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Abstract

The simplicial algorithm is a kind of branch-and-bound method for computing
a globally optimal solution of a convex maximization problem. Its convergence
under the $\omega$-subdivision branching strategy was an open problem for years until
Locatelli and Raber proved it in 2000 [11]. In this paper, we modify the linear
programming relaxation and give a different and simpler proof of the convergence.
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1 Introduction

The branch-and-bound is a popular approach to intractable problems such as combina-
torial optimization and integer programming problems. It can also be used for finding a
globally optimal solution of multiextremal nonlinear optimization problems. A typical
example of such a class of problems is a convex maximization problem of maximizing
a convex function on a polyhedral set. In order to solve this problem globally, Tuy
proposed in 1964 the first two rigorous algorithms [13], one of which is the conical
branch-and-bound algorithm. It subdivides a simplicial cone including the feasible set
into a number of simplicial cones, and computes an upper bound on the objective func-
tion over each cone by solving a linear programming relaxation. In 69, Falk and Soland
assumed the objective function to be separable into umivariate functions and devised the
rectangular branch-and-bound algorithm [2], which is similar to combinatorial branch-
and-bound algorithms for integer programs and subdivides the feasible set recursively

’The author was partially supported by the Grand-in-Aid for Scientific Research (B) 20310082 from
the Japan Society for the Promotion of Sciences. E-mail: takahitoQcs.tsukuba ac.jp

数理解析研究所講究録
第 1629巻 2009年 244-253 244



into hyperrectangles. In 76, Horst developed the simplicial branch-and-bound algorithm,
which requires no separability assumption and subdivides the feasible set into simplices.
Since then, lots of branch-and-bound algorithms have been proposed to find a globally
optimal solution efficiently, but each of them is usually a variant on one of the three
pioneering algorithms.

A key step common to the three algorithms is computation of an upper bound on the
objective function over each fundamental set, i.e., cone, rectangle or simplex, by solving
a linear programming relaxation. It is intuitively rational to exploit its optimal solution
to subdivide the fundamental set. Although this so-called $\omega$-subdivision is known to
be efficient empirically [14], the convergence of the algorithms with $\omega$-subdivision was
an open problem for years, except for the rectangular algorithm. However, in 98-99,
Jaumard, Meyer [6] and Locatelli [10] completed the proof in different ways for the
convergence of the conical algorithm under the $\omega$-subdivision strategy. Locatelli and
Raber [11, 12] extended their idea and proved the convergence of the simplicial algorithm
with $\omega$-subdivision in 2000.

Jaumard and Meyer’s proof is based on the concept of nondegenerate subdivision
process [5], though they did not mention it in [6]. Unfortunately, no one has yet suc-
ceeded in proving the convergence of the simplicial algorithm using this concept. In this
paper, we try to prove it along those lines, by making a little modifications to the lin-
ear programming relaxation. In Section 2, we define the convex maximization problem
formally, and illustrate how the usual simplicial branch-and-bound algorithm works on
it. In Section 3, we state the condition for nondegenerate subdivision process, which
ensures the convergence of the simplicial algorithm with $\omega$-subdivision. We then show
that the condition is satisfied if we slightly modify the linear programming relaxation.
In Section 4, we further show that the $\omega$-subdivision algorithm converges even umder
a certain generalization of the original $\omega$-subdivision strategy. Lastly, we discuss some
future issues.

2 Convex minimization and the simplicial algorithm

The convex maximization problem dealt with in this paper is as follows

maximize $f(x)$
(1)subject to Ax $\leq b$ ,

where $A\in \mathbb{R}^{m\cross n},$ $b\in \mathbb{R}^{m}$ , and $f$ is a real-valued convex function defined on some open
set including the feasible set

$D=\{x\in \mathbb{R}^{n}| Ax\leq b\}$ .
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We impose the following on the problem (1) throughout the paper.

Asumption 2.1. The feasible set $D$ is bounded and contains the origin $0\in \mathbb{R}^{n}$ as an
interior point.

