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1 Introduction

We consider the Cauchy problem for a one-dimensional model system of chemotaxis

U = au,, — (uvg)., (t,z) € Rt x R!
(P) v =bv,, —v+u, (t,z)ER" xR! (a,b > 0: constants).

(u,v)(0, ) = (uo, vo)(z), z € R!

Our interest is in the asymptotic profile of solutions (u,v) as ¢t — oo when bounded
solutions exist in the sense that

(1.1) sup([lu(t, )llze + [lv(t, )lle) < +o0 (g =1,00).

By Nagai, Shukuinn and Umesako [2] and Nagai and Yamada [3], it has been showed that
the bounded solution to (P) in RY (N > 1) with a = b = 1 satisfies

(1.2)  supd(t; p)ll(u — MoG,v — MoG)(t, )||1» < +00, My = / uo(x) dit
t>2 RNz

t20-2)* 4 (logt)"1 (N =1)

tr0E (N 29),
Kato [1] has recently improved (1.2) for N = 1 as that the logarithmic tail” in d(¢; p)
can be deleted even for a,b > 0, not necessarily a = b = 1. More precisely, the second
term of the asymptotics is given. If W (¢, x) is defined by the solution to

with d(t;p) = where G(t,z) = (4nt)~V2exp (—|z|?/4t).

2
W, = Wae — (G20 + 1, 2))..0,

(1'3) 2a oc d
W(0,z) = — ( /R zug(z) dz + /0 /R (wv,)(t,2) dzdt) —=4(a),

then it satisfies

(1.4) lim 12079 ju(t, ) — MoGlat, ) = W(at, )1 = 0
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with [W(t,)||r < CME(1 +1)"20797% and |[W(t, )||Le > CMZ(1 +¢), ¢t > 2. The
same estimate on v also holds. In the result, the logarithmic tail in (1.2) is deleted.

Here and after, let a =1, b > 0 without loss of generality.

In this note we want to discuss the profile of solutions from the following point of
view. The results above mentioned, of course, show that MyG(t,z) is an asymptotic
profile of both u and v. However, we take the location of the profile into consideration.
For example, when discrete statistical data are distributed by the Gauss distribution, the
data are approximated by

1

2
=g
5 e 227 (u: mean, o : standard deviation).
o

Here, the choice of both p and o is important. Suggested by this, we propose an asymp-
totic profile with the location o

24 — 1 e oy e g o[ 7 I
(1.5) MG+ 1,2 — o), foo = A {[ zup(x) dx +/0 /_m(uvm)(t,,c) dxdt} .

e}

Then we have the following theorem.

Theorem 1 Let N = 1, and suppose that ug, vg, vo, € L* N B with
(1.6) (1 + |z[P)uo(z) € L with M, = /R ug(z) dz # 0.
Then the bounded solution (u,v) to (P) satisfies for 1 < p < oo andt > 0

u(t,-) = MyG(t+ 1, — poo) + Wi(t, - proo) || »

(1.7) < C+t) 30D log (2 + 1))?,

where poo by (1.5) is well-defined and the second term W, of asymptotics is given by

t roc
(1.8)  Wilt, z; ptoo) = /Of_m Gt — 5, — Y)ME(GGC.)ol(s + 1,y — poo) dy ds.

The same estimate on v as (1.7) also holds. Moreover, W is estimated from above and
below:

(1.9) Wi, -5 poo) | v < CME(L+1)"2078)"% ¢ >0,
) : 1 1y_1
Wi, -5 poo)llLe 2 CTIMGE2070073, £ > 8y > 0.

In Theorem 1.1 we apply (1.8)-(1.9) to (1.7) and have the following behaviors from
above and below.

Corollary 1 Under the assumptions in Theorem 1.1, for 1 < p < oo there hold that
lu(t, ) = MoG(t + 1, = poo), v(t, -) = MoG(t + 1, = proo)llzs < C(1 +1)"30-9)4
fort >0, and that, fort > t; >0

u(t, ") = MoG(t + 1, — pioo), v(t,-) = MoG(t + 1, = pioo)||Le = C~ MZE™31"3)-3,



2 Location of the profile

Integrating (P),(first equation of (P)) over (0,t) x R!, we have

(2.1) /oo u(t,z)dr = /'00 up(z) de = My.

For v, by integration of (P),
o0 oc
(2.2) / u(t, z) dz = e-‘/ (@) dz + Mo(1 — ™) — My (t — 00).
Hence, taking the location into consideration, we define the profile by
(2.3) o(t,x) == MyG(t + 1,z — u(t)),
and choose u(t) as [% [Z (v — ¢)(t,y) dydz = 0. Since ¢ satisfies

(2.4) 86 = bue ~ L(0) - 0u(t,2),

u — ¢ does

(2.5) Oult = ) = (4~ Bae + 1 ()62 — (uvy)s.

