1}x_{ik}\geq 0$ $i=1,2$

$\sum_{j=A}^{E}y_{1j}\lambda_{j}-\phi_{1}y_{1k}\geq 0$

(27)

$\sum_{j=A}^{E}\lambda_{j}=1$ , $\lambda_{j}\geq 0j=A,$ $\ldots,E$

$\theta_{i}\leq 1i=1,2$ $\phi_{1}\geq 1$ .

Since $X3j=y_{2j}=1$ for all DMUs, $\theta_{3}\leq 1$ and $\phi_{2}\geq 1,$ $\sum_{j=A^{X3j}}^{E}\lambda_{j}=\sum_{j=A}^{E}\lambda_{j}\leq\theta_{S}x_{3k}=\theta_{3}\leq 1$

and $\sum_{j=A}^{E}y_{2j}\lambda_{j}=\sum_{j=A}^{E}\lambda_{j}\geq\phi_{2}y_{2k}=\phi_{2}\geq 1$ . Hence, $\sum_{j=A}^{E}\lambda_{j}=1$ and $\theta_{3}=\phi_{2}=1$ .
The equation $\sum_{j=A}^{E}\lambda_{j}=1$ corresponds to an assumption that the production possibility set
$P$ is under variable returns to scale. Therefore, problem (27) is reduced to a DEA model with
two inputs($x_{1}$ and $x_{2}$ ) and one output $(y_{1})$ whose the production possibility set $P$ is visually
illustrated in Figure 1.

As shown in Figure 1, all five DMUs are on the common face of of the production possibility
set, which implies that all DMUs are full efficient. All four DMUs except DMU$E$ are a vertex on
the common face, however, DMU$E$ is not a vertex. DMU$E$ is convex combination of remained
four DMUs. Since the dimension of the common face is 2, DMU$E$ has multiple reference sets,
e.g., $\{E\},$ $\{A, B\},$ $\{A, B,E\},\{C,D\},$ $\{C,D,E\},$ $\{A, B, C, D\}$ and $\{A, B, C, D,E\}$ .

Consider the example according to our two-stage approach. Since the RM model (1) is a
convex problem, the steepest descent method provides an optimal solution $(\theta^{*}, \phi^{*}, \lambda^{*})$ of (1) in-
dependently of the choice of an initial point for the method. Table 2 documents the stage 1 whose
outputs are all optimal solutions $(\theta^{*}, \phi^{*}, \lambda^{*})$ and output-part projections $y^{*}=(\phi_{1}^{*}y_{k1}, \phi_{2}^{*}y_{k2})^{T}$ .
Proposition 4 implies that $y^{*}$ is unique, however, the uniqueness of $x^{*}$ and $\lambda^{*}$ is not guaranteed.
The stage 2 checks the uniqueness of all optimal $\theta^{*}$ and $\lambda^{*}$ by the stage 1. Each optimal solution
of (26) with the unique output projection $y^{*}$ is shown in Table 3. By using the optimal solution
of (26), the stage 2 determines validity of (24) and that of (25), respectively, and the maximum
reference set, that are shown in Table 4. As shown in Table 4, all projection points are unique
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Figure 1: Location of DMUs in Production possibility set

$\frac{Tab1e2:Stage1oftheillustrativeexample}{\overline{DMU(\theta_{2}^{*}\phi^{*},\lambda^{*})Eff.y^{*}}}$

Score
$\overline{\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1}$

A $\phi_{1}^{*}=\phi_{2}^{*}=1$ , 1 (4, 1)
$\lambda_{A}^{*}=1$

$\overline{\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1}$

$B$ $\phi_{1}^{*}=\phi_{2}^{*}=1$ 1 (8, 1)
$\lambda_{B}^{*}=1$

$\overline{\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1}$

$C$ $\phi_{1}^{*}=\phi_{2}^{*}=1$ 1 (6, 1)
$\lambda_{C}^{*}=1$

$\overline{\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1}$

$D$ $\phi_{1}^{*}=\phi_{2}^{*}=1$ 1 (6, 1)
$\lambda_{D}^{*}=1$

$\overline{\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1}$

$\phi_{1}^{l}=\phi_{2}^{*}=1$$E$

$\lambda_{E}^{*}=1$

1 (6, 1)
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Table 3; Opt. Sol. of (26) of the illustrative example
$\overline{\overline{DMU(\eta^{*},\theta^{*},\lambda^{*})x^{*}}}$

$(v^{*}w^{*})$

$\overline{A\eta^{*}=1,\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1,\lambda_{A}^{*}=1(2,2,1)}$

$v_{1}^{*}=v_{2}^{*}=1,v_{3}^{*}=2,$ $w_{1}^{*}=$

1/2, $w_{2}^{*}=4$

$\overline{B\eta^{*}=1,\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1,\lambda_{B}^{*}=1(4,4,1)}$

$v_{1}^{*}.=v_{2}^{*}=1/2,$ $v_{3}^{*}=4,$ $w_{1}^{*}=3/2$

$\overline{C\eta^{*}=1,\theta_{1}^{r}=\theta_{2}^{*}=\theta_{3}^{r}=1,\lambda_{C}^{*}=1(5,1,1)}$

$v_{1}^{*}=1,v_{2}^{*}=v_{3}^{*}=2,$ $w_{1}^{*}=3/2$

$\overline{D\eta^{*}=1,\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1,\lambda_{D}^{*}=1(1,5,1)}$

$v_{1}^{*}=v_{3}^{*}=2,v_{2}^{*}=2,$ $w_{1}^{*}=1$

$\overline{E\eta^{*}=1/5,\theta_{1}^{*}=\theta_{2}^{*}=\theta_{3}^{*}=1(3,3,1)}$

$\lambda_{A}^{*}=\lambda_{B}^{*}=\lambda_{C}^{*}=\lambda_{D}^{*}=\lambda_{E}^{*}=1/5$

$v_{1}^{*}=v_{3}^{*}=1,$ $v_{2}^{*}=w_{1}^{*}=1,w_{2}^{*}=$

$-\underline{6/5}$

$\frac\frac{Tab1e4:Uniquene8sofopt.so1.and\max.referenceset}{DMU\max.(24)(25)Status}$

ref-
erence reference set projection

$\frac{set}{AAOOuniqueunique}$
B B $O$ $O$ unique unique
C C $O$ $O$ unique unique
D D $O$ $O$ unique unique

$\frac{\underline{EA,B,C,D,EOXmu1tip1eunique}}{O:thecorrespondingdiscri\min antequationisva1id}$

$X:the$ corresponding discriminant equation is invalid.
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and all DMUs except DMU$E$ have unique reference sets. However, DMU$E$ has multiple reference
sets where maximal one is $\{A, B, C, D, E\}$ .

5 Conclusion
This study shows that the RM model (1) is a convex programming problem and its optimal
output-part projection is unique. Hence, the RM model (1) is easy to solve in practice. FMr-
thermore, our proposal two-stage approach not only identifies the uniqueness of an optimal
input-part projection and a reference set but also provides the maximum reference set.

A multiple-stage approach generally has a link that connects between output of its preceding
stages and input of current stage. If some preceding stages have multiple outputs and an
altemative one is chosen from them, the analysis on the current stage can reach a different
conclusion. However, our two-stage approach is free from the bias link since the first stage of
our approach gives a unique optimal output-part projection to the second one.

For DEA with a single input or a single output, all variations of RM, e.g., ERGM, input-
oriented RM and output-oriented RM, are reduced to SBM, which is generally not equivalent to
the RM model (1). In the presentation, we report numerical results by application of the RM
model (1) and SBM to performance data of soccer players in Japanese professional league [8].
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