This assumption implies that all components of $b$ are positive.
As is well known, problem (1) has multiple locally optimal solutions which are not

globally optimal. To locate a globally optimal solution, a number of algorithms have
been developed so far (see e.g., [4, 5, 14]). Among them, as stated in Section 1, we
are concemed here with the simplicial branch-and-boumd algorithm, originally proposed
by Horst [3] in 1976. Our main interest is in its convergence property, which has been
poorly understood for over thirty years.

First of all, let us briefly illustrate how the simplicial algorithm works on our target
problem (1).

WORKINGS OF THE SIMPLICIAL ALGORITHM

The basic procedures characterizing the simplicial branch-and-bound algorithm are nat-
urally branching and bounding.

In preprocessing, the feasible set $D$ is enclosed in an n-simplex $\Delta^{1}$ , which is given
as conv$\{u_{1}^{1}, \ldots, u_{n+1}^{1}\}$ , a convex hull of $n+1$ affinely independent vectors $u_{j}^{1}s$ . The
branching procedure subdivides $\Delta^{1}$ into a set of subsimplices $\Delta^{k},$ $k\in \mathcal{K}$ , as follows

$\Delta^{1}=\bigcup_{k\in \mathcal{K}}\Delta^{k}$, int $\Delta^{k}\cap$ int $\Delta^{\ell}=\emptyset$ if $k,\ell\in \mathcal{K}$ and $k\neq\ell$ . (2)

where $\mathcal{K}$ is an (infinite) index set, and int. represents the set of interior points. The
bounding procedure sifts through those subsimplices $\Delta^{k}s$ . Namely, for each $k\in \mathcal{K}$ , if
$\Delta^{k}$ shares no points with $D$ , then $\Delta^{k}$ is discarded from consideration. Otherwise, the
following subproblem is considered

maximize $f(x)$
(3)

subject to $x\in D\cap\Delta^{k}$ .

Since (3) is essentially the same as (1), it cannot be solved directly. Instead, replacing
$f$ by its concave envelope $g^{k}$ , a minimal concave function overestimating $f$ on $\Delta^{k}$ , the
bounding procedure solves a relaxation of (3)

$(P^{k})$
maximize $g^{k}(x)$

subject to $x\in D\cap\Delta^{k}$ .

In our case, where $f$ is convex, $g^{k}$ is an affine function which agrees with $f$ at the vertices
$u_{j}^{k},$ $j=1,$ $\ldots,$ $n+1$ , of $\Delta^{k}$ . Therefore, $(P^{k})$ is a linear program and can be solved using
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any one of the simplex algorithms or the interior point algorithms. Let $\overline{x}^{k}$ denote an
optimal solution of $(P^{k})$ . Then we have

$g^{k}(\overline{x}^{k})\geq f(x)$ , $\forall x\in D\cap\triangle^{k}$ . (4)

If $g^{k}(\overline{x}^{k})\leq f(x^{*})$ holds for some feasible solution $x^{*}$ of (1) found in the course of
executing the algorithm, we can conclude that $\Delta^{k}$ contains no solution better than $x^{*}$ .
The bounding procedure then discards $\Delta^{k}$ from further consideration. Otherwise, the
branchIng procedure again subdivides $\Delta^{k}$ into smaller subsimplices. If $f(\overline{x}^{k})>f(x^{*})$ ,
the incumbent $x^{*}$ is updated with $\overline{x}^{k}$ because it is a feasible solution of (1).

SIMPLICIAL SUBDIVISION STRATEGIES

The convergence of the simplicial algorithm depends largely on how to subdivide $\Delta^{k}=$

conv$\{u_{1}^{k}, \ldots, u_{n+1}^{k}\}$ for each $k\in \mathcal{K}$ . The simplest subdivision strategy is bisection, which
divides the longest edge, say $u_{s}^{k}-u_{t}^{k}$ , at the midpoint $\beta^{k}=(u_{s}^{k}+u_{t}^{k})/2$ . The resulting
subsimplices of $\Delta^{k}$ are given as

$\Delta^{k_{j}}=$ conv$\{u_{1}^{k}, \ldots, u_{j-1}^{k},\beta^{k}, u_{j+1}^{k}, \ldots, u_{n+1}^{k}\}$ , $j=s,$ $t$ .