By (2.1) we can integrate (2.5) in z twice to get

(2.6) T @ty dyde = M (0) — [ ()t ) e
and hence

T~

00/1 (u — @)(t,y) dydx
@7 = [T [ () - 00, 9)) dydz + Mou(t) - w(©)) — [ [ (wv)(s,2) dds

ocC

_ /_"; vuo(z) dz + Mop(t) - [ / (uvs)(s, @) dzds,

I

because
/_ ‘1¢(0,I)d1‘ = /_OC-T - MoG(1,z — p(0)) dz = Mopo, po = u(0).

We now define u(t) b

(2.8) u(t) = A}fu {/ zup(z) dr + // (uv)(s, x) d:tds}

Therefore, we can define

(2.9) Ut,z) := /_:O [yw(u —¢)(t,2)dzdy or u=¢+ U,

62
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which satisfies

Ui =Uuot [ W(®6(t,) = (w)(t,0)] dy

(2.10) z y
U©)=Uo(@) = [ [ (uo(z) - MoG(1, 2 — o)) dz dy.

To show Theorem 1.1, we need to estimate

(w=9)t2) = [ Gualtiz = y)Uslv) dy

(2.11) t oo )
+ /0/_00 Gt —s,2—y) /_oo L' (s)o(s,2) — (uvy)(s, 2)] dz dy ds.

Here we note that Uy € L' N B by (1.6) and that

(2.12) / T @)6(t, 2) — (uv)(t, 2)] dz = 0.

—00

3 Proof of Theorem 1.1

We only sketch the proof, whose details are given in [4]. Known estimates on the solution
(u,v) to (P) in Nagai and Yamada [3] and Kato [1] are the followings.

Lemma 3.1 For 1 < p < oo andt > 0, the bounded solution (u,v) to (P) satisfies

(3.1) lu(t, ) — MoG(t +1,-),v(t,) = MoG(t +1,-)||r < C(1 + t)"30=3)%
(3.2) lva(t, ) — MoGa(t + 1, )| < C(1 + t) 5071 log (2 + 1),
(3.3) I(w = v)(t, Ylr < C(L+1)" 5021 og (2 + ).

By (3.1)-(3.3) we have the properties of u(t).
Lemma 3.2 The location u(t) by (2.8) satisfies for t > 0
(3-9) W) < COA+1) " log (2+1),
which implies that pu(o0) = po is well-defined, and

(3.5) (t) = B < C(1+ ) 2 log (2 +1).
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Proof. By (3.1)-(3.2), (3.4) follows from

WOl < 5 (e = MeG) )| lva(®)llzee + MG ()Ll (ve — MoGe) ()| 2e<)
< C(1+1t)"3log(2 +1t).
Hence (3.5) follows easily. O

By the mean value theorem we have
6(t, ) = MG (t + 1, — pioo)llze < C(1 +)73079) log (2 + £)
and
(3.6) Wi (2, proo) = Wi (2,5 0) s < C(1+8)73079)70,

Hence, to show (1.7), it is enough to prove the following proposition, which is a main
estimate in this note. The same estimate on v is derived by (3.3).

Proposition 3.1 Under the conditions in Theorem 1.1 it holds
3.7) lu(t,-) = ¢(t, ) + Wit, 5 0lls < C(1+)720"D7 log (2 + 1))2.
Proof. By (2.11) and (1.8)
(u — @)(t, x) + Wi(t, 7;0)
— [ Gualt,z — V) dy + [ [ Gualt = 5,2~ )

x /_ L (8)6(s, 2) — (w)(s, 2) + ME(GGL)(s + 1, 2)] dz dy ds
= I() + Il.

By Uy € L' N B it is easy to see that
ol e < C(1+ )70

fort > 0. For 0 <t <1, || I || < C easily. For t > 1 we set

t/2 ¢
11=/ +/ =: I + I».
0 t/2

By (1.6) we note that

(3.8) lu(t, Mz < CA+ DY, Jut,) = MoG(t+1,)llsa < C,
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where LP™ = {f € L?; || f||zem = |[(1+|-[)™f|lzr < 400} (These are shown by applying
the method in [2]). Therefore, by (2.12) and (3.8)