Each of these subsimplices is referred to as a child of $\Delta^{k}$ . If the branching procedure is
recursively applied to $\Delta^{k}$ , an infinite sequence of simplices can be generated as follows

$\Delta^{k}=\Delta^{k_{1}}\supset\cdots\supset\Delta^{k_{q}}\supset\Delta^{k_{q+1}}\supset\cdots$ ,

where $\Delta^{k_{q+1}}$ is a child of $\Delta^{k_{q}}$ . Under the bisection strategy, the sequence shrinks to
a single point. Since $\overline{x}^{k_{q}}\in\Delta^{k_{q}}$ for $q=1,2,$ $\ldots$ , we have $g^{k_{q}}(\overline{x}^{k_{q}})-f(\overline{x}^{k_{q}})arrow 0$ as
$qarrow 0$ . This exhaustiveness guarantees that the incumbent $x^{*}$ converges to a globally
optimal solutIon of (1). Unfortunately, however, exhaustive subdivision strategies are
still unknown except for bisection.

Although not exhaustive, an often-used altemative is $\omega$-subdivision. This strategy
exploIts the optimal solution $\overline{x}^{k}$ of $(P^{k})$ and subdivides $\triangle^{k}$ radially from $\omega^{k}=\overline{x}^{k}$ into
up to $k+1$ subsimplices. Let $J^{k}$ be an index set such that $j\in J^{k}$ if $\omega^{k}$ is affinely
independent of $u_{1}^{k},$

$\ldots,$
$u_{j-1}^{k},$ $u_{j+1}^{k},$

$\ldots,$
$u_{n+1}^{k}$ . Then the children of $\Delta^{k}$ are

$\Delta^{k_{j}}=$ conv$\{u_{1}^{k}, \ldots, u_{j-1}^{k},\omega^{k}, u_{j+1}^{k}, \ldots, u_{n+1}^{k}\}$ , $j\in J^{k}$ .

The $\omega$-subdivision strategy has been said to be more efficient than bisection empirically.
The theoretical convergence, however, was an open problem for years umtil Locatelli and
Raber proved it in 2000, in some combInatorial manner [11]. In the succeeding sections,
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we will give another proof, which is different from and easier than theirs.

3 Nondegeneracy of a modffled $\omega$-subdivision

For each $k\in \mathcal{K}$ , suppose that the concave envelope $g^{k}$ of $f$ on $\Delta^{k}$ is given as

$g^{k}(x)=c^{k}x+r^{k}$ , (5)

where $(c^{k})^{T}\in \mathbb{R}^{n}$ and $r^{k}\in \mathbb{R}$ . Actually, even if the subdivision strategy is not exhaus-
tive, the simplicial algorithm is known to be convergent if $c^{k}s$ possess a certain property.
Select an arbitrary sequence of nested simplices generated in the simplicial algorithm
and renumber the indices as follows

$\Delta^{1}\supset\cdots\supset\Delta^{k}\supset\Delta^{k+1}\supset\cdots$ , (6)

where $\Delta^{k+1}$ is a child of $\Delta^{k}$ .

NONDEGENERATE SUBDIVISION PROCESS

Definition 3.1. [5] The sequence (6) is said to be nondegenerate if there exists a sub-
sequence $\mathcal{K}’\subset\{1,2, \ldots\}$ and a constant $L$ such that

$\Vert c^{k}\Vert\leq L$ , $\forall k\in \mathcal{K}’$ . (7)

Also, the subdivision process is nondegenerate if every sequenoe of nested simplices is
nondegenerate.

Proposition 3.1. [5] Suppose that (6) is generated by $\omega$ -subdivision, i.e., $\Delta^{k+1}$ is yielded
by subdividing $\Delta^{k}$ radially from $\omega^{k}$ for $k=1,2,$ $\ldots$ . If (6) is nondegenerate, then

$\lim_{karrow}\inf_{\infty}|g^{k}(\omega^{k})-f(\omega^{k})|=0$. (8)

When (6) satisfies the condition (8), the sequence is said to be normal. It is known
[4, 5, 14] that the simplicial algorithm is convergent if every sequence of nested simplices
is normal. In other words, to prove the convergence of the subdivision process, we need
only to show the existence of a constant $L$ in (7) for all sequences. For this purpose, we
will make a little modifications to the linear programming relaxation $(P^{k})$ .
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RELAXATION OF THE RELAXATION $(P^{k})$

Introducing an auxiliary variable $\tau\geq 0$ , let us relax the feasible set $D$ into

$D(\tau)=\{x\in \mathbb{R}^{n}| Ax\leq(1+\tau)b\}$ .

Definition 3.2. For a positive constant $\sigma$ , a vector $x$ is referred to as a $\sigma$-feasible
solution of (1) if $x\in D(\sigma)$ .

Let $\sigma>0$ be a given tolerance, and select a number $M$ to satisfy

$M>F/\sigma$, (9)

where
$F \simeq\max\{f(u_{j}^{1})|j=1, \ldots,n+1\}$ .

Also, define a fumction $h^{k}$ of variables $x$ and $\tau$ as follows

$h^{k}(x, \tau)=g^{k}(x)-M\tau$ .

Instead of $(P^{k})$ , consider

$(Q^{k})$
maximize $h^{k}(x, \tau)$

subject to $x\in D(\tau)\cap\Delta^{k}$ , $\tau\geq 0$ .

It is easy to see that $(Q^{k})$ is equivalent to a linear program

(PQ) maximize $g^{T}\lambda-M\tau$

subject to AUA $-b\tau\leq b$ , $e^{T}\lambda=1$ , $\lambda\geq 0$ , $\tau\geq 0$ ,

where $e\in \mathbb{R}^{n+1}$ is the all-ones vector and

$g=[f(u_{1}^{k}), \ldots, f(u_{n+1}^{k})]^{T}$ , $U=[u_{1}^{k}, \ldots, u_{n+1}^{k}]$ .

The dual problem of (PQ) is written as

(DQ) minimize $b^{T}\mu+\nu$

subject to $U^{T}A^{T}\mu+e\nu\geq g$ , $b^{T}\mu\leq M_{7}$ $\mu\geq 0$ .

Note that both (PQ) and $(DQ)$ have optimal solutions because the objective fumction
value of (PQ) is boumded from above by $\max\{f(u_{j}^{k})|j=1, \ldots, n+1\}$ . Let $(\tilde{\lambda},\tilde{\tau})$ and
$(\tilde{\mu}, \tilde{\nu})$ denote their respective optimal solutIons. Then $(\tilde{x}^{k},\tilde{\tau}^{k})=(U\tilde{\lambda},\tilde{\tau})$ Is obvIously
an optimal solution of $(Q^{k})$ .
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Proposition 3.2. The optimal value of $(\Phi)$ is an upper bound on the optimal value of
$(P^{\star})$ , i. e.,

$h^{k}(\tilde{x}^{k},\tilde{\tau}^{k})\geq g(\overline{x})$ .

This proposition, together with (4), implies that $(Q^{k})$ can serve as a substitute for $(P^{k})$

in the bounding procedure. We can also prove the following:

Proposition 3.3. If $h^{k}(\tilde{x}^{k},\tilde{\tau}^{k})<0$ , then $D\cap\Delta^{k}=\emptyset$ . Otherwise, $\tilde{x}^{k}$ is a $\sigma$-feasible
solution of (1).

If $D\cap\Delta^{k}=\emptyset$ , the bounding procedure discards $\Delta^{k}$ from consideration. We may
therefore assume $\tilde{x}^{k}\in D(\sigma)$ for every $k$ . Let

$\Delta_{+}^{k}=$ conv$\{u_{j}^{k}|j\in J_{+}\}$ , $j_{+}=\{j|\tilde{\lambda}_{j}>0\}$ .