“Ill”LPt/2 A
<O [T-97 D [T {w(s)e(s,2)
~[(u = MoG)v, + MyG (v — MyG.)](s, 2)} dz| 11 ds
f(1-1)- t/2 / Y
< O AR [T @) 1G s, - — w() s + 1 = MoG) ()| o s (5) | o
o +HIG )22 ll(ve = MoG2)(8)l| L] ds
< Ct‘%“—%)-lfo [(1+5) "% log(2+s) - (1+s)k
+(1+s8) 4+ 1+ s)%(l + ) % log (2 + s)| ds
< C’t_%(l“%)‘l(log (2+1))2

Here, we have denoted |lu(s, y) — MyG(s+1, Yz = [[(u— MyG)(s)]| L etc. for simplicity.
For I,, by the integral by parts,
t
he = [ [ Gt =82 -9/ MGuls + 1,y — u(s)) dyds
i
+ /t/z / Gt — 8,7 — y)[(u — MyG)vy + MoG(vy — MoGo)|(s,y) dy ds
= 1112 =+ I]?Q’

Fach part is estimated as follow:

t —l~1
1l < [ (6= ) 8D (5)[1Guls) 12 ds
1 11 ,
< c// (t—s) T D1+ 5) ¥ log(2+ ) - (1+5) P ds
t/2
<CA+t)7203) g (2 4 1),

H%MlSCﬁJ&@—mew~MﬂWMMMMMw
+HIG ()| 1 (ve — MoGl)(5) 2 ) ds
< c/t/:(t — ) 1+ 5) S log (2 + 5)ds
<C@+t)tlog(2+1)
and .
n%mmSCLﬂ&u—mmmm—M@mmmmwmm
+G ()22l (ve — MoG)(5) L= ) ds
< C/t/:(t — )t +s)"Flog (2 + 5)ds
<C+t)log(2+1t).



66

Combining all estimates, we obtain (3.6). o

Completion of the proof of Theorem 1.1. We show (1.9). By an elementary calculation

/oo G(t—s,z—y)G* s+ 1,y)dy = Gl )
—oo 87r(s + l)
Hence, when p,, =0,
| et =
(3.9) Wi(t,z;0) = / t—52
\/87r(s +1)
Similar representation to (3.9) is found in {1]. We craim, for ¢t > ¢y > 0,
V2| it G (t — 551 1)
3.10 | s dn > et + 1)7H,
(3.10 J 0o srr Azt

and, when 0 <z < /(t +1)/2,

t Goo(t — 52, 1)
3. / el 2 >c -1
(3.11) A — ds‘_c(t+l)
In fact, since G.(t.z) = —£G(t,z) and G (t,x) = 2i( - 1)G(t, x),
G (t-s’l ) > )>o for 0<z < /(t+1)/2
= 2 = Tyt - ) '
Hence,
the left-hand side in (3.10)
VEDZ 1t — Gyt — 55 G, (t— 2t [T
2(;/ Gl )dd.L—c/ ( 2 2)ds
0 Jo \/.5+ _q Vvs+1
> c(t+1)2 (9+1) )" %ds
2> C(t+1)", t 2> 2,
and

the left-hand side in (3.11)
Gt - =5 (Gt -5, /B
( I) ds > ¢ )

>
T ho V1= T \/s+1(t-”1)
> /(.s+1"' _1_%ds
0
> c(t+1)7h t>t.



By (3.10) and (3.11), for 1 < p < o0,

/\/ (t+1)/2

0

ds

/t Guu(t — 252, 2)
0 vs+1

1
vV (t+1)/2 t _G:t.l, t— s—l, ?
/ (t+1)~®-1 (=53 d;c)
0

W1 (2, 0)lle 2 (

IV

¢
> c(t+1)73079D7 ¢ >y,
When p = oo, it is easy to show
[Wi(t, -5 0)[[eo > [WA(2,0;0)| 2 c(t +1)7", ¢ 2> to.
When po # 0, Wi(t, 7; poo) = Wi(t, z;0) + (W1 (2, 2; poo) — Wi (2, z; 0)) and Wi (¢, T} pioo) —
Wi(t, z;0) decays faster by (3.6). Hence the estimate from below in (1.9) holds. The

estimate from above is obtained easier by (3.9), which completes the proof of Theorem
1.1.

References

[1] M. Kato, Sharp asymptotics for a parabolic system of chemotaxis in one space di-
mension, Osaka Univ. Research Report in Math. 07-03.

[2] T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles

of bounded solutions to a parabolic system of chemotaxis in R, Funkcial. Ekvac.
46(2003), 383-407.

[3] T. Nagai and T. Yamada, Large time behavior of bounded solutions to a parabolic
system of chemotaxis in the whole space, J. Math. Anal. Apppl. 336(2007), 704-726.

[4] K. Nishihara, Asymptotic profile of solutions to a parabolic system of chemotaxis in
one dimensional space, preprint(2008).

67