Then $\tilde{x}^{k}$ belongs to $\Delta_{+}^{k}$ , and besides we obtain the following from the complementary
slackness conditions on $(\tilde{\lambda},\tilde{\tau})$ and $(\tilde{\mu}, \tilde{\nu})$ (see e.g., [1]).

Proposition 3.4. For any $x\in\Delta^{k}$ , it holds that

$g^{k}(x)=\tilde{\mu}^{T}Ax+\tilde{\nu}$. (10)

This result suggests that we may choose $c^{k}$ and $r^{k}$ in (5) as follows

$c^{k}=\tilde{\mu}^{T}A$ , $r^{k}=\tilde{\nu}$ . (11)

EXISTENCE OF THE BOUNDING CONSTANT

Now, we are ready to show the existence of $L$ in (7) for the sequence (6).
Using $c^{k}$ in (11), define a halfspace

$H=\{x\in \mathbb{R}^{n}|c^{k}x\leq\tilde{\mu}^{T}b\}$ .

The distance $\delta(0, \partial H)$ from the origin $0\in \mathbb{R}^{n}$ to the boundary hyperplane $\partial H$ is given
by $\tilde{\mu}^{T}b/\Vert c^{k}\Vert$ . For any $x\in D=\{x\in \mathbb{R}^{n}| Ax\leq b\}$ , however,

$c^{k}x=\tilde{\mu}^{T}Ax\leq\tilde{\mu}^{T}b$ . (12)

Recall Assumption 2.1 states that $0$ is an interior point of $D$ . Since (12) implies that $D$

is a subset of $H$ , the distance $\delta(0, \partial H)$ must be bounded from below by $\delta(0, \partial D)$ , the
distance from $0$ to the boundary of $D$ . Thus, by noting the constraints of (DQ), we have

$\Vert c^{k}\Vert=\tilde{\mu}^{T}b/\delta(0, \partial H)\leq\tilde{\mu}^{T}b/\delta(0, \partial D)\leq M/\delta(O, \partial D)$,
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where $M/\delta(O,$ $\partial D)$ is a constant for each instance of (1).

Proposition 3.5. If $c^{k}$ is chosen as in (11), then there exists a constant $L$ such that

$\Vert c^{k}\Vert\leq L$ , $k=1,2,$ $\ldots$ .

4 Convergence of the subdivision processes

Let us reexamine the results in the preceding section. To make the subdivision process
nondegenerate, we may simply choose $\tilde{x}^{k}$ from the optimal solution of $(Q^{k})$ as the center
$\omega^{k}$ for subdividing $\Delta^{k}$ , as we set $\omega^{k}=\overline{x}^{k}$ in the usual $\omega$-subdivision algorithm, because
$\tilde{x}^{k}$ is a point of $\Delta_{+}^{k}$ . However, it is noteworthy in Proposition 3.4 that (10) holds not
only for $x=\tilde{x}^{k}$ , but for any $x\in\triangle_{+}^{k}$ . Moreover, we should remark in Proposition 3.5
that $\Vert c^{k}\Vert$ is bounded by a constant for every $k$ . On the basis of these observations, we
have the following proposition somewhat stronger than Proposition 3.1.

Proposition 4.1. If $\Delta^{k+1}$ is yielded by subdividing $\Delta^{k}$ radially from $\omega^{k}\in\triangle_{+}^{k}$ for
$k=1,2,$ $\ldots$ , then

$\lim_{karrow\infty}|g^{k}(\omega^{k})-f(\omega^{k})|=0$ . (13)

Proof. Let us denote the hypograph of $g^{k}$ by

$G^{k}=\{(x, y)\in \mathbb{R}^{n}\cross \mathbb{R}|y\leq g^{k}(x)\}$ ,

which is an $n+1$-dimensional halfspaoe because $g^{k}$ is an affine fumction. Also let

$\xi^{k}=(\omega^{k},g^{k}(\omega^{k}))$ , $\eta^{k}=(\omega^{k}, f(\omega^{k}))$ .

The sequenoe $\{\xi^{k}|k=1,2, \ldots\}$ is bounded, and by the convexity of $f$ it satisfies

$\xi^{k}\not\in G^{k+1}$ , $\xi^{k}\in\bigcap_{j=1}^{k}G^{j}$ , $k=1,2,$ $\ldots$ .

From the bounded convergence principle (see e.g., [5]) we see, therefore, that $\delta(\xi^{k}, G^{k+1})arrow$

$0$ , and hence $\delta(\xi^{k}, \partial G^{k+1})arrow 0$ as $karrow\infty$ . Note that

$\delta(\xi^{k}, \partial G^{k+1})=\frac{|(c^{k+1})^{T}\omega^{k}+r^{k+1}-g^{k}(\omega^{k})|}{(1+||c^{k+1}||^{2})^{1/2}}$,

because $\partial G^{k+1}=\{(x, y)\in \mathbb{R}^{n}\cross \mathbb{R}|y=(c^{k+1})^{T}x+r^{k+1}\}$ . We also have

$\delta(\xi^{k}, \partial G^{k+1})=\frac{|f(\omega^{k})-g^{k}(\omega^{k})|}{(1+||c^{k+1}\Vert^{2})^{1/2}}$ ,
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because $\eta^{k}\in\partial G^{k+1}$ and henoe $f(\omega^{k})=(c^{k+1})^{T}\omega^{k}\vdash r^{k+1}$ . By noting Proposition 3.5
we have

$|f(\omega^{k})-g^{k}(\omega^{k})|\leq(1+L^{2})^{1/2}\delta(\xi^{k}, \partial G^{k+1})arrow 0$

as $karrow\infty$ . 口

The convergenoe result for the usual $\omega$-subdivision prooess, where $\omega^{k}=\tilde{x}^{k}$ for $k=$

$1,2,$ $\ldots$ , is just a corollary of this proposition.

Corollary 4.2. If $\Delta^{k+1}$ is yielded by subdimding $\Delta^{k}$ radially from $\omega^{k}=\tilde{x}^{k}$ for $k=$

$1,2,$ $\ldots$ , then
$\lim_{karrow\infty}|g^{k}(\omega^{k})-f(\omega^{k})|=0$ .

Proposition 4.1, however, is not sufficient to ensure the convergenoe of the algorithm
to an optimal solution or an approximately optimal solution of the target problem (1).
For this purpose, we need to restrict the selection of $\omega^{k}$ from $\Delta_{+}^{k}$ for each $k$ . If we
select $\omega^{k}=\tilde{x}^{k}$ for each $k$ , as in Corollary 4.2, and update the incumbent $x^{*}$ with $\tilde{x}^{k}$

appropriately, we can prove that $x^{*}$ converges to an optimal $\sigma$ -feasible solution $x^{\sigma}$ , i.e.,

$x^{\sigma}\in D(\sigma)$ and $f(x^{\sigma})\geq f(x)$ , $\forall x\in D$ .

Although it is a rather satisfactory result from a theoretical viewpoint, this subdivision
strategy inherits a serIous weak point from the original $\omega$-subdivision strategy, i,e.,
$\triangle^{k}$ is subdivided into up to $n+1$ subsimplioes for each $k$ . We have to solve $n+1$

linear programs, in the worst case, to update the upper bound on the values of $f$ over
$D\cap\Delta^{k}$ . From a practical viewpoint, this is a major drawback of $\omega$-subdivisIon compared
to bisection, in particular when we terminate the algorithm prematurely and use the
incumbent $x^{*}$ as a heuristic solution [8, 9]. One way to improve it is to divide some edge
of $\Delta_{+}^{k}$ . Sinoe this strategy equivalent to subdividing $\Delta^{k}$ radially from $\omega^{k}$ on some edge
of $\Delta_{+}^{k}$ , the resulting subdivision prooess is convergent. To guarantee the convergence of
the algorithm as well, we need to introduce additional devices, the detail of which will
be reported elsewhere.
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